Haggle: A Data-centric Network Architecture for
Mobile Devices

[Extended Abstract] *

_ Erik Nordstrém
erik.nordstrom@it.uu.se

Per Gunningberg O .
per.gunningberg@it.uu.se christian.rohner@it.uu.se

Christian Rohner

Department of Information Technology
Uppsala University
Sweden

ABSTRACT

Delay-tolerant and opportunistic networks relax the tradi-
tional assumption of end-to-end connectivity. Such networks
are therefore suitable for content dissemination in sparsely
connected regions of the world, and for complementing ex-
isting infrastructure by operating cost-free, high bandwidth,
albeit high latency, content delivery services.

In this work we argue, however, that content dissemi-
nation in the above contexts requires us to revisit delay-
tolerant communication at the architectural level, looking
at multiple issues such as naming and addressing, conges-
tion control and application interfaces. We propose a new
architecture, called Haggle, that leverages the principles of
search, as known from desktop operating systems and the
Web, in order to achieve truly data-centric communication.
Searching is naturally data-centric and embeds principles,
such as ranking, that can be used to bind data to interested
receivers and to prioritize the data to send during node en-
counters. We herein give an overview of the Haggle archi-
tecture and its basic design.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design|: Store and
forward networks

General Terms

Design, Experimentation

1. INTRODUCTION

In this work we describe Haggle — a data-centric net-
work architecture for delay-tolerant and opportunistic con-
tent dissemination. Haggle takes a novel approach to dis-

Invited Talk at ACM MobiHoc S Workshop 2009.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MobiHoc’09, May 18-21, 2009, New Orleans, Louisiana, USA.

Copyright 2009 ACM 978-1-60558-531-4/09/05 ...$5.00.

semination by leveraging principles from Web and desktop
search [1]. The design of Haggle is motivated by the lack
of content dissemination schemes for delay-tolerant and op-
portunistic networks that go beyond basic epidemic ones —
whether it be network wide epidemics [6], or community
wide epidemics [5]. We argue that content driven dissemi-
nation requires a revisit of delay tolerant networking at the
architectural level, including elements such as naming and
addressing, data-centric design, network congestion control,
and application programming interfaces.

Our idea of leveraging search principles comes from the
observation that searching today is one of the most impor-
tant ways for users to access digital content — no matter
whether the content is stored locally on personal comput-
ers, or remotely on the Web. The strength of searching
(at least as known from Web search and desktop search) is
that it allows users to find content without knowing exactly
what to look for. The results returned, usually called hits,
are typically ranked and this helps with sorting out relevant
content without necessarily discarding lower ranked hits. A
search engine, like for example Google, may return millions
of hits, but it is up to the user to decide which content is
relevant through the aid of ranking. The accuracy of this
type of ranked search, although certainly not always perfect,
is surprisingly good in most cases.

Our goal is to leverage searching as a means to determine
how to disseminate content among a set of intermittently
connected nodes. A typical scenario that we envisage com-
prise users carrying mobile phones that hold various items
of data. This data the users wish to share with other users
having an interest in the data. When users move around and
encounter each other, the data they carry is disseminated to
interested receivers according to the data’s rank against the
receivers’ expressed interests. The ranking allows us to limit
the dissemination to only the top ranked data, and it also
allows dissemination in order of relevance to the receiver.
The interests of each user are spread in the network as any
other data. Therefore nodes can actively push data towards
interested receivers, potentially over multiple disconnected
hops, by exploiting nodes that act as temporary forwarders.

The push-based model of dissemination that we employ
is inherent in our design; it is necessary as pull-based dis-
semination does not work unless there is a fully connected
path between the node that wish to pull the content and
the node that holds the content. By our definition, a source

node using a pull-based scheme determines from where to
pull the data, and is also responsible for managing the ac-
tual transmission of the data, for instance, by setting up a
path or connection. In contrast, a push-based scheme leaves
it up to the current content holders to decide how to best
forward the data (i.e., determining the next hops).

With our push-based model, forwarding decisions happen
anew at each hop as the data moves closer to the receiver.
The decisions are based on the interests collected from other
nodes as they are encountered in the network, and therefore
the bindings between data and receivers typically become
more accurate the further an item of data propagates in the
network. The bindings are done by searching, and because
this happens anew at each hop, it leads to late binding of
receivers. Late binding is important in delay-tolerant net-
works as more information about the network is likely col-
lected the further a binding is deferred in time. Therefore,
more accurate bindings are made with late binding rather
than early binding by the content publisher only.

A key advantage of push-based dissemination is that it
is more suited for out-of-community forwarding of data. A
community is, in this context, the set of nodes that are inter-
ested in receiving a specific item of data. In intermittently
connected networks, pull-based dissemination only works
during pair-wise encounters between nodes due to its re-
ceiver driven operation (i.e., a node pulls, from a co-located
neighbor, the content that matches its interests). Therefore,
a content publisher will not disseminate new data unless it
actually encounters a node that pulls it. With a push-based
scheme, on the other hand, the content publisher can dissem-
inate immediately when the data is first created, assuming it
has some information about other nodes that are interested
in the data. The dissemination may in this case exploit also
out-of-community nodes as relays, which is important if the
community is segmented, or if the delay to reach the entire
community is unacceptably large.

The contribution of our work is threefold. First, we iden-
tify search as a first class networking operation for data-
centric communication. We device schemes and algorithms
for using search to resolve data-to-node mappings and to or-
der and prioritize the data to disseminate. Second, we have
designed a push-based dissemination model that copes with
intermittent connectivity, and enables out-of-community for-
warding. Third, we have designed and implemented the
Haggle architecture that represents an holistic revisit of ar-
chitectures for delay-tolerant and opportunistic networks in
order to better support data-centric communication.

2. HAGGLE OVERVIEW

Haggle essentially provides a push-based data dissemina-
tion service with a publish-subscribe API. In this section we
do not detail all parts of the architecture framework that
enables this service and API, and instead we limit our focus
to the search-based dissemination of Haggle.

2.1 Data Addressing

The task of Haggle is to disseminate data objects that are
tuples { metadata, data }. The metadata part exists in all
data objects and is defined in XML format. Data objects
need not necessarily have any actual data, but when they
do the data is typically a file, such as an MP3-file, PDF-
document, and so forth. Each locally stored data object on
a device is indexed into a searchable data store based on

/relation

© data
@ node description

Figure 1: A relation graph holds data objects that
represent either application data or other nodes in
the network.

attributes (name-value pairs) that are part of the metadata.
The attributes in the metadata describe the content of the
data object and also form a means to address it. A pair of
data objects that share one or more attributes have a rela-
tion that can vary in strength. The strength of a relation
is determined by a weighting function which is not strictly
defined by the architecture, but typically takes into account,
e.g., the total number of shared attributes between the data
objects in question.

2.2 The Relation Graph

The relations organize data objects in a relation graph,
where the vertices are data objects and the relations are
edges with associated weights. Some data objects are se-
mantically interpreted as other nodes in the network rather
than data stored on the local device, and these data objects
are therefore called node descriptions. A node description
has the same format as regular data objects, but the in-
clusion of special metadata tells Haggle to interpret these
data objects as nodes. In this case, the attributes of a node
description describe the declared interests of the node it rep-
resents instead of the associated content.

The logical structure of the relation graph that exists on
all nodes is depicted in Figure 1. In the figure, nodes are
black colored vertices while data objects are gray. The figure
illustrates how each node can use their relation graph to find
relations between the data they carry and the other nodes
in the network. This, of course, is dependent on each node
having an updated relation graph with recent node descrip-
tions of other nodes. Therefore, a node pair first exchanges
their own node descriptions every time they encounter each
other, and second they optionally exchange the other node
descriptions that they carry. Hence, node descriptions can
spread epidemically in the network to ensure that nodes have
updated relation graphs.

2.3 Searching

Node descriptions can be seen as persistent search queries
that are continuously updated and propagated in the net-
work. When a new node description is received, the re-
ceiving node invokes a search operation to resolve the new
relations in the graph against the new node description. The
new relations define a set of data objects that the node cor-
responding to the newly received node description — in this
case called the target mode — may be interested in. The
weights of the relations determine the level of interest and
they make it possible to rank the data objects against the
target node. Imagine, for example, that the newly received

node description is the right-most one in Figure 1. Any
adjacent data objects in the graph represent the result of
the search, and the differences in thickness of the relations
against the adjacent data objects illustrate the weights and
subsequent rankings. When many matching data objects
are resolved, the resolver may define a cut-off in how many
data objects to return in the search operation (i.e., compare
to the top ten ranked hits in Google).

Search operations work analogously in the vice versa case,
i.e., when a regular data object is inserted into a graph in-
stead of a node description. In this case, a number of node
descriptions are returned as a result of the search operation.
The corresponding nodes are the targets of the data object
in question, and the targets are similarly ranked in order of
their interest in the data object.

2.4 Dissemination

Whenever new targets are found, the resolver node tries to
push the matching data objects to the targets. This opera-
tion may be deferred if the resolving node is currently out of
contact with the target receivers, or, the node may option-
ally invoke a forwarding algorithm to determine whether any
currently co-located neighbor is a suitable next hop toward
one or more of the targets. Such a next hop node becomes
delegate for the data object, because the delegate itself have
no interest in the data object and only carries it on behalf
of someone else.

Any host-centric forwarding algorithm can easily be adapted

for use with dissemination in Haggle as the algorithm can
separately compute a next hop for each target. Note that

forwarding algorithms are only necessary for out-of-community

forwarding, i.e., dissemination outside the interest commu-
nity of a particular data object. If the community is well
connected there is no need for a forwarding algorithm, the
data can in this case spread through direct encounters be-
tween community members.

2.5 Aging of Data

All data objects, regular ones as well as node descriptions,
are time stamped and may age when stored in a node’s re-
lation graph. An aging algorithm determines when the data
object is old enough to be deleted from the graph, and hence
from local storage. In general, only node descriptions and
delegated data objects age as other data objects are by def-
inition of interest to the node that stores them. When a
node looses interest in a data object, the object becomes or-
phaned and is therefore essentially the same as a delegated
data object.

Node descriptions age since some nodes may be encoun-
tered infrequently and therefore their interests — and hence
node descriptions — quickly become outdated. If node de-
scriptions are kept indefinitely, a node may try to push data
objects to nodes that no longer exist in the network, or no
longer have the necessary interests.

3. IMPLEMENTATION

We have implemented the Haggle architecture for multiple
platforms including Windows Mobile, Linux, Android, Mac
OS X and iPhone OS. There is also ongoing work to port
Haggle to Symbian. The code is written in C/C++, consists
of about 20’000 lines of code (excluding applications) and
has matured through a series of releases. The source code
will be available to the public in the near future.

4. RELATED WORK

The Haggle architecture can be seen as a publish-subscribe
system for delay-tolerant and opportunistic networks. How-
ever, while publish-subscribe systems either disseminate based
on boolean filters [2], or channels of topics [4], Haggle instead
uses searching with ranking for matching content against
nodes. The main difference between filtering and searching
is that the former does consistent matching whilst the latter
does relative matching that may change over time as new
content becomes available (i.e., the top n hits may change).

PodNet [5] is an architecture with similar goals as Haggle.
PodNet implements content sharing between mobile phones
using boolean topic channels and pull-based dissemination.
Haggle, however, uses content metadata and searching to
determine disseminations instead of topic channels, and also
uses push-based rather than pull-based dissemination. We
argue that metadata searching is a more flexible approach
to binding content to receivers than topic channels, because
it also allows ranking that can be used to prioritize the data
to disseminate. Further, push-based dissemination better
facilitates out-of-community forwarding, as discussed above.

The delay tolerant network architecture (DTN) [3] pro-
vides a bundle delivery service with a host-centric addressing
scheme based on end-point identifiers (EIDs). Our architec-
ture neither does bundling nor has end-point addressing, as
it focuses on data-centric rather than host-centric communi-
cation. The DTN architecture is therefore a complementary
architecture to ours.

S. SUMMARY AND CONCLUSION

We have given a brief overview of the Haggle architec-
ture which enables data-centric communication over delay-
tolerant and opportunistic networks. A key novelty of Hag-
gle is its use of search in the context of networking. This
approach we have found to enable flexible and powerful ab-
stractions, resulting in elegant solutions to many network
problems; for example by enabling the resolution of target
receivers with built in ranking. The ranking system can,
for example, be used to prioritize the content to dissemi-
nate. Around the search principles we aim to build further
functionality into Haggle that enables, among other things,
network congestion control and adaptable resource manage-
ment.

6. REFERENCES

[1] Google desktop. http://desktop.google.com/.

[2] CARzANIGA, A., AND WoOLF, A. L. Forwarding in a
content-based network. In SIGCOMM (August 2003).

[3] FaLL, K. A delay-tolerant network architecture for
challenged internets. In ACM SIGCOMM’03 (August 2003).

[4] LENDERS, V., KARLSSON, G., AND MAY, M. Wireless ad hoc
podcasting. In IEEE Communications Society Conference
on Sensor, Mesh, and Ad Hoc Communications and
Networks (SECON) (June 2007).

[5] MAy, M., KARLSSON, G., HELGASON, O., AND LENDERs, V.
A system architecture for delay-tolerant content
distribution. In IEEE Conference on Wireless Rural and
Emergency Communications (WreCom) (October 2007).

[6] VAHDAT, A., AND BECKER, D. Epidemic routing for
partially-connected ad hoc networks. Tech. Rep. CS-2000-06,
Department of Computer Science, Duke University, July
2000.

