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Hadronic off-shell width of meson resonances

D. Gómez Dumm
Departamento de Fı´sica, Comisio´n Nacional de Energı´a Atómica, Av. Libertador 8250, (1429) Buenos Aires, Argentina
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Within the resonance chiral effective theory we study the dressed propagators of the spin-1 fields, which
arise from a Dyson-Schwinger resummation perturbatively constructed from loop diagrams with absorptive
contributions in thes channel. We apply the procedure to the vector pion form factor and elasticpp scattering
to obtain the off-shell width of ther0 meson. We adopt a definition of the off-shell width of spin-1 meson
resonances that satisfies the requirements of analyticity, unitarity, chiral symmetry, and asymptotic behavior
ruled by QCD. To satisfy these constraints the resummation procedure cannot consist only of self-energy
diagrams. Our width definition is shown to be independent of the formulation used to describe the spin-1
meson resonances.

PACS number~s!: 12.39.Fe, 12.38.Aw, 12.38.Cy, 12.40.Vv
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I. INTRODUCTION

The evaluation of hadronic current matrix elements in
low-energy regime is a long-standing problem of parti
physics that has been addressed using many different t
The common lore amounts to obtain momentum-depend
form factors that carry the dynamical content of the inter
tion, though a rigorous determination in the framework o
Lagrangian formalism such as the standard model has no
been achieved. From a field theoretical point of view,
goal is to evaluate the Green’s functions from the quant
action functional but, in practice, this is a poorly know
procedure overcome by many uncertainties that arise bec
of hadronization and analytic continuation. As a con
quence we rely on the construction of form factors fro
guiding principles such as analyticity, symmetries of t
standard model, or model-dependent assumptions of dyn
cal content~vector meson dominance, factorization, dual
and so forth!. A more phenomenological approach consi
in fitting ad hocparametrizations with experimental data.

Hadronic low-energy phenomenology far below the re
nance region (E!M r) is successfully described in th
framework of chiral perturbation theory (xPT) @1–3#, the
effective action of quantum chromodynamics~QCD! at low
energies. However a similar tool in the resonance reg
typically E;1 GeV, is still lacking, and has become a foc
of interest in the last years. Data onpp→pp, the vector
pion form factor, hadronict decays and other processes ha
prompted the activity on the theoretical side.

Following the phenomenological Lagrangian ideas of R
@4#, the inclusion of meson resonances in an effective the
was addressed in Ref.@5# by introducing the leading reso
nance chiral effective theory of QCD. It has to be emph
sized that this is a model-independent framework that p
vides @6#, upon integration of the spin-1 meson degrees
freedom, the sameO(p4) xPT Lagrangian independently o
the definition of the spin-1 fields, a nontrivial feature.

The problem we wish to study comes from the obvio
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fact that, in the resonance region, the width of the resonan
cannot be neglected and one needs to regularize the pol
a proper way. Here we address the construction of the
shell width of meson resonances from the resonance ch
effective theory of QCD. We will focus, owing to its rel
evance and simplicity, in the off-shell width of ther0. As it
is well known ther meson plays a crucial role in the dynam
ics of hadron processes at low energies and therefore
properties, like mass and width, have been thoroughly s
ied in many different frameworks@7,8# usually related with
the pion form factor. Notwithstanding most of these stud
rely on modelizations of the interaction that include assum
tions not justified from the standard model.

In Ref. @8# it was pointed out that one could consider t
evaluation of the off-shellr width from the effective theory
of QCD at low energies that includes the resonances
Goldstone bosons explicitly. Here we carry out in detail su
a procedure. We study two physical observables: the ve
pion form factor and thep1p2→p1p2 amplitude withJ
51 in thes channel. We construct a Dyson-Schwinger-li
equation and we show that, in both observables, it gives
same imaginary part for ther0 pole.

When considering off-shell processes one might wo
about the fact that different redefinitions of the fields gi
different results. We have shown that the result of our p
cedure does not depend on the definition of ther0 field. One
of the conclusions of Ref.@6# was that, as different redefini
tions of the spin-1 fields give different Lagrangians, intera
tion vertices are dependent on the formulation and, theref
the Feynman diagrams contributing to a process
formulation-dependent. We will have to take this fact in
account when considering which diagrams have to be
counted for in the Dyson-Schwinger series. As a result thi
not going to be reduced to evaluate resonance self-ene
only.

We will proceed then by proposing a definition of th
off-shell width of the vector meson resonances as the im
nary part of the pole generated through the two-point vec
©2000 The American Physical Society14-1
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D. GÓMEZ DUMM, A. PICH, AND J. PORTOLÉS PHYSICAL REVIEW D62 054014
current correlator, where only those diagrams with an
sorptive part in thes channel are included. This definition
shown to satisfy the crucial requirements of analyticity, u
tarity, chiral symmetry and asymptotic behavior ruled
QCD. Again the result is shown to be independent of
spin-1 field formulation.

In Sec. II we study the resummation that regulates
pole of ther0 in the vector pion form factor and the elast
scattering processp1p2→p1p2. Then in Sec. III we pro-
pose a general definition of the off-shell width of resonanc
Section IV is devoted to provide the rationale for the ind
pendence of our results from the spin-1 meson formulat
Our conclusions are pointed out in Sec. V.

II. THE POLE OF RESONANCES
IN PHYSICAL OBSERVABLES

The position of the pole of the bare propagator for sta
particles gets shifted when interactions are switched on
the usual perturbative treatment of the interaction, a pole
to be achieved through a resummation procedure of hig
orders. The well known solution of the Dyson-Schwing
equation for the dressed propagators, obtained through
evaluation of self-energy Feynman diagrams, hides the
that the definition of the resummation, that is, which are
contributions and how one has to proceed, is not free
ambiguities. These are lessened if one needs to impose
restrictions on the result, like gauge invariance~see@9# and
references therein!. However, hadron processes at low en
gies are described by an effective action where color SU~3!
gauge invariance is not explicit. At the 1 GeV scale we
driven by two all-important features: chiral symmetry a
the asymptotic behavior of form factors ruled by QCD. O
viously basic principles like analyticity and unitarity mu
also be satisfied.

Chiral symmetry has a long history as a powerful tool
describe low-energy hadrodynamics@10#. One of its main
aspects is that it is a spontaneously broken symmetry
requires the existence of Goldstone bosons to be ident
with the octet of lightest pseudoscalars. Chiral perturbat
theory is the effective action of low-energy QCD@1–3# that,
in the SU(3)L ^ SU(3)R version, involves only the octet o
pions, kaons andh mesons and describes strong interactio
at E!M r . At the 1 GeV energy region the inclusion of th
lightest resonances as explicit degrees of freedom is
quired.

The resonance chiral effective theory with three flav
and only including vector meson resonances is given, at
lowest chiral order, by@5#

LxV5L x
(2)1LKV1L V

(2) . ~1!

HereL x
(2) is theO(p2) chiral Lagrangian

L x
(2)5

F2

4
^umum1x1&, ~2!

whereF is the pion decay constant (F'92.4 MeV),

um5 i @u†~]m2 ir m!u2u~]m2 i l m!u†#,
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x15u†xu†1ux†u,

u5expS i

A2F
P D , ~3!

andP is the usual representation of the Goldstone fields

P5S p0

A2
1

h8

A6
p1 K1

p2
2

p0

A2
1

h8

A6
K0

K2 K 0̄ 2
2

A6
h8

D . ~4!

In Eq. ~2!, ^A& stands for a trace in the flavor space.L x
(2) has

a SU(3)L ^ SU(3)R chiral gauge symmetry supported by th
external fieldsl m , r m , andx.

In Eq. ~1!, LKV is the kinetic Lagrangian of vector meson
andL V

(2) describes the chiral couplings of vector mesons
the Goldstone fields and external currents at the lowest or

L V
(2)5

FV

2A2
^Vmn f 1

mn &1 i
GV

A2
^ Vmn um un &, ~5!

where f 1
mn5uFL

mnu†1u†FR
mnu, with FL,R

mn the field strength
tensors of the left and right external currentsl m andr m . Vmn

denotes the octet of the lightest vector mesons, in the a
symmetric formulation@2,5,11#, with a flavor content analo-
gous toP in Eq. ~4!. The effective couplingsFV andGV can
be determined from the decaysr0→e1e2 and r0→p1p2

respectively. Notice that only linear terms in the vector fie
have been considered inL V

(2) .
Assuming unsubtracted dispersion relations for the p

and axial form factors one gets two constraints@6# among the
couplingsF, FV , andGV :

FV GV5F2, FV52 GV , ~6!

which are reasonably well satisfied phenomenologically.
will enforce those constraints in our analysis.

As thoroughly studied in Ref.@6# the use of the antisym
metric formalism to describe spin-1 mesons simplifies
structure of the effective action at the lowest chiral order
the even-intrinsic parity sector. If we use the Proca formu
tion of the vector fields instead, we need to consider
O(p4) chiral Lagrangian of Gasser and Leutwyler@3#, with
appropriateLi coefficients, in order to satisfy the shor
distance QCD constraints. We will comment later on ab
the independence of our results on this particular choice

The bare propagator of the vector mesons, in the antis
metric formulation, is given by
4-2
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HADRONIC OFF-SHELL WIDTH OF MESON RESONANCES PHYSICAL REVIEW D62 054014
^0uT$Vmn~x!,Vrs~y!%u0&

5
i

MV
2 E d4q

~2p!4

e2 iq(x2y)

MV
22q22 i«

@ MV
2 Vmnrs

L 1Vmnrs
T #,

~7!

with

Vmnrs
L 8gmrgns2gmsgnr , ~8!

Vmnrs
T 8gmrqnqs2grnqsqm2q2gmrgns2~r↔s!,

that satisfiesqmVmnrs
T 50. Chiral symmetry requires that th

interaction between the vector mesons and pseudoscala
external currents is a derivative coupling, as shown inL V

(2) .
Consequently, when the vector-meson propagator conn
with only one external current or two pseudoscalars,
transverse partVmnrs

T does not contribute.
As commented above, a Lagrangian density that inclu

the Goldstone bosons and spin-1 resonances is not un
but depends on the definitions of the fields, whereas the
servable physical quantities should be independent of th
If we want to construct the dressed propagator of ther0

meson we should consider, for a definite intermediate st
all the contributions carrying the appropriate quantum nu
bers. The first cut, in ther0 case, is a two-pseudoscalar a
sorptive contribution that happens to saturate its width. H
we will take into account the two-particle absorptive cont
butions only; higher multiplicity intermediate states bei
suppressed by phase space and ordinary chiral counting.
effective vertices, that will contribute to the observables
are interested in, are those corresponding to an external
tor current coupled to two pseudoscalar legs, and to a ve
transition in thes channel contributing to the four pseud
scalar vertex. These transitions are not only diagramm
cally driven by ther propagator, but also through local co
tributions that have to be included. The construction of
effective vertices goes as sketched in Fig. 1 where, at
leading order, the local vertices on the right-hand side of
equivalence are provided by theO(p2) chiral Lagrangian
L x

(2) in Eq. ~2!. The diagrams contributing to physical ob

FIG. 1. Effective vertices contributing to vector transitions
the s channel that are relevant for the pion form factor and ela
pp scattering. The crossed circle stands for an external vector
rent insertion. A double line indicates ther0 meson and single one
the pseudoscalars. Local vertices on the right-hand side are
vided, at leading order, byL x

(2) .
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servables will be constructed taking into account all poss
combinations of these two effective vertices.

Let us start with the vector pion form factorFV(q2) de-
fined by

^p1~p8!uvm
3 up1~p!&5~p1p8!m FV~q2!, ~9!

whereq25(p2p8)2 and vm
3 is the thirdSU(3) component

of the vector currentvm5( l m1r m)/2. FV(q2) is dominated
by the contribution of ther0 meson and has thoroughly bee
studied in Ref.@8# up to E;1.5 GeV. Clearly, one canno
describeFV(q2) in that region of energy using the barer0

propagator of Eq.~7!; the width of the resonance has to b
introduced to regulate the pole of the propagator.

We propose then to construct a Dyson-Schwinger-l
equation through a perturbative loop expansion. Accord
to our previous discussion, at tree level one has to take
account the amplitudes provided by Figs. 2~a! and 2~b!, i.e.,
the effective vertex in Fig. 1~a!. The next step is to conside
one-loop corrections. We are only interested in those con
butions with absorptive parts in thes channel. They are gen
erated by inserting a pseudoscalar loop using the two ef
tive vertices in Fig. 1 which leads to the four contributions
Figs. 2~c!, 2~d!, 2~e!, and 2~f!. In this way we have pro-
ceeded up to two loops. The resulting infinite series happ
to be geometric and its resummation gives

FV~q2!5
MV

2

MV
2 F112

q2

F2
ReB22G 2q22 i M V Gr~q2!

,

~10!

whereMV is the mass of the octet of vector mesons in t
chiral limit, B22[B22@q2,mp

2 ,mp
2 #1 1

2 B22@q2,mK
2 ,mK

2 # and
the B22@q2,m2,m2# function is given in the Appendix. The
width of ther0 mesonGr(q2) is given by

Gr~q2!522 MV

q2

F2
Im B22

5
MV q2

96p F2 F sp
3 u~q224mp

2 !1
1

2
sK

3 u~q224mK
2 ! G ,

~11!

c
r-

ro-

FIG. 2. Diagrams contributing to the vector pion form factor
to one loop in the resonance chiral Lagrangian given byLxV that
have an absorptive part in thes channel. The lines and symbol
stand for as in Fig. 1.
4-3
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wheresP5A124mP
2 /q2.

The real part of the pole ofFV(q2) in Eq. ~10! needs still
to be regulated through the wave function and mass re
malization of the vector field. The local part of ReB22 can be
fixed in this case by matching the result in Eq.~10! with the
well known expression ofFV(q2) at one loop inxPT @8,12#.
One gets then

B22@q2,mP
2 ,mP

2 # uFV

5
1

192p2 F lnS mP
2

MV
2 D 18

mP
2

q2
2

5

3
1sP

3 lnS sP11

sP21D G .

~12!

We have used the standard vector meson dominance v
@5# of the relevant O(p4) chiral coupling, L9(MV

2)
5F2/2MV

2 , which agrees very well with its phenomenolog
cally extracted value.

To one-loop accuracy, Eq.~10! agrees by construction
with the Omne`s resummation of chiral logarithms performe
in Ref. @8#. However, and as pointed out in Ref.@13#, the
Omnès resummation also reproduces the contribution
double chiral logarithms, while our one-loop resummati
does not@14#. This is not surprising, since our result in E
~10! has been obtained by considering not all possible d
grams but only those which are driven by ther0 resonance
and contribute to its width. It would be interesting to perfor
a detailed study of both resummations at the next chiral o
and compare them with the known two-loopxPT results
@15#.

An analogous procedure can be applied to the study
elasticpp scattering. For definiteness we take theJ51 tran-
sition in the s-channel amplitude ofp1p2→p1p2. This
channel is again dominated by ther0 meson and we can
proceed to construct a Dyson-Schwinger equation as in
case of the vector pion form factor. Thus, we consider an
gous diagrams to those in Fig. 2, substituting the exte
vector current insertions by two pion legs, according to
the possible contributions of the effective vertices in Fig.
By projecting thep wave~that corresponds to theJ51 con-
tribution! we find again a geometric series, which can
resummed to give

A~p1p2→p1p2!uJ51

5
2 i

2F2
~u2t !

3
MV

2

MV
2 F112

q2

F2
ReB22 G 2q22 i M V Gr~q2!

,

~13!

whereu and t are the usual Mandelstam variables (q25s).
We see that the pole of the amplitude coincides with the
we got for the vector pion form factor and, therefore, giv
the same width of ther0 meson. Contrary to the pion form
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factor case, here it is not possible to fix the polynomial p
of the ReB22 function in a simple way, because a prop
matching with the chiral low-energy expansion requires us
take into accountp-wave contributions in thet andu chan-
nels, which are not accounted for in our result of Eq.~13!.

In the next section we will introduce a definition of th
off-shell width of spin-1 resonances that is consistent w
our previous results.

III. THE DEFINITION OF A HADRONIC
OFF-SHELL r0 WIDTH

We propose to define the spin-1 meson width as
imaginary part of the pole generated by resumming th
diagrams, with an absorptive part in thes channel, that con-
tribute to the two-point function of the corresponding vec
current. That is, the pole of

Pmn
jk 5 i E d4x eiqx ^0u T@Vm

j ~x!Vn
k~0!# u0&, ~14!

with

Vm
j 5

dSxV

dv j
m

, ~15!

whereSxV is the action associated toLxV .
Ther0 quantum numbers correspond toj 5k53. Lorentz

covariance and current conservation allow us to define
invariant function ofq2 through

Pmn
33 5~q2gmn2qmqn! Pr~q2!,

~16!

Pr~q2!5P (0)
r 1P (1)

r 1P (2)
r 1•••,

whereP (0)
r corresponds to the tree level contribution of Fi

3~a!, P (1)
r to the one-loop amplitudes and so forth. Up to o

loop, and considering again the two-particle absorptive c
tributions only, all the diagrams generated by the effect
vertices in Fig. 1 are shown in Fig. 3. We find, in the isosp
limit,

P (0)
r 5

FV
2

MV
22q2

, ~17!

P (1)
r 5P (0)

r F2
MV

2

FV
2

MV
2

MV
22q2

4 B22 G . ~18!

FIG. 3. Diagrams contributing to the vector-vector correla
Pmn

33 up to one loop. The lines and symbols stand for as in Fig.
4-4
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QCD predicts that two-point spectral functions of vec
currents go to a constant value asq2→` @16#. The loop
diagram in Fig. 3~b! behaves also as a constant for lar
values ofq2, which is against the expectations because
corresponds to only one of an infinite number of possi
intermediate states. In order to satisfy the QCD predicti
one would foresee that all the individual~positive! contribu-
tions from the different intermediate states should vanish
the limit q2→`. Indeed, this is achieved in our case wh
diagrams in Figs. 3~c!, 3~d!, and 3~e! are added.

Our result forP (1)
r corresponds to a single one-loop di

gram with two effective vertices, as shown in Fig. 4~a!. It
vanishes asq2→`, as QCD requires, and this fact happe
at every higher order when all possible diagrams with
sorptive contributions in thes channel~and not just self-
energies! are included.

We proceed to evaluateP (2)
r , that is, the contribution of

two-loop diagrams that arise fromLxV with absorptive con-
tributions in thes channel. These diagrams can be eas
constructed by iterating in all possible ways the one-lo
diagrams shown in Fig. 3; they correspond to the single tw
loop diagram with three effective vertices shown in Fig. 4~b!.
We obtain

P (2)
r 5P (1)

r F2
q2

FV
2

MV
2

MV
22q2

4 B22 G . ~19!

A watchful look to the evaluation~and a check up to three
loops! makes us to conclude that the invariant two-po
function Pr(q2), generated by resumming effective loo
diagrams with an absorptive amplitude in thes channel~as
those in Fig. 4!, is perturbatively given by

Pr~q2!5P (0)
r 1P (1)

r (
n50

` F2
q2

FV
2

MV
2

MV
22q2

4 B22 G n

5P (0)
r F11v (

n50

` S q2

MV
2

v D n G , ~20!

where

v52
MV

2

FV
2

MV
2

MV
22q2

4 B22. ~21!

Now, resumming, using thatFV
252F2 @see Eq.~6!#, and

substituting the expression ofv, we finally get

FIG. 4. One- and two-loop diagrams leading toP (1)
r ~a! and

P (2)
r ~b!. The effective squared vertices are given in Fig. 1.
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Pr~q2!5
2 F2

MV
2 F112

q2

F2
ReB22G2q22 i M V Gr~q2!

3F 122
MV

2

F2
B22G , ~22!

where the off-shellr0 width Gr(q2) is given by Eq.~11!.
We emphasize that our only concern with the result

Pr(q2) in Eq. ~22! is the reconstruction of the imaginar
part of the pole. Our evaluation of the two-point functio
vector-vector correlator is far from complete, since we ha
considered only those diagrams with absorptive contri
tions in the s channel.1 The only significative result of
Pr(q2) is its imaginary part. The residue inPr(q2) deserves
a further comment. While it carries an imaginary piece, t
result is proper as far as it satisfies the required unita
condition

Im Pr~q2!5
1

48p F sp
3 u~q224mp

2 !1
1

2
sK

3 u~q224mK
2 ! G

3u FV~q2! u2, ~23!

with FV(q2) given by our result in Eq.~10!. This shows the
consistency of our resummation procedure.

IV. INDEPENDENCE OF THE SPIN-1 FIELD DEFINITION

In Ref. @6# it was shown that, atO(p4) in the chiral ex-
pansion, sensible redefinitions of the spin-1 fields give
same results for physical low-energy observables. T
equivalence between redefinitions may require the prese
of local terms that have to be added in order to satisfy
short-distance QCD constraints. In that reference it was c
cluded that, atO(p4), the antisymmetric formulation for
spin-1 meson resonances is the only one that does not re
the presence of such local contributions and is, therefore,
simplest one.

However, a resummation of the two-point vector-vec
correlator when vectors are active degrees of freedom ha
defined chiral counting. Therefore, one might worry th
Gr(q2) could depend on the field formulation used to d
scribe the vector mesons.

In order to see the independence of our results on
spin-1 field formulation, it is enough to realize that the e
fective vertices defined in Fig. 1 are universal. Different th
oretical descriptions of the vector~or axial-vector! meson
degrees of freedom lead to resonance-exchange contribu
which differ by local terms. Since the physical amplitud
are constrained to satisfy the appropriate QCD behavio

1In fact, those diagrams where the vector fields are not exp
@such as that in Fig. 3~c!# give rise to a dispersive divergent piec
proportional toqmqn that we disregard. It is also clear from ou
result in Eq.~22! that the real part of the pole needs regularizatio
4-5
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D. GÓMEZ DUMM, A. PICH, AND J. PORTOLÉS PHYSICAL REVIEW D62 054014
large momenta, this difference is necessarily compensate
explicit local terms ~with fixed couplings! @6#. Including
those local terms in the local vertices of Fig. 1, the result
effective vertices are formulation independent.

Since our resummation has been based on these effe
vertices, the universality of our result follows.

Our discussion has been carried out for a two-particle
which is the most important contribution for ther0 and other
vector mesons. A similar procedure could be applied
higher multiplicity intermediate states by constructing t
relevant effective vertices analogous to those in Fig. 1.
though technically much more involved, its study would
necessary to evaluate the width of other resonances suc
the v~872! or the axial-vector mesons.

V. CONCLUSIONS

In this work we have studied the off-shell width of spin
meson resonances in a model-independent framework
vided by the resonance chiral effective theory of QCD at l
energies. We have performed resummations for the ve
pion form factor and thepp→pp (J51) amplitude, show-
ing that they provide the same structure for the pole of ther0

vector meson. In both cases the resummations correspo
geometric Dyson-Schwinger-like series that include o
diagrams with absorptive contributions in thes channel.

We have defined the width of spin-1 meson resonance
given by the imaginary part of the pole generated by resu
ming loop diagrams, in the two-point correlator of vector
axial-vector currents of the resonance chiral Lagrangian,
have absorptive contributions in thes channel. The width
generated in this way satisfies the requirements of analy
ity, unitarity, chiral symmetry, and the correct asympto
behavior as prescribed by QCD.

We have applied this procedure to evaluate the off-s
width of ther0 meson and we have worked out in detail t
o

y

ae

.

05401
by

g

ive

t,

o

l-

as

o-

or

to
y

as
-

r
at

c-

ll

result. Moreover, we have shown that this definition is ind
pendent of the formulation employed to describe the vec
meson fields. Hence our procedure can be applied strai
away to evaluate the widths of other spin-1 resonances.
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APPENDIX

The functionB22@q2,m2,m2# used in the text is defined
through

E dDl

i ~2p!D

l ml n

@ l 22m2#@~ l 2q!22m2#

[ qmqn B211q2gmn B22, ~A1!

as

B22@q2,m2,m2#5
1

192p2 F S 126
m2

q2 D Fl`1 lnS m2

m2D G
18

m2

q2
2

5

3
1s3 lnS s11

s21D G , ~A2!

where s5A124m2/q2 and l`5@2/(D24)#mD24

2@G8(1)1 ln(4p)11#.
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