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Halbach Permanent Magnet Shape Selection for Slotless Tubular Actuators

Koen J. Meessen, Bart L. J. Gysen, Johannes J. H. Paulides, and Elena A. Lomonova

Electromechanics and Power Electronics, Eindhoven University of Technology, Eindhoven, The Netherlands

This paper describes the effects of changing the magnet shape of permanent magnets (PMs) in a Halbach array applied in a slotless
tubular actuator. More specifically, the square shaped magnets are replaced by trapezoidal shaped magnets. A semi-analytical magnetic
field solution of regular square shaped magnets is presented and used to approximate the airgap field produced by the trapezoidal shaped
PMs. The method is based on dividing the magnets into several radial layers and superposition of the fields to calculate the total magnetic
field. The results are compared to finite element analysis (FEA) and show excellent agreement. Using this magnetic field solution, the
effect of the shape of the magnets on the magnetic field waveform is analyzed by means of a parametric search.

Index Terms—Halbach, magnetic field, permanent-magnet machines.

1. INTRODUCTION

HIS paper describes the merits of changing the perma-
T nent magnet (PM) shape in Halbach arrays, when applied
to tubular actuators. These actuators are increasingly used due
to their high efficiency, high power/force density, and excellent
servo characteristics [1]. In this respect, it has been shown that
slotless tubular PM actuators using quasi-Halbach magnetiza-
tion patterns have a number of attractive characteristics, such as
a sinusoidal back-electromotive force (back-EMF) waveform,
which result in a very low electromagnetic force ripple and the
possibility of being optimized to achieve almost zero cogging
force [2]-[4]. A further advantage is that quasi-Halbach mag-
netized magnets are virtually “self-shielding,” and therefore, the
magnetic flux which passes through the core is relatively weak.
Hence, in this paper a nonmagnetic core is considered. A major
advantage of using non-magnetic material, e.g., aluminium or
air, is the mass reduction, which is particularly interesting for
high acceleration applications.

In most publications a quasi-Halbach magnet array with
square magnets is used, however, [5] presents the results of a
double-sided PM linear motor with trapezoidal shaped perma-
nent magnets. The Halbach PM array with trapezoidal shaped
magnets is illustrated in Fig. 1(b). The force of the actuator
is slightly increased compared to conventional quasi-Halbach
magnetization. This paper will describe the semi-analytical
means to enhance the airgap field by varying the permanent
magnet shape in tubular actuators. As such, Section II presents
the semi-analytical modeling of the quasi-Halbach topology
with square magnets. Section III presents the modified model
to include the changing magnet shape, where Section IV shows
the effect of varying the magnet shape on the magnetic field
distribution in the airgap/coil region.

II. SEMI-ANALYTICAL MODEL

To develop a fast and accurate analysis tool, a semi-analyt-
ical model is derived for the calculation of the magnetic field
produced by the permanent magnets. Several papers have been
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Fig. 1. Quasi-Halbach magnetization pattern. (a) Regular square permanent
magnets. (b) Trapezoidal shaped permanent magnets.
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Fig. 2. Model of a slotless tubular permanent magnet actuator considering dif-
ferent regions.

written on the subject of field calculations by semi-analytical
modeling. In [6], [7], semi-analytical solutions for the magnetic
fields due to a quasi-Halbach magnet array in tubular actuators
are presented. The papers describe a model for a regular square
shaped quasi-Halbach magnet array. This paper investigates the
effects of changing the regular square shape into a trapezoidal
shape.

In order to obtain the solution of the semi-analytical field-
equations, the tubular actuator is divided in several regions as
shown in Fig. 2. In this model, the following assumptions are
made:

1) the soft-magnetic parts are infinitely permeable;

2) the actuator is infinitely long, hence, end-effects are ne-

glected;

3) the permanent magnets have a linear demagnetization char-

acteristic, and are fully and homogeneously magnetized in
the direction of magnetization.

0018-9464/$25.00 © 2008 IEEE
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The semi-analytical description of the actuator is obtained by
solving the magneto-static field equations using the vector po-
tential, A, defined as

B=VxA4 (1)

where B is the magnetic flux density [8]. Due to the symmetry in
the circumferential direction in tubular actuators, the magnetic
flux density, E, has only an r- and a z-component. Therefore,
the magnetic vector potential has only a circumferential, #-com-
ponent, hence can be treated as a scalar potential. The two com-
ponents of the magnetic field as function of Ay are

0
B.=-—A 2
5,38 (2)
7]
Bz = ET’AQ. (3)

As only the magnetic field due to the permanent magnets in
the actuator is calculated here, with no current in the windings,
the magnetic vector potential has to be solved in two different
regions. The regions are shown in Fig. 2, where regions I and
IIT are source-free regions in which the Laplace equation has to
be solved

V2EI,III =0 (€]

and in the magnet, region II, the Poisson equation has to be
solved

V2 A = —puV x M. (5)

In this, M is the magnetization vector describing the magnet
array on the translator by a Fourier series

M =M, 7+ M.?

= Z M., sin(m, 2)7 + Z M., cos(my,z)Z

n=1 n=1
M, = Brem mn(m"”)sm(nwﬁﬂp) (6)
HOTpMy, 2 2
A{n:4B”msm<m“1_a””> 7
HoTpMin 2

where m,, is the spatial frequency which contains only odd har-
monics

My, = M7 (8)

Tp

Lo is the permeability of vacuum, 7, is the pole pitch, and o,
is the ratio between the radially magnetized magnet pitch and
the pole pitch as shown in Fig. 1. Solving the Laplace equation,
(4), and the Poisson equation, (5), results in a vector potential
with a Bessel distribution in the 7-direction and a sinusoidal
distribution in the Z-direction. Using the relations (2) and (3),
the magnetic flux density, B, in the different regions is

By, = Z (a1nBz1(mnr)+b1nBic1(m,r)) sin(myz)

n=1
oo

Br, = Z (a1nBro(mnr)—b1nBico(mnr)) cos(my, z)

n=1
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By, = Z [(Kan(mpr)+ag,) Bzi(m,r)

— (Kon(mpr)—bapn) Bic1 (mpr)] sin(m,, 2)

NE

BIIz = [(Kan(mnr)'i'a?n) BIO(mnT)
n=1
+ (’Cbn(mnT) - b2n) BKO(mnr)] COS(ng)
B, = Z (a3, Bz1(mp1)+b3n By (myr)) sin(my, z)
n=1
B, = Z (a3 Bro(mn1)—b3nBio(mnr)) cos(mypz) (9)

3
Il
-

where Bz;(r) and By;(r) are modified Bessel functions
of the first and second kind, respectively, with order i,
G1n,b1n, @2, bon, a3y, bs, are coefficients derived from the
boundary conditions and given in the appendices together with
the functions KC,,, and Kp,,. The coefficients a1, to b3, are
found by considering periodicity in the axial direction and by
applying the boundary conditions

Bi.(r,2)|r=r, =0 (10)
Aro(7, 2)|r=0 =0 (11)
Br(r,2)|r=r,, = B (7, 2)|r=r,, (12)
B (7, 2)|r=r, = Bur(r, 2)|r=r, (13)
Hiy.(r, 2)|v=r,, =Hu:(r,2)|r=R,, (14)
Hu(r, 2)|v=r, = Hit=(7, 2)|r=r, - (15)

These boundary conditions result in a matrix with equations
which is presented in the Appendix. In [9], a design optimization
for a slotted tubular machine is presented. However, the design
is optimized for the highest force in a slotted machine, therefore
a new parametric search is performed to achieve a sinusoidal
flux density in a slotless machine.

III. TRAPEZOIDAL MAGNETS

In the previous section, a semi-analytical model for a quasi-
Halbach topology with square magnets is derived. In this sec-
tion, this model is extended to be able to investigate the influence
of the angle «,,, of the trapezoidal magnet on the flux density as
shown in Fig. 1.

As the magnetization vector of a trapezoidal Halbach magnet
array is a function of both radius and axial position, the solution
of the Poisson equation, (5), becomes more complex if not im-
possible to solve. Therefore, the solution of the field is approx-
imated by splitting the magnet region into .J layers as shown
in Fig. 3. As the model in the previous section is linear, i.e.
soft-magnetic parts are assumed to be infinitely permeable, it
is valid to use superposition. Therefore, the total field distribu-
tion in the airgap can be obtained by summation of the the mag-
netic field due to each permanent magnet layer. An additional
assumption is the relative permeability of unity for the magnets.
Consider, for example layer 2, the field of this layer is obtained
by modeling a magnet with parameters R, » > R,, R, 2 <
R,,, and oy, ». Region I comprises now R, » < r < R,, which
implies that for the calculation of the field due to layer 2, the
layers 2 < j < J are modeled as vacuum with a relative perme-
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Fig. 3. Model of the trapezoidal magnetization, where the magnet region is
split into .J layers.
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Fig. 4. Comparison of the radial and axial component of the flux density calcu-
lated by semi-analytical means and FEA for «v,,, = 120° in the center of region
II. The semi-analytical field solution is calculated for J = 6.

TABLE 1
PARAMETERS OF THE MODELED ACTUATOR

R, (mm) 25.0 Inner stator radius
R,, (mm) 22.5 Outer magnet radius
R, (mm) 17.5 Inner magnet radius
7, (mm) 12.0 Pole pitch

a, 0.45 Radial magnet pitch to pole pitch ratio
Bien (T) 1.2 Remanent flux density PM

My 1.05 Relative permeability PM

ability of one. The same holds for region III, layer 1 is modeled
as vacuum as this region includes now 0 < r < R, ».

The results of the above described model are compared to a
finite element analysis (FEA) to verify the approach. The per-
manent magnets in the FE model have a remanent flux density,
Byem, of 1.2 T and a relative permeability, p,., of 1.05. As can
be seen in Fig. 4, the results show excellent agreement for a
number of layers, J equals 6.

IV. RESULTS

To evaluate the effect of changing the magnet shape, the field
distribution in the center of region I is calculated for several
values of a.,,. First, the model is optimized using a parametric
search to maximize the first harmonic of the flux density of
the slotless square quasi-Halbach topology, consequently, the
found parameters are used to investigate the effect of changing
Q. The parameters are summarized in Table 1. Fig. 5 shows
the resulting waveform for three different values of «,,, where
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Fig. 5. Effect of «v,,, on the waveform of the radial component of the flux den-
sity in the center of region II.

., = 90° corresponds to a square quasi-Halbach magnetiza-
tion. As shown in the figure, the peak value of the waveform
for a,;, = 60° is higher. However, when the rms value and the
value of the first harmonic are taken into account, the influence
of «,,, is much smaller.

From the parametric search follows that the effect of «,, on
the flux density distribution is independent of the radial length
of region I. Increasing the radial magnet length intensifies the in-
fluence of «,,, on the flux density. The relation between «,,, and
the flux density is shown for constant actuator dimensions. As
can be seen from the results shown in Fig. 6, the optima for the
rms value and the peak value of the first harmonic are very close
to 90° or conventional Halbach with square magnets. However,
the peak value and the total harmonic distortion (THD ) show
different optima, where

o BR
THDp = yem=2n

16
B (16)

Thus the parameter «,,, can be used to decrease the THD g
or to increase the peak value of the flux density. However, a
more evident parameter to achieve this behavior is the ratio «,.
Using this parameter, the THD g and the peak flux density can
be adjusted as well, a comparison is presented in Table II.

V. CONCLUSIONS

A parametric search on the magnet shape in a quasi-Halbach
magnet array in a slotless tubular actuator, showed a relative
small influence of the trapezoidal magnet shape («,,) on the
flux density in region I. As such, the rms and fundamental value
of the flux density are constant while the peak value varies 10%
when «,, is changed from 60° to 120°. However, a similar result
can be achieved by adjusting the ratio between the axially and
radially magnetized magnets, «,.

To conclude, the results presented in this paper are valid for
slotless tubular PM actuators. An additional analysis was under-
taken to which extend the magnet shape would affect the airgap
flux density in a slotted tubular PM actuator. Therefore, the ra-
dial length of region I, which comprises the coil and the airgap,
isreduced to 0.5 mm. The analysis shows an increase of the peak
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Fig. 6. The effect of a,,, on the rms value, B,.,, s, the first harmonic, B, the
peak value, B, and the total harmonic distortion (THD) of the flux density
in the center of region II.

TABLE II
COMPARISON BETWEEN VARYING av,,, AND o),

B (T) | Bi(T) | Bpear (T) | THDg
o, = 60° 0.487 0.682 0.731 0.16
o,=0.36 0.490 0.685 0.733 0.18
o, = 120° 0.485 0.684 0.638 0.15
o,-0.54 0.488 0.688 0.631 0.12

value of the airgap flux density by 45% when varying «,, be-
tween 60° and 120°, which can not be achieved by varying «,.
However, additional research using the method presented in this
paper is necessary as the desired flux density waveform strongly
depends on the actuator topology.

APPENDIX
First define the following diagonal matrices
Ciy =diag (Bro(mnR,)),
Csy =diag (Bzi(mpR,)), Cyny=diag (Bxqi(m,R,
n)), Cen=diag (B
).
)

Further, define the following functions

R
Csy =diag (Bro(mn,R
Crn =diag (Bz{(mnR
Con =diag (Bro(mn R

T

ICa,n(mnT) = — poMyn / B}Cl(d?)ilidx

my, R,

m,T

Kon(mnr) = = oMy, / Bri(z)zdz.
m, R,

IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 11, NOVEMBER 2008

The boundary conditions result in a set of linear equations
which can be written in matrix form as

where ain, b1y, asn, baony and aszy are column vectors with
elements a1y, bin, aon, bay and agy,, respectively. Finally, E
and Y are given by

0 0 Cin -Con —p,.Cin
E=| Cin Csn -Crny —Cgn 0
1rCsny  —pCeny  —Csny Cen 0
M 0
MOMZN
Y = CrinvKan — CesnKyn
CsnKan + ConKyn — oMy
L 0

where M, x, K,n and K are N X 1 matrices with elements
M., Korn and Ky, respectively.
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