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Abstract—Hair occlusion is one of the main challenges facing
automatic lesion segmentation and feature extraction for skin
cancer applications. We propose a novel method for simultane-
ously enhancing both light and dark hairs with variable widths,
from dermoscopic images, without the prior knowledge of the
hair color. We measure hair tubularness using a quaternion color
curvature filter. We extract optimal hair features (tubularness,
scale, and orientation) using Markov random field theory and
multi-label optimization. We also develop a novel dual channel
matched filter to enhance hair pixels in the dermoscopic images
while suppressing irrelevant skin pixels. We evaluate the hair
enhancement capabilities of our method on hair-occluded images
generated via our new hair simulation algorithm. Since hair
enhancement is an intermediate step in a computer aided
diagnosis system for analyzing dermoscopic images, we validate
our method and compare it to other methods by studying its
effect on: (i) hair segmentation accuracy, (ii) image inpainting
quality, and (iii) image classification accuracy. The validation
results on 40 real clinical dermoscopic images and 94 synthetic
data demonstrate that our approach outperforms competing hair
enhancement methods.

Index Terms—Melanoma; hair enhancement; hair segmenta-
tion; quaternion tubularness filters; light and dark objects.

I. INTRODUCTION

Malignant melanoma is one of the fastest growing cancers

among the world’s white population with an average 3%

increase in incidence for the last four decades. In the USA and

Canada alone, there were about 73,720 cases of melanoma in

2011[1]. Early diagnosis of melanoma can lead to life-saving

treatment. Dermoscopy is a noninvasive imaging technique

that provides rich features of skin lesions, such as shape,

color and texture, with excellent diagnostic value. To improve

the efficacy and efficiency of early detection of melanoma, a

considerable amount of research has focused on automating

the segmentation, feature extraction and classification of der-

moscopic images [2]. A review of the existing computerized

methods to analyze single skin lesions in dermoscopic images

has been recently reported in [3]. However, the existence
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Fig. 1: Example dermoscopic images of skin lesions with no hair, dark hairs,
and mixed colored (dark and light) hairs.

of hairs that occlude the lesion in the image is a common

problem that complicates the segmentation process and ren-

ders subsequent feature detection and classification unreliable

(Figure 1) [4], [5], [6], [7], [8]. Hair occlusion thus remains

a key challenge facing computer aided diagnosis of malignant

melanoma.

There have been limited published papers on hair en-

hancement and segmentation (i.e. masking out the occluding

hair). Lee et al. [5], Xie et al. [7], Fiorese et al. [9], and

Schmid-Saugeon et al. [10] used morphological top-hat (MTH)

operators of different sizes to enhance hair structures. MTH

was also used in [11] to prepare a set of candidate pixels. Then,

clusters of connected neighbouring pixels with similar intensi-

ties, which were approximately linear, were classified as hair.

Nguyen et al. [6] proposed a matched filtering method, with a

fixed hair width assumption, to enhance both the dark and light

hairs. Kiani and Sherafat [12] applied Prewitt filters. Abbas et

al. [13], [14] applied derivative of Gaussian filters to detect

hair structures. Zhou et al. [8] and Fleming et al. [4] modelled

hairs as a long relatively straight curvilinear structure, with

constant width and curvature, and applied the Steger’s line

detection algorithm [15]. All the mentioned methods operated

on scalarized (e.g. luminance channel) dermoscopic images.

We note that the appearance of vasculature in biomedical

images resembles to some degree the appearance of hair in der-

moscopic images. In particular, both structures are curvilinear

with varying width. Despite notable differences (e.g. vessels

bifurcate whereas hairs overlap; vessel images are typically

single channel whereas dermoscopic images are color), the hair

enhancement and segmentation problems stand to benefit from

methods for the detection and analysis of tubular structures,

as has been witnessed in state-of-the-art research on vascular

image analysis [16], [17].

In this paper, as our first contribution, we present a novel

methodological extension to the vesselness filter proposed by

Frangi et al. [18]. To the best of our knowledge, Frangi et al.’s
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filter and variants thereof have been applied to enhance images

containing only dark or only bright objects. However, there is

a problem with applying this filter in the presence of mixed

color tubular structures, e.g. presence of mixed color hairs,

both light and dark with respect to the background, which

is common in skin images. The naı̈ve approach of applying

the Frangi filter twice in succession; first to enhance light

structures and then apply it again to enhance dark structures

(or vice versa), and then combine the two enhanced images

would lead to erroneous enhancement (explained technically

and qualitatively in Section II-B). Our solution to this problem

is to take advantage of a novel dual-channel matched filter

(Section III-B). We then apply it to a problem related to

dermatological image analysis.

As our second contribution, we extend our previous work

on Markov random field (MRF) based scale selection [19] to

estimate the optimal features of the hairs such as: orientation,

tubularness, and scale (where optimality is defined with respect

to MRF energy with unary and binary terms). In [19], we

showed that MRF-based vessel scale selection gives more

accurate detection results for vascular structures in retinal

images compared to the traditional scale selection (at each

pixel, select the scale with maximum response)1 (Section

III-A).

As our third contribution, we propose a new (realistic) hair-

on-skin simulation system (Section III-C). Since hairs are very

thin with spatially-varying width, manually preparing ground

truth masks with accurate hair width for a large number of hair

pixels would be exorbitantly tedious. Therefore, generating

simulated hair occluded images with known ground truth

would be beneficial in this area for our research as well as

for other research groups. We also provide an accompanying

software, which is publicly and freely available for download2.

As our forth contribution, we make use of color information

for hair enhancement (Section II-A). The idea of quaternion

color curvature was proposed by Shi et al. [20]. All previous

hair disocclusion methods have been applied to scalarized

(i.e. single channel) dermoscopic images only. This is the

first work that uses all color channels for hair image analysis

(in dermatology applications). This is done by adopting the

quaternion based Hessian of color images. So the novelty is

(only) in the application domain.

We evaluate the goodness of our hair enhancement algo-

rithm and compare its performance quantitatively (in terms

of segmentation, inpainting, and classification accuracy mea-

sures) to other competing methods on both simulated data and

40 real dermoscopic images (Section IV).

II. BACKGROUND

We begin by giving a brief review of quaternion tubularness

filtering (Section II-A), followed by highlighting its weakness

in the presence of simultaneous light and dark tubular objects

(Section II-B).

1http://www.cs.sfu.ca/∼hamarneh/software/mrfscalesel/
2www.cs.sfu.ca/∼hamarneh/software/hairsim
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Fig. 2: Tubularness filter responses of a dermoscopic image. (a) A dermo-
scopic image. The small region pointed to by the white arrow is zoomed up at
the lower-right corner. (b) Tubularness response ν (1). (c-d) The tubularness
responses after considering the sign tests in (3).

A. Quaternion Tubularness Filter

Frangi et al. [18] proposed to measure the tubularness

ν(x, s) at pixel x = (x, y) for K different scales

s ∈ {s1, ...sK} using:

ν(x, s) = exp(−
R2 (x, s)

2β2
)

(

1− exp(−
slS2 (x, s)

2c2
)

)

(1)

R (x, s) =
λ1 (x, s)

λ2 (x, s)
S (x, s) =

√

∑

i≤2

λ2
i (x, s) (2)

where λi(x, s), i = 1, 2 (|λ1| 6 |λ2|), are the eigenvalues of

the Hessian matrix of image I computed at scale s. R and

S are measures of blobness and second order structureness,

respectively. β and c are the parameters that control the

sensitivity of the filter to the measures R and S. The parameter

l is introduced by Lindeberg [21] to make the filter responses

of the different scales comparable.

Figure 2(b) shows the computed tubularness for the

dermoscopic image in Figure 2(a) based on (1). Since

the sign of the largest eigenvalue is an indicator of the

brightness or darkness of the pixels (i.e. dark-on-bright vs.

bright-on-dark), and since dermoscopic images may contain

both dark and light hairs, the following sign tests are used to

determine the tubularness of the light, ν−, and dark, ν+, hair

structures [18]3:

ν−(x, s) =

{

0 if λ2 (x, s) > 0
ν(x, s) if λ2 (x, s) < 0

(3)

ν+(x, s) =

{

0 if λ2 (x, s) < 0
ν(x, s) if λ2 (x, s) > 0

Note that ν(x, s) = ν−(x, s)+ ν+(x, s). Figures 2(c-d) show

examples of the computed ν− and ν+ for a dermoscopic image

occluded by dark hairs. It can be seen that the dark hairs are

enhanced correctly in the filter response ν+ (Figure 2(d)).

To make use of color information in the computed tubu-

larness (3), the tubularness in (1) can be measured using the

eigenvalues of the quaternion Hessian matrix of the image

[20], HQ = Hr.i+Hg.j +Hb.k, where Hr, Hg , and Hb are

Hessian matrices of the RGB channels and i, j, and k are

three imaginary units. The eigenvalues of HQ can be obtained

by quaternion singular value decomposition (QSVD). QSVD

is a generalization of singular value decomposition (SVD) of

real or complex numbers to quaternion numbers. Examples of

the measured tubularness (3) based on SVD and QSVD are

shown in Figures 3. It can be clearly seen that the hairs are

3Superscripts − and + indicate the sign of the largest eigenvalue of the pixels
being inside the light and dark tubular objects, respectively.

http://www.cs.sfu.ca/~hamarneh/software/mrfscalesel/
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Fig. 3: Hair tubularness ν+ (3) based on SVD and QSVD. (a) A der-
moscopic image with simulated hairs (Section III-C explains our simulator).
The small region pointed to by the white arrow is scaled up for clarity. (b)
Luminance channel of image (a) used to compute the SVD-based tubularness.
(c-d) The tubularness computed using SVD and QSVD. (e-h) Similar to (a-d),
but for a real hair in a dermoscopic image.
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Fig. 4: Problem of enhancing mixed-colored hairs. (a) Close up of a white
hair (white arrow). (b-c) Tubularness ν−, and ν+ computed according to the
sign tests in (3). (d-f) Similar to (a-c), but show a close up of an image region
occluded by a dark hair. The green arrows in (b, c, e, and f) indicate regions
of correct enhancements or correct suppression of the image in ν− and ν+,
whereas the red arrows indicate regions of erroneous enhancement.

better delineated when considering color information in the

RGB channels.

B. Tubularness of Mixed-Colored Objects

Applying the tubularness filter in Section II-A to skin

images exhibiting both light and dark (mixed) hairs causes

incorrect enhancement. As an example, a light and a dark

hair along with their tubularness ν− and ν+ are shown in

Figure 4. It can be seen that although the light hairs are

enhanced as desired in ν− (indicated by the green arrows

in Figure 4(b)), the skin pixels along two narrow bands

sandwiching the dark hair are erroneously enhanced as well

(red arrows in Figure 4(e)). Similar erroneous enhancement

can be noticed for ν+ (Figure 4(c)). In short, neither sign

tests in (3) work for both light and dark hairs simultaneously.

Thus, enhancing or detecting light and dark colored hairs

sequentially and separately in skin images with mixed colored

hairs will generate incorrect results. A mathematical exposition

of this problem is detailed next.

Consider the following simplified example. Given an image

containing a bright line and a dark line parallel to the y-axis

(resembling mixed color hair), as shown in Figure 5(a), we

model the intensity profiles of the lines by Gaussian functions:

f i = G(x − xi, so), where i ∈ {1, 2}, x1 and x2 represent

the x-coordinates of the centerlines of the light and dark lines,

receptively, and so is the standard deviation of the Gaussian

profiles.

The eigenvalues of the Hessian matrix of f i functions at

scale s are λi
1(x, s) = 0 and λi

2(x, s) = ∂2f i/∂x2 (second

derivative of f i), which lead to high tubularness (1) for the

pixels within the following intervals (Figure 5):

Γi
in(x) :x ∈ |x− xi| < F1 (4)

Γi
out(x) :x ∈ 0.5

√

2(s+ so) < |x− xi| < F2 (5)

where x = xi±F1 = xi±0.5
√

2(s+ so) and x = xi±F2 =
xi±0.5

√

6(s+ so) are the inflection points of f i and ∂f i/∂x
(first derivative of f i), respectively.

Applying the negative sign test (ν− in (3)), the tubularness

is enhanced not only for the pixels within Γ1
in, but also within

Γ2
out (the blue curves in Figure 5(b)). Similarly, considering

the positive sign test causes false enhancements within Γ1
out

(the pink curves in Figure 5(b)).

Therefore, in the presence of mixed-color lines, an appro-

priate tubularness filter must be designed to enhance the pixels

only withinΓi
in, not in Γi

out.

A naı̈ve approach would be to attempt to detect erroneous

enhancements appearing as parallel bands. However, this is

not a robust strategy, as hairs themselves are often parallel to

each other as shown in Figure 1.

To this end, we propose the dual channel filters in Section

III-B, which lead to an image with the enhanced tubularness

only within Γi
in.

III. METHOD

Our hair enhancement framework consists of two main

stages: MRF-based extraction of hair features using the multi-

scale quaternion tubularness filter responses (Section III-A)

and the suppression of incorrect enhancements using our novel

dual matched filters (Section III-B). In this section, we first

provide details about these two steps. Next, we describe the

details of our hair simulator, which allows for a comprehensive

validation of the goodness of detecting hairs with varying

thickness (Section III-C).

A. MRF-based Hair Features

We extend multi-scale quaternion tubularness to compute

hair features: tubularness, scale, and orientation. Note that

we estimate the hair direction θ(x, s) as the angle between

the x-axis of the image and the eigenvector corresponding to

λ1(x, s), which points along the minimum principal curvature

direction of the tubular object (minimum intensity variation).

Given the multi-scale light tubularness ν−(x, s) and tubu-

larness direction θ(x, s), tubularness, scale, and orientation at

each pixel x of image I can be computed using the maximum

tubularness response (MTR) as:
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(a) (b)

(c)

Fig. 5: The issue of simultaneously detecting dark and light lines by applying
Frangi et al. filter: An image containing a light and a dark ridge (simulating
mixed color hair shafts) is shown in (a). The intensity profiles of the lines
are modeled by Gaussian functions (orange curve in (b)). Filter responses ν−

and ν+ computed according to the sign tests in (3) enhance tubularness of
the pixels within Γi

in and Γi
out, which results in erroneous enhancement inside

Γ1
out and Γ2

out. Applying the dual channel filters in Section III-B, we discard
the erroneous enhancement within Γi

out as shown in (c).

ν−MTR(x) = maxs∈{s1,...sK}ν
−(x, s)

S−
MTR(x) = argmax

s∈{s1,...sK}

ν−(x, s)

θ−MTR(x) = θ(x,S−
MTR(x)) (6)

where ν−MTR(x), S−
MTR(x), and θ−MTR(x) denote the MTR-

based tubularness, scale, and orientation of the light structures,

respectively. By replacing ν− by ν+ in (6), similar features can

be defined for dark structures denoted by ν+MTR(x), S
+
MTR(x),

and θ+MTR(x), respectively.

In this paper, rather than using MTR-based hair features,

we utilize MRF-based vessel scale-selection [19] and extend

it to extract MRF-based hair orientation, scale, and tubularness

features.

The MRF-based approach [19] formulates the scale selec-

tion as a graph labelling, in which image I is modelled by

a graph G(V, E), where vertices V correspond to the pixels

xp ∈ I and edges E ⊆ V×V connect two neighbouring pixels

(xp,xq), and the labels are chosen to be correspond to the

different scales ℓ ∈ {s1, s2, · · · , sK}. The MRF-optimization

seeks the labelling ℓ for each pixel xp by minimizing an energy

functional of the form:

E (ℓ) = η
∑

xp∈V

ϕp (ℓp) + (1− η)
∑

(xp,xq)∈E

ϕpq (ℓp, ℓq) (7)

where ℓq ≡ ℓ(xp) represents the label of the pth pixel of

the image, ϕp is a unary term which measures the likelihood

of labelling xp with a specific label disregarding the labels

of any of the neighbours, ϕpq is the spatial regularization

term penalizing different label configurations of neighbouring

vertices, and η is the weight of the spatial regularization term.

Therefore, the MRF-based scales of the light hairs S−
MRF are

obtained by minimizing (7) with respect to ℓ, where ν−(x, s)

of the different scales are set as the unary terms:

S−
MRF ≡ ℓ = argmin

ℓ∈{s1,...sK}

E(ℓ) (8)

s.t. ϕp(ℓp = si) = ν−(xp, s
i)

Given S−
MRF, we introduce MRF-based tubularness ν−MRF and

orientation θ−MRF at each pixel as:

ν−MRF(x) =ν−(x,S−
MRF(x))

θ−MRF(x) =θ−(x,S−
MRF(x)). (9)

By replacing ν− by ν+ in (9), we can define MRF-based

features of the dark structures: tubularness ν+MRF(x), scale

S+
MRF(x), and direction θ+MRF. We use α-expansion graph

cuts [22] to solve the multi-label MRF optimization. The

regularization penalty is set as the Pott’s energy ϕpq(ℓp, ℓq) =
min{1, |ℓp − ℓq|} due to its discontinuity preserving charac-

teristic [23]. We compute the optimal value of η in (8) em-

pirically; using the evaluation methods mentioned in Section

IV, we validate the goodness of the final enhanced images for

different values of η ∈ [0, 1]. Our results indicate that η = 0.8
gives the highest segmentation accuracy.

Figure 6 compares the MTR-based features (tubularness,

scales, and orientations) (Figures 6(e-g)) with the MRF-based

features (Figures 6(h-j)). It can be noticed that the undesirable

blurring of the borders of the hairs is reduced substantially in

ν+MRF compared with ν+MTR. In addition, the MRF-based scales

and orientations (e.g. S+
MRF and θ+MRF) are more regularized

compared with MTR-based features (e.g. S+
MTR and θ+MTR).

B. Dual Matched Filters for Detecting Light and Dark Hairs

Figure 7 summarizes the magnitude response of the tubular-

ness computed as ν− and ν+ for a pixel b inside the hair and

two neighboring skin pixels a and c. Note that high responses

are obtained in:

• ν+(a) , ν−(b), and ν+(c) for light tubular structure.

• ν−(a) , ν+(b), and ν−(c) for dark tubular structure.

We now wish to model and take advantage of the above

tubularness appearance characteristics of light and dark hairs.

To this end, we model a light hair at scale s and orientation

θ, in each of the ν− and ν+ as M1 and M2, respectively:

M1(x, s, θ) = exp(−
x′4 + γy′4

2s2
)

M2(x, s, θ) = exp(−
x′4 + γy′4

2(3s)2
)(1−Π(

y′

0.5s
)) (10)

where x = (x, y), x′ = x cos(θ) + y sin(θ), y′ = −x sin(θ) +
y cos(θ), Π is the rectangular (or boxcar) function, and γ spec-

ifies the ellipticity of the hyper-Gaussian function. Note how

the functions M1 and M2 match the responses summarized

in Figure 5, modulo scale and rotation. The choice of the

parameters 3s and 0.5s in M2 are related to the width of the

hair at scale s; the standard deviation 3s is used to cover the

bandwidth of the pixels within Γout (5) and to block the filter

responses within Γin (5), we set the width of the boxcar to s
(=2×0.5s).

Examples of these matched filters for different scales s and

orientations θ are shown in Figure 8. We now combine the
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Fig. 6: Comparing MTR-based features of hairs (tubularness, scales, and
orientations) with the MRF-based features. (a-d) Calculated tubularness of
the image in Figure 2(a) according to (3) at four scales. (e) Maximum

tubularness response ν
+

MTR using (6) for the tubularness of the different

scales in (a-d). (f-g) Estimated MTR-based scales (S+

MTR) and MTR-based

tubularness direction (θ+MTR). Different scales and orientations are represented

with different colors. (h-j) Estimated MRF-based tubularness (ν+MRF), scale

(S+

MRF), and tubularness direction (θ+MRF), respectively (Section III-A). Note

how the undesirable blurring around the hairs in (e) (ν+MTR) is reduced in (h)

(ν+MRF). Furthermore, in (i-j), the MRF-based scales and orientations (S+

MRF

and θ
+

MRF) are more regularized compared with the corresponding MTR-based

features (S+

MTR and θ
+

MTR) in (f-g).

ν− ν+

a b c a b c

Light Hair L H L H L H

Dark Hair H L H L H L

Fig. 7: The magnitude response of the tubularness computed in ν− and
ν+ for a pixel inside the hair, b, and two neighbouring skin pixels, a

and c, respectively. H: High and L: Low. The green cells represent correct
enhancements or suppressions in ν− and ν+, whereas the red cells represent
erroneous enhancements.

(a) M1 (b) M2

Fig. 8: Our proposed dual channel filterbank to detect light and dark hairs.
(a) First channel (M1) and (b) second channel (M2) with three different scales
(rows) and orientations (columns).

correlation values between ν− and M1 and between ν+ and

M2 to compute the likelihood P− of a pixel xp belonging to

a light (or P+ for dark) hair as:

P−(xp|s, θ) = K̄xq
(ν−(xq, s),M1(xq, s, θ))× (11)

K̄xq
(ν+(xq, s),M2(xq, s, θ))

s.t. xq ∈ |xp−xq| ≤ 3s

K̄D(f, g) =
KD(f, g)

√

KD(f, f)
√

KD(f, f)

KD(f, g) =
∑

D

(f − f̄)(g − ḡ)

where xq ∈ |xp − xq| ≤ 3s represents neighbouring pixels

of xp in radius of 3s, K̄D(f, g) is a kernel computed as the

normalized cross correlation between f and g over the domain

D, and f̄ is the average of f over D. Since we compute the

mutual correlation over the two channels in (11), we call this

operator as a dual-channel matched filter.

For each pixel xp, we compute (11) using the MRF-based

estimation of the scales and orientations (Section III-A):

P−(xp) = P−(xp|s = S−
MRF, θ = θ−MRF). (12)

In a similar manner, we define the probability of a pixel being

part of a dark hair, P+. The final enhancement of the light

and dark hairs in the image is thus enabled by our proposed

dual-channel, quaternion tubularness, MRF-based formulation.

C. Hair Occlusion Simulator

Since hairs are very thin with spatially-varying width,

manually preparing a ground truth mask with accurate hair-

width for a large number of hair pixels would be exorbitantly

tedious (let alone for a large number of images). Therefore, we

have developed, for the first time, a hair simulation algorithm

to accurately and comprehensively validate the goodness of

detecting hairs with varying thickness.

At a high level, our simulator is based on, first, creating

a hair mask (e.g. Figure 9(c)) and then, blending it with a

hair free image (e.g. Figure 9(f)), i.e. polluting the hair free

image with artificial hair. This way, we are able to control

both the hair free image, and the added artificial hair. We are

able to choose different type of skin images (e.g. different

color or tan). Also, we are able to control the added hair, e.g.

the number, color, thickness. There are two stages involved in

preparing the masks: first, create curves (degree 2 splines) that

are fitted to the medial axis of each hair; and second; thicken

these medial curves with a spatially varying hair width.

The first step, preparing medial curves of the hairs, is carried

out using medial curves that are either detected manually by

a human operator on real dermoscopic images, or generated

automatically via a random curve synthesizer (Figure 9(a)).

The second step, hair-thickening, is as follows. Each hair

medial curve is morphologically dilated with a disk structuring

element of varying radius. Let A and B denote the end points

of a hair in the mask (Figure 9(b)). The radius r of the disk

at pixel p along the hair is obtained by:

r(p) = min{T,
Γ(p,A)

200
,
Γ(p,B)

200
} (13)
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(a)

A
B

p

(b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 9: Simulating hair-occluded images. (a) Hair medial axes (degree 2
splines). (b) An example of thickening a hair by dilation using (13). (c) Binary
mask of dilated hairs. (d) Gaussian filtering of (c). (e) Hair coloring of (d)
using (14). (f) Hair-free dermoscopic image. (g) Pixel-wise multiplication of
(f) by an inverted version of (d). (h) Sum of (g) and (e). (i-l) Examples of
simulated images.

where Γ(p, q) measures the geodesic distance between two

points p and q. The basic idea of using (13) is to gradually

increase the size of the disk, and hence the hair width, from the

end points toward the midpoint of the hair, with the maximum

radius T reached at the mid-point. We set T = 4 pixels,

yielding a maximum width of about 0.1 mm, the average width

of a human hair.

The generated ground truth binary mask containing thick

hairs is denoted by Igt (Figure 9(c)). Igt is used to pollute

hair-free dermoscopic images, I0 (Figure 9(f)), resulting in

a simulated hair-occluded image with a realistic appearance

denoted by IH (Figure 9(i-l)). Corrupting the hair-free images

is completed as follows. To control the color of the hair, each

of the RGB channels of IH is created individually, then the

three channels are composited together. For example, the red

channel IHR is obtained as follows:

IHR = I0R(✶− Igt ∗Gσ) + CR(Igt ∗Gσ) (14)

where ✶ is a matrix of ones equal to the size of the mask Igt,

Gσ is a Gaussian kernel of width σ, and C = [CR, CG, CB ] is

used to control the color of the generated hairs. Equation (14)

represents a linear combination between the colors of the hair

free image I0 and the overlaid hair C. Since we do not want

the skin color in I0 to appear at the centre line of the hair,

applying the Gaussian function Gσ , we control the weight of

the colors of I0 and C, e.g. gradually increase the weight of

I0 from the hair skeleton toward the outer side, and vice versa,

gradually decrease the weight of C.

Example simulated images are shown in Figure 9. Our hair

simulation software is provided publicly for download4. Note

4www.cs.sfu.ca/∼hamarneh/software/hairsim (or directly from: www.cs.sfu.
ca/∼hamarneh/software/hairsim/restricted/HairSim.zip using username: re-
searcher and password: skin0hair).

that, we sampled colors of the hairs from our dataset [24],

which includes yellow, brown, white, black, gray ones, and

used them to simulate the hair colors.

IV. RESULTS

We evaluate our hair enhancement method on 40 real

dermoscopic images as well as 94 synthetic data generated by

our simulator (Section III-C), with 0.033 mm/pixel isotropic

resolution; 10% of real and 50% of synthetic images are

occluded by mixed color hairs. In our implementation, the free

parameters in (1) are set as follows: β=0.7, c=0.05, and l=1.1,

K=4, and [s1, sK ] ∈ [0.033, 0.2] mm to cover the maximum

line width of the hairs. We refer to the work by Bouattour et

al. [26] as a theoretical framework for optimal choice of the

free parameters. The same scale values [s1, sK ] are used to

construct the dual channel filters (Section III-B) and the size

of the filters are set as 3s. Note that in our implementation

we did not apply any preprocessing.

Since image enhancement is generally an intermediate step,

and not the final objective, in an automatic dermoscopic

image analysis pipeline, we evaluate the effect of our hair

enhancement method on a number of subsequent objectives.

First, we start by comparing the effect of the enhancement on

hair segmentation accuracies for different methods (Section

IV-A). As feature extraction is crucial for computer aided

diagnosis (CAD) of lesions in dermoscopic images, and since

hair occlusion corrupts the extracted features, in the second

set of experiments (Section IV-B), we evaluate the effect

of our hair enhancement algorithm and several competing

methods on an inpainting method designed to rectify the effect

of hair dissocclusion by estimating the underlying missing

pixel data. Third, we evaluate the performance of a CAD

system by calculating lesion feature classification accuracies,

after the images are processed using our proposed method vs.

competing methods (Section IV-C).

A. Segmentation Evaluation

We begin by showing qualitative results of hair enhance-

ment of real dermoscopic images in Figure 10. The figure

compares the use of morphological top-hat operator based

method (MTH) [5], [7], matched filters (MFL) [6], parallel

line detectors (PL) [25], the original Frangi et al.’s filters

(SVD) [18], the quaternion version of SVD (QSVD) [20],

and our proposed method using the dual channel filters with-

out and with considering quaternion information denoted by

DCT (dual channel tubularness) and DCQT (dual channel

quaternion tubularness), respectively. For fair comparison, we

extend all the methods to perform multi-scale enhancement

of light, dark, and mixed-colored hairs, which improved the

methods’ performance. For example, focusing on MTH, we

sequentially apply close and top-hat operators to enhance dark

and light hairs, respectively, using structuring elements of

different sizes. Note in Figure 10 how MTH and MFL fail

to detect several hairs. Note also how SVD and QSVD are

overwhelmed with false positives.

To quantitatively evaluate the quality of the results from

applying different hair enhancement methods, we first produce

www.cs.sfu.ca/~hamarneh/software/hairsim
www.cs.sfu.ca/~hamarneh/software/hairsim/restricted/HairSim.zip
www.cs.sfu.ca/~hamarneh/software/hairsim/restricted/HairSim.zip
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(a) (b) MTH (c) MFL (d) PL (e) SVD (f) QSVD (g) DCT (h) DCQT

Fig. 10: Hair enhancement using different methods and the resulting hair segmentation. (a) Two real dermoscopic images (first and third rows) and their
corresponding hair mask ground truth (second and fourth rows). (b-g) The first and third rows represent the enhanced images in (a) using (b) MTH [7], [5],
(c) MFL [6], (d) PL [25], (e) SVD [18], (f) QSVD [20], (g) DCT, and (h) DCQT, and the second and fourth rows represent the binary images resulting Otsu’s
thresholding of the enhanced images.

TABLE I: Numerical comparison between different hair enhancement methods in terms of accuracy, precision, and f-score (15) of the segmented hairs,
and running time of the methods (Section IV-A).

Results for real data Results for synthetic data
Method ACCseg PSNseg RECseg FSCseg Time ACCseg PSNseg RECseg FSCseg Time
MTH 0.77±0.01 0.41±0.03 0.34±0.10 0.28±0.06 0.03±0.01 0.82±0.01 0.45±0.05 0.42±0.02 0.41±0.02 0.03±0.02
MFL 0.70±0.01 0.36±0.01 0.47±0.08 0.30±0.02 0.09±0.02 0.69±0.02 0.31±0.04 0.51±0.02 0.43±0.02 0.09±0.10
PL 0.77±0.01 0.44±0.01 0.37±0.06 0.28±0.03 0.33±0.31 0.72±0.02 0.31±0.05 0.47±0.02 0.41±0.05 0.20±0.06

SVD 0.65±0.01 0.34±0.01 0.67±0.06 0.38±0.02 0.01±0.00 0.44±0.01 0.25±0.03 0.87±0.04 0.34±0.06 0.01±0.01

QSVD 0.63±0.01 0.33±0.01 0.68±0.06 0.38±0.02 0.03±0.01 0.40±0.01 0.30±0.01 0.88±0.01 0.38±0.02 0.03±0.01
DCTMTR 0.81±0.01 0.56±0.02 0.52±0.07 0.50±0.07 0.10±0.03 0.84±0.02 0.54±0.05 0.60±0.02 0.57±0.03 0.05±0.07
DCTMRF 0.84±0.01 0.59±0.02 0.52±0.07 0.52±0.07 0.12±0.03 0.84±0.01 0.55±0.05 0.60±0.02 0.57±0.03 0.07±0.15

DCQTMTR 0.85±0.01 0.58±0.02 0.54±0.08 0.54±0.07 0.12±0.07 0.84±0.01 0.65±0.06 0.62±0.03 0.58±0.03 0.07±0.28
DCQTMRF 0.86±0.01 0.59±0.02 0.56±0.08 0.55±0.07 0.14±0.05 0.85±0.01 0.66±0.06 0.62±0.03 0.60±0.03 0.12±0.07

a binary hair mask (i.e. segmentation) by applying Otsu’s

thresholding on the enhanced image [11]. Then, similar to

the post processing step by Lee et al. [5], each pixel in the

hair region of the mask is checked to ensure that it is located

within a thin long structure, i.e. the hair structure; otherwise,

it is rejected as noise. Let Ibw and Igt denote the filtered and

the ground truth hair masks, respectively. We calculate the

accuracy (ACCseg), precision (PSNseg), recall (RECseg), and

f-score (FSCseg) of the segmented hairs according to:

ACCseg =(TP + TN)/(TP+FN + TN+FP) (15)

PSNseg =TP/(TP + FP)

RECseg =TP/(TP + FN)

FSCseg =2TP/(2TP+FP+FN)

where:

TP =
∑

x

Ibw(x)Igt(x),TN =
∑

x

(1− Ibw(x))(1− Igt(x))

FP =
∑

x

(1− Ibwx))Igt(x), FN =
∑

x

Ibw(x)(1− Igt(x)).

The numerical results in Table I indicate that the best ac-

curacy and precision are achieved by our method. Note that

DCQTMTR and DCQTMRF represent a variant of our proposed

method considering MTR-based and MRF-based hair features

(Section III-A), respectively.

A comparison between SVD and QSVD in Table I declares

that QSVD provides inferior results. Note that QSVD’s per-

formance is better than SVD if either light or dark (i.e. not

mixed color) hair exist (as shown in Figure 3). However, in the

presence of erroneous colored structures, which is happened in

the presence of mixed color tubular objects, then QSVD will

enhance them too. As mentioned in Section II-B, erroneous

structures appear as bands parallel to the hairs as shown in

Figure 4. Due to the erroneously enhances in these bands

by QSVD, which are undesirable, we see inferior results by

QSVD in Table I compared with SVD. When these erroneous

structures are suppressed using the dual channel filters, it

can be seen that a better performance is achieved by DCQT

compared with DCT.

The running time of the different hair enhancement methods

are reported in the last column of Table I. Although our method

is computationally expensive, it achieves more accurate results.

In a CAD system for automatic analysis of the dermoscopic

images there are no strict requirements for speed, whereas
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(a) (b) MTH (c) MFL (d) PL (e) SVD (f) QSVD (g) DCT (h) DCQT

Fig. 11: The inpainted images resulting from applying different hair enhancement approaches. (a) Sample of ground truth hair masks (top) and hair-occluded
images (bottom). (b-f) Binary hair masks (top) and their corresponding inpainted images (bottom) resulting from (b) MTH [7], [5], (c) MFL [6], (d) PL [25],
(e) SVD [18], (f) QSVD [20], (g) DCT, and (h) DCQT. Note that the last four rows represent the results for simulated hair-occluded images.

accuracy is paramount.

B. Inpainting Evaluation

Since computer-aided diagnosis (CAD) systems that analyze

dermoscopic images rely on performing feature extraction for

lesion classification [3], [9], a method that properly disoc-

cludes hair while accurately retaining the original skin-features

is desirable. Applying the inpainting approach in [5], in Figure

11, we show examples of the inpainted images resulting from

applying competing hair enhancement methods (MTH [7], [5],

MFL [6], PL [25], SVD [18], QSVD [20]) and our proposed

method (DCT and DCQT). Note how our method is more

faithful in retaining skin lesion features in the inpainted image

while removing the hairs.

To provide quantitative results of the goodness of the

inpainted images, using the same notation in Section

III-C, we introduce a root mean square error (RMSE)

computed between the inpainted image IH and the hair free

image I0 for the pixels occluded by the simulated hairs

D = {x|Igt(x) = 1}:

RMSE =

√

∑

x∈D

(IH(x)− I0(x))2/|D|. (16)

Our underlying assumption is that better hair enhancement

approach will identify the hair-occluded pixel, without over-

or under-segmentation, and therefore the subsequent inpainting

method will estimate the intensities for these pixels only, with-

out unnecessarily estimating the intensity of over-segmented

pixels nor ignoring under-segmented pixels. To validate that

our enhancement method leads to better inpainting, we present

numerical RMSE results in Table II. The results indicate

that our method has the least RMSE compared to the other
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methods. Note that RMSE cannot be measured for real hair

occluded images since the ground truth of the image to be

restored is not known.

C. Classification Evaluation

Here, we validate the goodness of the inpainted (hair

segmented and the pixels underneath reconstructed as in [5])

images by comparing the skin patch-classification accuracies

of a trained random forest classifier. In particular, we test the

presence or absence of pigmentation, such as pigment network

or streaks in a 60×60 skin patch. Small inpainted patches

are tested in this validation step instead of the entire skin

images because small patches will limit the variations of the

lesion features and, hence, allows the classifier to build better

models for feature classification. Our underlying assumption

is that features extracted from a better inpainted image is more

accurate and result in a better estimation of the class of the

skin patch. Note that the patches are selected randomly from

the images.

Our feature vector to perform classification is a set of 32

means and variances of pixel intensities in different color

channels of the skin patches in RGB, HSI, and Luv and

the means and variances of the wavelet transform coefficients

of the grayscale skin patches using Haar wavelets and two

decomposition levels [27]. We first, train a classifier for skin

patch classification (absence vs. presence of pigment network

or streaks) using hair-free image patches. Then, to classify

a patch of hair-occluded image, we feed its corresponding

inpainted image to the random forest classifier (the number

of trees is set to 80).

The classification evaluation is performed with real and

synthetic images separately. Using 40 images from the atlas

of dermoscopy by Argenziano et al. [24], we randomly se-

lect 320 hair-free 60×60-pixel patches to train our classifier.

Then a different set of 320 unseen 60×60-pixel hair-occluded

patches are used for testing. When evaluating 94 synthetic

images, we use 752 hair-free 60x60-pixel patches and their

corresponding hair-occluded patches (generated using our hair

simulator mentioned in Section III-C) for training and testing,

respectively. The number of absence vs. presence cases for

real and synthetic data are: 128 vs. 192 and 292 vs. 460,

respectively. In Table III, we report the precision, recall, and

f-score of the random forest classifier, which are computed as

follows:

PSNRF =TP/(TP+FP)

RECRF =TP/(TP+FN)

FSCRF =2TP/(TP+FN+FN) (17)

where TP, FP, and FN are the numbers of true positives,

false positives, and false negatives of the lesion classifier.

The numerical results in Table III indicate that our method

outperforms the other methods.

V. CONCLUSIONS

Handling occluding hairs is an important pre-processing

step for all computer-based applications related with skin

TABLE II: Numerical comparison between different hair enhancement
methods in terms of RMSE (16) (Section IV-B).

Results for synthetic data

Method RMSE (16)

MTH 0.1373±0.0148

MFL 0.2532±0.0502

PL 0.2416±0.0560

SVD 0.2221±0.0211

QSVD 0.2517±0.0246

DCTMTR 0.1476±0.0066

DCTMRF 0.1475±0.0066

DCQTMTR 0.0922±0.0094

DCQTMRF 0.0905±0.0094

TABLE III: Numerical comparison between different hair enhancement
methods in terms of the lesion classification precision (17) and recall(17)
(Section IV-C). Note that the first row represents the results for the original
image, the hair occluded one.

Results for real data Results for synthetic data

Method PSNRF RECRF FSCRF PSNRF RECRF FSCRF

- 0.79 0.74 0.76 0.76 0.62 0.68

MTH 0.84 0.86 0.85 0.89 0.90 0.89

MFL 0.74 0.82 0.78 0.83 0.79 0.80

PL 0.82 0.84 0.82 0.87 0.89 0.88

SVD 0.77 0.85 0.80 0.93 0.90 0.91

QSVD 0.76 0.85 0.80 0.91 0.90 0.90

DCTMTR 0.80 0.85 0.82 0.95 0.90 0.92

DCTMRF 0.81 0.85 0.83 0.95 0.91 0.93

DCQTMTR 0.89 0.91 0.90 0.95 0.90 0.92

DCQTMRF 0.90 0.93 0.90 0.96 0.93 0.94

images. Unfortunately, existing programs that enhance and

remove dark hairs cannot be applied to both light and dark

color hairs without generating artifacts. In this paper, we

extended the classic Frangi filter, which was designed to

handle single color objects, to dual color objects. The opti-

mal Frangi features (scale, tubularness and orientation) were

determined by MRF-modelling and multi-label optimization.

In addition, the problem was formulated using a true color

approach based on quaternion Hessian matrix. As the result,

we constructed a dual-channel quaternion tubularness filter,

which achieved the best accuracy when it was compared

qualitatively and quantitatively to other state of art programs

using both synthetic and real skin images.

Although we applied the proposed filter to one skin ap-

plication, which is related to feature extraction and lesion

classification in dermoscopic images, however, the technique

can be applied to many other skin applications. One of the

examples is to perform hair-counting for hair-loss therapy [28],

as many of the patients have gray hairs. It might have non-

medical application, e.g. in images containing both light and

dark tubular structures, e.g. aerial images. Furthermore, we

have developed a hair simulation algorithm, which allowed

us to properly validate the goodness of detecting the varying

thickness of the hairs. We make our simulation software pub-

licly available online at www.cs.sfu.ca/∼hamarneh/software/

hairsim. Our simulator is useful for validating and benchmark-

ing future works on hair enhancement and segmentation.

In the current work, to compute the tubularness at each

pixel, we consider information of its immediate neighbouring

pixels. However, it might be helpful to take more global

approaches into account, e.g. applying minimal path based

www.cs.sfu.ca/~hamarneh/software/hairsim
www.cs.sfu.ca/~hamarneh/software/hairsim
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methods to leverage likelihoods in the direction of the hair

structures, which is considered as a part of our future work.
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