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1 Introduction

A very important result in functional analysis about the extension of a linear functional
dominated by a sublinear function defined on a real vector space was first presented by
Hahn [1] and Banach [2] and it is stated as follows:

Theorem 1.1 (Hahn-Banach Theorem) Let X be a real linear space and let p be a
real-valued sublinear function defined on X satisfying the conditions:

p(x + y) ≤ p(x) + p(y) (1)
p(αx) = αp(x), for all α ≥ 0. (2)

1∗This research was partially supported by the National Natural Science Foundation of China (Grant No.
10171118 and Grant No. 10261005) and Education Committee project Research Foundation of Chongqing
(Grant No. 030801), and the research Committee of the Hong Kong Polytechnic University.



Let X0 be a real linear subspace of X and f0 a real-valued linear functional defined on
X0, i.e.

f0(αx + βy) = αf0(x) + βf0(y) for all x, y ∈ X0 and real α, β. (3)
Let f0 satisfy f0(x) ≤ p(x) on X0. Then there exists a real-valued linear functional F

defined on X such that i) F is an extension of f0, i.e., F (x) = f0(x) for all x ∈ X0, and ii)
F (x) ≤ p(x) on X.

The complex version of Theorem 1.1 was proved by Bohnenblust and Sobczyk in [3].
Generalizations and variants of the Hahn-Banach theorem were developed in different

directions in the past. Weston [4] generalized Theorem 1.1 as follows:

Theorem 1.2 Let X be a real linear space and let g(x) be a real-valued convex function
defined on X, i.e.

g(λx + (1− λ)y) ≤ λg(x) + (1− λ)g(y),∀x, y ∈ X, ∀λ ∈ [0, 1] (4)
Let X0 be a real linear subspace of X and f0 a real-valued linear functional defined on
X0. Let f0 satisfy f0(x) ≤ g(x) on X0. Then there exists a real-valued linear functional F

defined on X such that i) F is an extension of f0, i.e., F (x) = f0(x) for all x ∈ X0, and ii)
F (x) ≤ g(x) on X.

Hirano, Komiya and Takahashi [5] proved a Hahn-Banach theorem in which a concave
functional is dominated by a sublinear functional in a nonempty convex set. Day [7], Zowe
[8-10], Elster and Nehse [11], Wang [12] and Shi [13] generalized the Hahn-Banach theo-
rem to the partially ordered linear space. Chen and Craven [14] presented a Hahn-Banach
theorem in which a continuous vector-valued affine map is dominated by a K-convex vector-
valued map as follows:

Theorem 1.3 (Theorem 2 in [14]) Let X be a real linear topological space and let
(Y, K) be a real order-complete linear topological space, with order cone K. Let C ⊂ X be
convex, with intC 6= ∅. Let the vector-valued map f : C → Y be K-convex, i.e.

λf(x)+ (1−λ)f(y) ∈ f(λx + (1− λ)y) + K,∀x, y ∈ X, ∀λ ∈ [0, 1] (5)
Let X0 be a proper subspace of X, with X0 ∩ coreC 6= ∅. Let h : X0 → Y be a continuous
affine map such that f(x)− h(x) ∈ K for each x ∈ X0 ∩ C. Then there exists a continuous
affine map l : X → Y such that i) l is an extension of h, i.e., l(x) = h(x) for all x ∈ X0,
and ii) f(x)− l(x) ∈ K for all x ∈ C.

Yang [15] proved a Hahn-Banach theorem in which a linear map is weakly dominated
by a set-valued map which is convex. Meng [16] obtained Hahn-Banach theorems by using
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concept of efficient for K-convex set-valued maps. The various geometric forms of Hahn-
Banach theorems (i.e., Hahn-Banach separation theorems) was presented by Eidelheit [17],
Rockafellar [18], Deumlich, Elster and Nehse [19], Taylor and Lay [20], Wang [12], Shi [13],
Elster and Nehse [37] in different spaces.

Hahn-Banach theorems plays a central role in functional analysis, convex analysis and
optimization theory. For more details on Hahn-Banach theorems as well as their appli-
cations, please also refer Jahn [6] and [21], Kantorovitch [22], Lassonde [23], Rudin [24],
Schechter [25], Aubin and Ekeland [26], Yosida [32] and the references therein.

In the second section of this paper we collect some basic definitions and preliminary
facts needed later.

In the third section of this paper we derive some new and interesting Hahn-Banach
theorems for set-valued maps

In the fourth section of this paper we prove the existence of two kinds of subgradients
of set-valued maps.

In the fifth section of this paper we prove a new Lagrange multiplier theorem for set-
valued maps.

In the sixth section of this paper we prove a new Sandwich theorem for set-valued maps.

2 Preliminaries

Throughout this paper, let Y be a real linear topological space, let K ⊂ Y be a pointed
closed convex cone. The partial order ≤ on a partially ordered linear space (Y, K) is defined
by y1, y2 ∈ Y , y1 ≤ y2⇔ y2 − y1 ∈ K. If K has a nonempty interior (intK), then a weak
ordering in Y is also defined by y1, y2 ∈ Y , y1 6> y2 ⇔ y1 − y2 /∈ intK⇔ y2 − y1 /∈ −intK.
Let X be a real linear space, the algebraic interior of C ⊂ X is defined by:

coreC = {x ∈ C|∀x1 ∈ X, ∃δ > 0, s.t.∀λ ∈ (0, δ), x + λx1 ∈ C}

If A and B are two sets, then A−B denotes the set {a− b|a ∈ A, b ∈ B} and A− b denotes
the set {a− b|a ∈ A}. By L(X, Y ) we denote the space of linear operators from X into Y .

We recall some necessary definitions as follows.

Definition 2.1([29]). A topological vector space Y , partially ordered by a convex and
pointed cone K, is order-complete if every subset M which has an upper bound b in terms
of the ordering (i.e., (∀ y ∈ M) b− y ∈ K) has a supremum b̂ (i.e., there exists b̂ ∈ Y such
that b̂ is an upper bound to M , and each upper bound b to M satisfies b− b̂ ∈ K).
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Remark 2.1. Let (Y, K) be an order-complete topological vector space , then, every
subset M which has a lower bound d in terms of the ordering (i.e., (∀ y ∈ M) y − d ∈ K)
has a infimum d̂ (i.e., there exists d̂ ∈ Y such that d̂ is a lower bound to M , and each lower
bound d to M satisfies d̂− d ∈ K).

Definition 2.2([27, 30]). Let C ⊂ X be a convex set. A set-valued map F : C → 2Y is
called K-convex on C, if for every x, y ∈ C and λ ∈ (0, 1)

λF (x) + (1− λ)F (y) ⊂ F (λx + (1− λ)y) + K.

Remark 2.2. By Proposition 2.2.3 in [30], a set-valued map F : C → 2Y is K-convex on
C if and only if Epi F ={(x, y)|x ∈ C, y ∈ Y, y ∈ F (x) + K} is a convex set. From [15], we
know that a set-valued map F : C → 2Y is convex if GrF ={(x, y)|x ∈ C, y ∈ Y, y ∈ F (x)}
is a convex set.

Definition 2.3([26]). Let C ⊂ X be a nonempty set. F is called a strict set-valued
map from C to Y , if the images F (x) are nonempty for all x ∈ C.

3.Hahn-Banach theorems of set-valued maps

In this section, a new Hahn-Banach theorem in which an affine map is dominated by a
K-convex set-valued map is first proven. Then some meaningful results which are based on
this new result are also shown.

Theorem 3.1. Let X be a real linear space, and let (Y, K) be a real order-complete
linear topological space. Let F : C → 2Y be a strictly K-convex set-valued map, where
C ⊂ X is a convex set. Let X0 be a real linear proper subspace of X, with X0 ∩ coreC 6= ∅
and h : X0 → Y be an affine map satisfying F (x) − h(x) ⊂ K for all x ∈ X0 ∩ C. Then
there exists an affine map l : X → Y such that i) l is an extension of h. i.e., l(x) = h(x) for
all x ∈ X0, and ii) F (x)− l(x) ⊂ K for all x ∈ C.

Proof. The theorem holds trivially if C = X0. Assume that C 6= X0. Since X0 be a
proper subspace of X, there exists x0 ∈ X \X0. Let

X1 = {x + rx0 : x ∈ X0, r ∈ R}.
It is clear that X1 be a subspace of X, X0 ⊂ X1, X1∩coreC 6= ∅ and the above representation
of x1 ∈ X1 in the form x1 = x + rx0 is unique. Note that for each point x̂ ∈ X0 ∩ coreC,
if |k| is sufficiently small, then x̂ ± kx0 ∈ X1 ∩ C. For arbitrary x1, x2 ∈ X0 ∩ coreC, if
x1 + λx0, x2 − µx0 ∈ X1 ∩ C (λ, µ > 0), then set α = λ

λ+µ , β = 1− α = µ
λ+µ . Since coreC
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and X0 are convex as well as α + β = 1, α, β > 0, we have

α(x2 − µx0) + β(x1 + λx0) = αx2 + βx1 + (λβ − µα)x0 = αx2 + βx1 ∈ X0 ∩ C.

And then,
F (αx2 + βx1)− h(αx2 + βx1) ⊂ K.

That is,
F (α(x2 − µx0) + β(x1 + λx0))− h(αx2 + βx1) ⊂ K. (6)

By the affine property of h, we have

αh(x2) + βh(x1) = h(αx2 + βx1). (7)

By the K-convexity of F , for all λ, µ > 0, since x1 + λx0, x2 − µx0 ∈ X1 ∩ C, then

αF (x2 − µx0) + βF (x1 + λx0) ⊂ F (α(x2 − µx0) + β(x1 + λx0)) + K. (8)

By (6),(7) and (8), we have,

αF (x2 − µx0) + βF (x1 + λx0)− αh(x2)− βh(x1) ⊂ K.

Hence for all λ, µ > 0, if x1 + λx0, x2 − µx0 ∈ X1 ∩ C, then

F (x1 + λx0)− h(x1)
λ

− h(x2)− F (x2 − µx0)
µ

⊂ K.

For some x1 ∈ X0 and λ > 0 satisfying x1 + λx0 in X1 ∩C, taking y1 ∈ F (x1 + λx0), then,
y1−h(x1)

λ is an upper bound of the set {h(x)−F (x−µx0)
µ |x− µx0 ∈ X1 ∩ C, µ > 0}. Since Y is

an order-complete linear space, there exists

yS≡sup{h(x)− F (x− µx0)
µ

|x− µx0 ∈ X1 ∩ C, µ > 0},

Similarly, by Remark 2.1, there exists

yI≡inf{F (x + λx0)− h(x)
λ

|x + λx0 ∈ X1 ∩ C, λ > 0}.

Since yS ≤ yI , then (yS +K)∩ (yI −K) is a nonempty set. Taking ȳ ∈ (yS +K)∩ (yI −K),
then we have

F (x + λx0)− h(x)
λ

− ȳ ⊂ K, if λ > 0, x + λx0 ∈ X1 ∩ C. (9)

ȳ − h(x)− F (x− µx0)
µ

⊂ K, if µ > 0, x− µx0 ∈ X1 ∩ C. (10)
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By (9),
F (x + λx0)− [h(x) + λȳ] ⊂ K, if λ > 0, x + λx0 ∈ X1 ∩ C. (11)

By (10),
F (x− µx0)− [h(x)− µȳ] ⊂ K, if µ > 0, x− µx0 ∈ X1 ∩ C.

We may relabel −µ by λ, then

F (x + λx0)− [h(x) + λȳ] ⊂ K, if λ < 0, x + λx0 ∈ X1 ∩ C. (12)

Define a map h1 from X1 to Y as

h1(x + λx0) = h(x) + λȳ, ∀ x + λx0 ∈ X1 ∩ C.

Then h1(x) = h(x), ∀x ∈ X0. i.e., h1 is an extension of h to X1. Since h is an affine map,
so is h1.
From (11) and (12), we know that h1 satisfies

F (x + λx0)− h1(x + λx0) ⊂ K, ∀ x + λx0 ∈ X1 ∩ C.

That is,
F (y)− h1(y) ⊂ K, ∀ y ∈ X1 ∩ C.

Let Γ be the collection of all ordered pairs (X∆, h∆), where X∆ is a subspace of X that
contains X0 and h∆ is an affine map from X∆ to Y that extends h0 and satisfies F (x) −
h∆(x) ⊂ K for all x ∈ X∆ ∩ C.

Introduce a partial ordering in Γ as follows: (X∆1 , h∆1) ≺ (X∆2 , h∆2) if and only if
X∆1 ⊂ X∆2 , h∆2(x) = h∆1(x) for all x ∈ X∆1 . If we can show that every totally ordered
subset of Γ has an upper bound, it will follow from Zorn’s Lemma that Γ has a maximal
element (Xmax, hmax). We can claim that hmax is the desired map. In fact, we must
have Xmax = X. For otherwise, we have shown in the previous proof of this theorem
that there would be an (X̃max, h̃max) ∈ Γ such that (X̃max, h̃max) � (Xmax, hmax) and
(X̃max, h̃max) 6= (Xmax, hmax), This would be violate the maximality of the (Xmax, hmax).

Therefore, it remains to show that every totally ordered subset of Γ has an upper bound.
Let M be a totally ordered subset of Γ. Define an ordered pair (XM , hM ) by

XM =
⋃

(X∆, h∆)∈M

{X∆},

And
hM (x) = h∆(x),∀x ∈ X∆, where (X∆, h∆) ∈ M .
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This definition is not ambiguous, for if (X∆1 , h∆1) and (X∆2 , h∆2) are any elements
of M , then either (X∆1 , h∆1) ≺ (X∆2 , h∆2) or (X∆2 , h∆2) ≺ (X∆1 , h∆1). At any rate, if
x ∈ X∆1 ∩ X∆1 , then h∆1(x) = h∆2(x). Clearly, (XM , hM ) ∈ Γ. Hence, it is an upper
bound for M , and the proof is complete. 2

From Theorem 3.1, we can obtain several interesting results for K-convex set-valued
maps as follows.

Corollary 3.2. Let X be a real linear space and let (Y, K) be a real order-complete
linear topological space, with order cone K. Let F : C → 2Y be a strictly K-convex set-
valued map, where C ⊂ X be a convex set, with 0 ∈ coreC. If there exists y0 ∈ Y such
that F (0)− y0 ⊂ K, then i) there exists an affine map l : X → Y such that l(0) = y0, and
ii) F (x)− l(x) ⊂ K for all x ∈ C.

Corollary 3.3. Let X be a real linear space and let (Y, K) be a real order-complete
linear topological space, with order cone K. Let F : C → 2Y be a strictly K-convex set-
valued map, where C ⊂ X be a convex set, with x0 ∈ coreC. If there exists y0 ∈ Y such
that F (x0) − y0 ⊂ K, then i) there exists an affine map l : X → Y such that l(x0) = y0,
and ii) F (x)− l(x) ⊂ K for all x ∈ C.

Proof. Let D = C − x0, then D is a convex set and 0 ∈ core D. Let

F̄ (x) = F (x + x0),

then F̄ is a strictly K-convex set-valued map on D. And there exists y0 ∈ Y such that F̄ (0)−
y0 ⊂ K. From Corollary 3.2, there exists an affine map l1 : X → Y such that l1(0) = y0, and
for all x ∈ D, F̄ (x)−l1(x) ⊂ K. Hence, l(x0) = y0, and for all x ∈ C, F (x)−l(x) ⊂ K, where
l(x) = l1(x−x0) is an affine map. 2

Corollary 3.4. Let X be a real linear space and let (Y, K) be a real order-complete
linear topological space. Let F : C → 2Y be a strictly K-convex set-valued map, where
C ⊂ X be a convex set. Let X0 be a proper subspace of X, with X0 ∩ coreC 6= ∅. If
there is a linear map T0 : X0 → Y such that F (x) − T0(x) ⊂ K for all x ∈ X0 ∩ C, then
i) there exists a linear map T : X → Y such that T (x) = T0(x) for all x ∈ X0 ∩ C, and ii)
F (x)− T (x) ⊂ K for all x ∈ C.

Proof. By Theorem 3.1, we know that there exists an affine map l : X → Y such that
l(x) = T0(x), for all x ∈ X0 ∩ C, and F (x) − l(x) ⊂ K, for all x ∈ C. Suppose that
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l(x) = T (x) + b, where T is a linear map from X to Y and b ∈ Y . Since 0 ∈ X0 and T0

is a linear map, then b = T (0) + b = l(0) = T0(0) = 0. Hence, l(x) = T (x), for all x ∈ C,
and T (x) = T0(x), for all x ∈ X0∩C. Hence, the conclusion holds. 2

Let the set-valued map F : C → 2Y be replaced by the single-valued map f : C → Y ,
then by Corollary 3.4, we have

Corollary 3.5. Let X be a real linear space, and (Y, K) be a real order-complete linear
topological space. Let f : C → Y be a K-convex vector-valued map, where C ⊂ X be a
convex set. Let X0 be a proper subspace of X, with X0∩coreC 6= ∅. If there is a linear map
T0 : X0 → Y such that f(x)−T0(x) ∈ K for all x ∈ X0 ∩ C, then i) there exists a linear map
T : X → Y such that T (x) = T0(x) for all x ∈ X0∩C, and ii) f(x)−T (x) ∈ K for all x ∈ C.

Let K = [0,∞) and the set-valued map F : C → 2Y be replaced by a real-valued func-
tion f : C → R, then by Corollary 3.4, we have

Corollary 3.6. Let X be a real linear space and let f : C → R be a convex function,
where C ⊂ X be a convex set. Let X0 be a proper subspace of X, with X0 ∩ coreC 6= ∅. If
there is a linear functional T0 : X0 → R such that f(x) ≥ T0(x) for all x ∈ X0 ∩ C, then i)
there exists a linear functional T : X → R such that T (x) = T0(x) for all x ∈ X0 ∩ C, and
ii) f(x) ≥ T (x) for all x ∈ C.

Corollary 3.7. Let X be a real linear space and let (Y, K) be a real order-complete
linear topological space, with order cone K. Let F : C → 2Y be a strictly K-convex set-
valued map, where C ⊂ X be a convex set, with 0 ∈ coreC. If F (0) ⊂ K, then i) there
exists an linear map T : X → Y such that F (x)− T (x) ⊂ K for all x ∈ C.

Proof. By Corollary 3.2, there exists an affine map l : X → Y such that l(0) = 0,
F (x)− l(x) ⊂ K for all x ∈ C. Assume l(x) = T (x) + b, ∀x ∈ X, where T is a linear map
and b ∈ Y . Then l(0) = T (0) + b = b = 0, and we know that l = T , the conclusion holds.

Let C = X and by Corollary 3.7, we have

Corollary 3.8. Let X be a real linear space and let (Y, K) be a real order-complete
linear topological space, with order cone K. Let F : X → 2Y be a strictly K-convex
set-valued map. If F (0) ⊂ K, then i) there exists an linear map T : X → Y such that
F (x)− T (x) ⊂ K for all x ∈ X.
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If the set-valued map F be replaced by a single-valued map f : X → Y , then by Corol-
lary 3.8, we have

Corollary 3.9. Let X be a real linear space and let (Y, K) be a real order-complete
linear topological space, with order cone K. Let f : X → Y be a K-convex vetor-valued
map. If f(0) ∈ K, then i) there exists an linear map T : X → Y such that f(x)−T (x) ∈ K

for all x ∈ X.

By Lemma 2.1.2 in [31], a set-valued map F : C → 2Y is convex if and only if for every
x, y ∈ C and λ ∈ (0, 1)

λF (x) + (1− λ)F (y) ⊂ F (λx + (1− λ)y).
Hence, By Theorem 3.1, Corollary 3.4 and Corollary 3.7, respectively, we have some new
Hahn-Banach Theorems for a convex set-valued map as follows

Corollary 3.10. Let X be a real linear space, and let (Y, K) be a real order-complete
linear topological space. Let the set-valued map F : C → 2Y be strictly convex, where
C ⊂ X is a convex set. Let X0 be a real linear proper subspace of X, with X0 ∩ coreC 6= ∅
and h : X0 → Y be an affine map satisfying F (x) − h(x) ⊂ K for all x ∈ X0 ∩ C. Then
there exists an affine map l : X → Y such that i) l is an extension of h. i.e., l(x) = h(x) for
all x ∈ X0, and ii) F (x)− l(x) ⊂ K for all x ∈ C.

Corollary 3.11. Let X be a real linear space and let (Y, K) be a real order-complete
linear topological space. Let the set-valued map F : C → 2Y be strictly convex, where
C ⊂ X be a convex set. Let X0 be a proper subspace of X, with X0 ∩ coreC 6= ∅. If
there is a linear map T0 : X0 → Y such that F (x) − T0(x) ⊂ K for all x ∈ X0 ∩ C, then
i) there exists a linear map T : X → Y such that T (x) = T0(x) for all x ∈ X0 ∩ C, and ii)
F (x)− T (x) ⊂ K for all x ∈ C.

Corollary 3.12. Let X be a real linear space and let (Y, K) be a real order-complete
linear topological space, with order cone K. Let the set-valued map F : C → 2Y be strictly
convex, where C ⊂ X be a convex set, with 0 ∈ coreC. If F (0) ⊂ K, then there exists an
linear map T : X → Y such that F (x)− T (x) ⊂ K for all x ∈ C.

If C ≡ X, then by Corollary 3.10, we have
Corollary 3.13. Let X be a real linear space and let (Y, K) be a real order-complete

linear topological space, with order cone K. Let the set-valued map F : X → 2Y be strictly
convex. If F (0) ⊂ K, then there exists an linear map T : X → Y such that F (x)−T (x) ⊂ K
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for all x ∈ X.

Remark 3.1.(a) Theorem 3.1 and Corollary 3.3, respectively, generalize Theorem 2 and
Theorem 3 in [14] from vector-valued to set-valued case. Corollary 3.4 generalized Theorem
2 in [13] from vector-valued to set-valued case.

(b) Let C = X, then Corollary 3.6 reduces to Theorem 1.2. Hence, Corollary 3.4,
Corollary 3.5 and Corollary 3.6 are all generalizations of Theorem 1.2.

(c) If the set-valued map F is replaced by a single-valued map p : X → Y , then Corollary
3.7 reduces to Corollary 2.6 in [10].

(d) If the vector-valued map f is replaced by a sublinear map g : X → Y , then by
Corollary 3.9, it is easy to get the Hahn-Banach Theorem in [8, P.18] (i.e., Theorem 3.13
in [6, P.67]) and Corollary in [13, P. 433].

(e) Corollary 3.5 is equivalent to Theorem 2.1 in [10].
(f) It is easy to see that Theorem 3.1 generalizes and unifies Theorem 1.1, Theorem 1.2,

Theorem 1.3 and many other results in the literature.

4 Existence of Subgradients

The definitions of several kind of subgradients for set-valued maps are necessary be
repeated here.

Definition 4.1([27]). Assume that C ⊂ X and T ∈ L(X, Y ). T is called a Chen-weak
subgradient of F at x0 ∈ C if

F (x)− F (x0)− T (x− x0) ⊂ W , ∀x ∈ C

where W=Y \ (−intK). The Chen-weak subdifferential of F at x0 is denoted by the set
∂C−W F (x0) which is all Chen-weak subgradents of F at x0.

Definition 4.2([15]). Let F : C ⊂ X → 2Y be K-convex, x0 ∈ C and

F (x0) ∩ (y0 − intK) = ∅,

and T ∈ L(X, Y ) is called a Yang-weak subgradient of F at (x0, y0) if for all x ∈ C and for
all y ∈ F (x), we have

y − y0 − T (x− x0) /∈ −intK.

The set of all Yang-weak subgradents of F at (x0, y0) is denoted by ∂Y−W
y0

F (x0). And we
call it to be the Yang-weak subdifferential of F at (x0, y0).
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Definition 4.3([28]). Let F : C ⊂ X → 2Y be K-convex, x0 ∈ C and F (x0)− y0 ⊂ K,
T ∈ L(X, Y ) is called a Borwein-strong subgradient of F at (x0, y0) if for all x ∈ C and for
all y ∈ F (x), we have

y − y0 − T (x− x0) ∈ K.

The set of all Borwein-strong subgradents of F at (x0, y0) is denoted by ∂B−S
y0

F (x0). And
we call it to be the Borwein-strong subdifferential of F at (x0, y0).

Remark 4.1. If F is a single valued map and y0 = F (x0), then the Borwein-strong
subgradient reduces to the strong subgradient of vector-valued functions in [14]. And if F is
a single valued map and y0 = F (x0), both the Yang-weak subgradient and the Chen-weak
subgradient of set-valued maps are consistent with the weak subgradient of vector-valued
functions in [14].

Remark 4.2. It is clear that for all (x0, y0) with F (x0) − y0 ⊂ K, ∂B−S
y0

F (x0)⊂
∂Y−W

y0
F (x0).

Remark 4.3. It is clear that if y0 ∈ F (x0) and F (x0) ∩ (y0 − intK) = ∅, then
∂C−W F (x0)⊂ ∂Y−W

y0
F (x0) .

Example . This example shows that ∂Y−W F (x0)6⊂ ∂C−W
y0

F (x0) even if y0 ∈ F (x0) and
F (x0) ∩ (y0 − intK) = ∅ hold. Define a set-valued map F by, F (x) = {(u, v) ∈ R2 :
−1 ≤ u ≤ 1 + |x|,−1 ≤ v ≤ 1 + |x|}, ∀ x ∈ C = {x ∈ R : −1 ≤ x ≤ 1}. Let
K = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0} and T ≡ 0 : R → R2, T (x) = (0, 0),∀x ∈ R. Then there
exists x0 = 0 ∈ C and z0 = (−1,−1) ∈ F (x0), F (x0) − z0 ⊂ K, for all x ∈ C and for all
z ∈ F (x), we have:

z − z0 − T (x− x0) ∈ K.

Hence T = 0 is a Borwein-strong subgradient of F at (x0, z0), and by Remark 4.1, T = 0 is
also a Yang-weak subgradient of F at (x0, z0). Let x1 = (1, 1), taking z0 = (1, 1) ∈ F (x0)
and z1 = (−1,−1) ∈ F (x1), then

z1 − z0 − T (x1 − x0) ∈ −intK.

Hence T = 0 is not a Chen-weak subgradient of F at x0.

Definition 4.4([27]). A subset S of Y is said to be minorized, if there is a y ∈ Y so
that S ⊂ y + K.

we will prove the existence of Yang-weak subgradients of set-valued maps as follows.

Theorem 4.1. Let X be a real linear topological space, and let (Y, K) be a real order
linear topological space, with order cone K. Let K has a nonempty interior intK, Let
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C ⊂ X be a convex set, with intC 6= ∅, let x0 ∈ intC be given, let F : X → 2Y be K-convex
on C and upper semicontinuous at x0, let −F (x0) be minorized, and there exists y0 ∈ F (x0)
such that

F (x0) ∩ (y0 − intK) = ∅. (16)

Then there is a Yang-weak subgradient T of F at x0 satisfying for every x ∈ C the property

T (x− x0) /∈ −intK ⇔ T (x− x0) ∈ K.

Proof. We define the set D = C − x0 and the set-valued map H : D → 2Y with
H(x) = F (x+x0)−y0, ∀x ∈ D. Then, 0 ∈ intD, D is convex, H is upper semicontinuous
at 0, 0 ∈ H(0), and −H(0) is minorized. In order to see that H is K-convex on D, take
arbitrary x1, x2 ∈ D and λ ∈ (0, 1). It follows with the K-convexity of F

λH(x1) + (1− λ)H(x2) = λF (x1 + x0) + (1− λ)F (x2 + x0)− λy0 − (1− λ)y0

⊂ F (λx1 + (1− λ)x2 + x0) + K − y0 = H(λx1 + (1− λ)x2) + K.

Next we set P := {(x, y) ∈ X × Y : x ∈ D, y ∈ H(x) + intK}. By Lemma 2 in [27]
and Remark 3 in [27], we obtain intP 6= ∅. Now we show that (0, 0) /∈ P . Suppose that
(0, 0) ∈ P , then there is a y ∈ H(0) so that 0 ∈ y + intK which implies H(0)∩(−intK) 6= ∅,
i.e. (F (x0) − y0) ∩ (−intK) 6= ∅, this is a contradiction to (16). By Eidelheit’s separation
theorem for convex sets there is a nonzero (−ρ, σ) ∈ X∗ × Y ∗ so that

−ρ(x) + σ(y) ≥ 0, ∀(x, y) ∈ P, (17)

where X∗ and Y ∗, respective, are the topological dual space of X and Y .
If σ = 0, then −ρ(x) ≥ 0, x ∈ D. Because of 0 ∈ intD we obtain ρ = 0 contradicting
(−ρ, σ) 6= (0, 0). Hence we get σ 6= 0. From (17), we get σ(y) ≥ 0, ∀(0, y) ∈ P . Since

(0, y) ∈ P ⇔ y ∈ H(0) + intK ⇔ ∀ŷ ∈ H(0), y ∈ ŷ + intK.

Taking ŷ = 0 ∈ H(0), we get σ(y) ≥ 0, ∀y ∈ intK. Hence σ(y) ≥ 0,∀y ∈ K, that is σ ∈ K∗

( the polar cone of K). Then there is a ȳ ∈ intK with σ(ȳ) = 1. We now define a map
T : X → Y by T (x) = ρ(x)ȳ, ∀x ∈ X. Obviously, T is linear and continuous. Next we
prove that for all x ∈ C and for all y ∈ F (x),

y − y0 − T (x− x0) /∈ −intK. (18)

or for all x ∈ D and for all y ∈ H(x),

y − T (x) /∈ −intK.
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Suppose that there is some x ∈ D and some y ∈ H(x) with y − T (x) ∈ −intK. Because
of σ ∈ K∗ \ {0} we then get 0 > σ(y − T (x)) = σ(y) − ρ(x)σ(ȳ) = σ(y) − ρ(x). This is a
contradiction to the inequality (17). Hence, the condition (18) is fulfilled and, therefore, T

is a Yang-weak subgradient at (x0, y0). Finally, for every x ∈ D we get

T (x) /∈ −intK ⇔ ρ(x)ȳ /∈ −intK ⇔ ρ(x) ≥ 0 ⇔ T (x) ∈ K. 2

Remark 4.4.(a) Theorem 4.1 is the existence theorem of Yang-weak subgradient. The
formula (16) is weaker than the condition F (x0) ∩ (F (x0)− intK) = ∅ which is rather
restrictive for the set F (x0). Hence this result improves Theorem 7 in [27].

(b)Let X be a real linear topological space, and let (Y, K) be a real order linear topolog-
ical space, where K has a nonempty interior intK. Let the vector-valued map f : C → Y be
K-convex on C and continuous at x0 ∈ intC, where C ⊂ X be a convex set with int C 6= ∅.
By Theorem 4.1, if y0 = f(x0), then there is a weak subgradient T of f at x0 satisfying for
every x ∈ C the property

T (x− x0) /∈ −intK ⇔ T (x− x0) ∈ K.

This is Theorem 1 in [14]. Hence, Theorem 4.1 is also a generalization of Theorem 1 in [14].

By using the Hahn-Banach theorem which we obtained in section 3, the existence of
Borwein-strong subgradient of set-valued maps can also be obtained.

Theorem 4.2. Let X be a real linear space and let (Y, K) be a real order-complete
linear topological space. Let F : C → 2Y be a strictly K-convex set-valued map, where C

is a convex set with x0 ∈ core C. If there exists y0 ∈ Y such that F (x0) − y0 ⊂ K, then
there exists a Borwein-strong subgradient of F at (x0, y0).

Proof. By Corollary 3.3, there exists an affine map l : X → Y such that l(x0) = y0, and
for all x ∈ C, F (x)− l(x) ∈ K. Then for some T ∈ L(X, Y ).

l(x) = l(x0) + T (x− x0),∀x ∈ X.

and
F (x)− l(x0)− T (x− x0) ⊂ K,∀x ∈ X.

that is,
F (x)− y0−T (x−x0) ⊂ K,∀x ∈ X. 2

Remark 4.5. Let C be a convex set in X, and let (Y, K) be a real order-complete linear
topological space. If the vector-valued map f : C → Y be K-convex and x0 ∈ core C, then
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by Theorem 4.2,

∂S
y0

f(x0) = {T ∈ L(X, Y )|f(x)− y0 − T (x− x0) ∈ K,∀ x ∈ C} 6= ∅,

for any f(x0)− y0 ∈ K. Particularly, let y0 = f(x0),

∂Sf(x0) = {T ∈ L(X, Y )|f(x)− f(x0)− T (x− x0) ∈ K,∀ x ∈ C} 6= ∅.

This is Theorem 4 in [14]. Hence, Theorem 4.2 is a generalization of Theorem 4 in [14].

5. The Lagrange Multiplier Theorem

Some Lagrange multiplier theorems have been proven in [33], [34] and [15]. In this
section, by using the Hahn-Banach extension theorem which we obtained in section 3, a
new Lagrange multiplier theorem is obtained. Then we apply this result to derive the
existence for strong Lagrange multiplier of equality constraint vector optimization problem.

Let F : X → 2Y , H : X → 2Z be set-valued maps. The set-valued map M : Z → 2Y is
defined by M(z) = F ◦H−1(z) = {F (x) : z ∈ H(x)}. We consider the program

(P ) Strong −Min {F (x)|0 ∈ H(x)}

The point µ ∈ Y is a strong minimum of (P), if there exists x0 ∈ X, such that 0 ∈ H(x),
µ ∈ F (x0) and y − µ ∈ K, ∀y ∈ F (x), 0 ∈ H(x).

Theorem 5.1. Consider the problem (P). If the set-valued map M = F ◦H−1 is strictly
K-convex on Z, then for any strong minimum µ of (P), there exists a linear map T : Z → Y

such that
F (x) + T ◦H(x)− µ ⊂ K, ∀x ∈ X.

proof. Let µ be a strong minimum of (P) and N(z) = M(z) − µ,∀z ∈ Z, then the
set-valued map N is strictly K-convex on Z. By M(0) = F ◦H−1(0) = {F (x) : 0 ∈ H(x)},
we have N(0) ⊂ K. By Corollary 3.7, there exists a linear map T1 : Z → Y , such that

N(z)− T1(z) ⊂ K, ∀z ∈ Z.

that is,
M(z)− µ− T1(z) ⊂ K, ∀z ∈ Z.
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Let z ∈ H(x), y ∈ F (x) ⊂ F ◦H−1(z) = M(z),

y − T1(z)− µ ⊂ K,

Let T = −T1, we get

F (x) + T ◦H(x)− µ ⊂ K. 2

Example 5.1. Consider the problem:

(P1) Strong −Min {F (x)|x ∈ X, Ax = b}

where F : X → 2Y is strictly K-convex on X. A : X → Z is a linear map but isn’t a zero
linear map, b ∈ Z. Let H(x) = Ax− b, ∀x ∈ X. Then (P1) becomes

Strong −Min {F (x)|x ∈ X, 0 ∈ H(x)}

The set-valued map F ◦H−1 is strictly K-convex on Z. From Theorem 5.1, for any strong
minimum µ of (P), there exists a linear map T : Z → Y such that

F (x) + T ◦H(x)− µ ⊂ K, ∀x ∈ X,

i.e.
F (x) + T ◦ (Ax− b)− µ ⊂ K, ∀x ∈ X.

6. Sandwich Theorem

The sandwich theorem has been researched in [6] and [10]. In this section, we present
a sandwich theorem for convex set-valued maps and another new sandwich theorem for
K-convex vector-valued maps

Theorem 6.1. Let X be a real linear space and let (Y, K) be a real order-complete
linear topological space, with order cone K. Let the set-valued maps H1 : X → 2Y and
H2 : X → 2Y be strictly convex, respectively. Suppose that

H1(x)−H2(x) ⊂ K, ∀x ∈ X.

Then there exists an affine map l : X → Y such that H1(x)−l(x) ⊂ K and l(x)−H2(x) ⊂ K

for all x ∈ X.

Proof. We define a set-valued map H : X → 2Y by Gr(H) = Gr(H1)−Gr(H2). Then
it is apparent that the set-valued map H is convex. And we can prove that H is strict on
X. In fact, by the strictness of H1 and H2, ∀x ∈ X, ∃ȳ ∈ H1(x),∃y0 ∈ H2(0) such that
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(x, ȳ− y0) = (x, ȳ)− (0, y0) ∈ Gr(H). That is, ȳ− y0 ∈ H(x),∀x ∈ X. Hence, H is a strict
set-valued map on X. And we can also prove that

H(0) ⊂ K.

In fact, for arbitrary y ∈ H(0), i.e., (0, y) ∈ Gr(H) = Gr(H1)−Gr(H2), there exist
(x1, y1) ∈ Gr(H1) and (x2, y2) ∈ Gr(H2) such that (0, y) = (x1, y1) − (x2, y2). Then,
x1 = x2 = x ∈ X and y = y1 − y2 ∈ H1(x)−H2(x) ⊂ K. Hence, H(0) ⊂ K.

By Corollary 3.13, there exists a linear map T : X → Y such that

H(x)− T (x) ⊂ K,∀x ∈ X.

If x = x1 − x2, then H1(x1)−H2(x2) ⊂ H(x) and so

H1(x1)−H2(x2)− T (x) ⊂ K. (19)

By T (x) = T (x1)− T (x2) and (19), we have

H1(x1)− T (x1)− (H2(x2)− T (x2)) ⊂ K. (20)

Since Y is an order-complete linear space, there exist

yS≡sup{H2(x)− T (x)|x ∈ X},

and
yI≡inf{H1(x)− T (x)|x ∈ X}.

Since yS ≤ yI , then (yS +K)∩ (yI −K) is a nonempty set. Taking b̄ ∈ (yS +K)∩ (yI −K),
then for all x ∈ X,

H1(x)− T (x)− b̄ ⊂ K,

and
b̄ + T (x)−H2(x) ⊂ K.

Define a map l : X → Y as l(x) = T (x) + b̄,∀x ∈ X. Then l is affine and for all x ∈ X,
H1(x)− l(x) ⊂ K, and l(x)−H2(x) ⊂ K.

Corollary 6.2. Let X be a real linear space and let (Y, K) be a real order-complete
linear topological space, with order cone K. Let h1 : X → Y is K-convex vector-valued
map, that is, for every x, y ∈ X and λ ∈ (0, 1)

λh1(x) + (1− λ)h1(y) ∈ h1(λx + (1− λ)y) + K,
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and h2 : X → Y is K-concave vector-valued map, that is, for every x, y ∈ X and λ ∈ (0, 1)

λh2(x) + (1− λ)h2(y) ∈ h2(λx + (1− λ)y)−K.

Suppose that
h1(x)− h2(x) ∈ K, ∀x ∈ X.

Then there exists an affine map l : X → Y such that h1(x)− l(x) ∈ K and l(x)−h2(x) ∈ K

for all x ∈ X.

Proof. Define two set-valued maps H1 : X → 2Y and H2 : X → 2Y , respectively, as
H1(x) = h1(x) + K,∀x ∈ X and H2(x) = h2(x)−K,∀x ∈ X. It is easy to prove that both
H1 and H2 are strict convex set-valued map. And we have

H1(x)−H2(x) = (h1(x) + K)− (h2(x)−K) ⊂ K, ∀x ∈ X.

By Theorem 6.1, we know that there exists an affine map l : X → Y such that H1(x)−l(x) ⊂
K and l(x) − H2(x) ⊂ K for all x ∈ X. Specially, we have h1(x) − l(x) ∈ K and
l(x)− h2(x) ∈ K for all x ∈ X.
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