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Abstract: Half-Cauchy generalized exponential (HCGE) distribution is a novel distribution that we have
proposed on in this paper. The quantiles, the measures of skewness based on quartiles, and the measures
of kurtosis based on octiles, survival function, the probability density function, hazard function, cumulative
distribution function, cumulative hazard function, are just a few of the crucial statistical properties we have
derived for the proposed distribution. To estimate the parameters of the half-Cauchy generalized exponen-
tial distribution, the maximum likelihood estimation method has been applied. For the evaluation of the
new distribution’s potential, we have considered a real dataset and compared the goodness-of-fit attained by
proposed distribution with some competing distribution. The suggested model fits the data much better and
is more adaptable than some other models.
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1 Introduction

There are many continuous probability distributions found in literature related to probability and applied
statistics. The areas like environmental, actuarial, and medical sciences, economics, life sciences, demogra-
phy, finance, and insurance where most of the classical distributions have been extensively used for modeling
real datasets for many years. However, there is a definite need for customized forms of more adaptable
models for simulating real datasets that can handle a significant amount of kurtosis and skewness in a
variety of practical areas like banking, survival analysis, and insurance for detail see Galambos and Kotz
[11].

By bending the curve at the origin such that only non-negative values can be shown, we have taken into
consideration the half-Cauchy distribution that results from the Cauchy distribution in this study. As it
can forecast more frequent long-distance spreading events, the heavy-tailed half-Cauchy distribution was
utilized by Shaw [25] as a modeling substitute for spreading distances. In order to simulate ringing data on
two species in Ireland and Britain, Paradis et al. [19] also employed the half-Cauchy distribution. Assume
that X has a half-Cauchy distribution and is a non-negative random variable. Consequently, its cumulative
distribution function (CDF) can be stated as

G (x; θ) =
2

π
tan−1

(x
θ

)
, x > 0, θ > 0 (1)

and the probability density function (PDF) corresponding to (1) is

g (x; θ) =
2

π

(
θ

θ2 + x2

)
, x > 0, θ > 0 (2)

Last some years many researchers have used the half-Cauchy distribution as a parent model. The beta-half-
Cauchy distribution is a modification of the half-Cauchy distribution developed by Cordeiro and Lemonte
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[8], using the Marshall-Olkin transformation, Jacob and Jayakumar [13] modified the half-Cauchy distri-
bution and studied the autoregressive process of first order and to perform a Bayesian analysis using a
universal scale parameter, Polson and Scott [20] employed the half-Cauchy distribution as a prior. The
gamma half-Cauchy distribution has introduced by Alzaatreh et al. [1]. Cordeiro et al. [9] have developed
the family of distribution using half-Cauchy distribution as generalized odd half-Cauchy family of distribu-
tion. Chaudhary and Kumar [7] have developed half- Cauchy modified exponential distribution. Similarly
another new distribution has been defined by Chaudhary et al. [3] using half-Cauchy family called half-
Cauchy extended exponential distribution having flexible hazard function. We are therefore interested in
creating new distributions utilizing the half-Cauchy family of distributions. Using the generalized exponen-
tial (GE) model, which has been defined by (Gupta and Kundu [12]), we have created a new distribution
in this study. The CDF and PDF of the GE distribution are as follows

G(x) =
(
1− e−λx

)α
;x > 0, α > 0, λ > 0 (3)

g(x) = αλe−λx
(
1− e−λx

)α−1
;x > 0, α > 0, λ > 0 (4)

Barreto-Souza et al. [2] have defined a new distribution using generalized exponential distribution called
the beta generalized exponential distribution. Similarly, Maiti and Pramanik [16] have presented the
odds generalized exponential-exponential distribution. Marshall-Olkin generalized exponential distribution
was developed by Ristic and Kundu [23]. Another extension of generalized exponential distribution was
presented by Dey et al. [10]. Chaudhary and Kumar [4] have presented logistic modified exponential
distribution and further the extension of exponential distribution have been presented by Chaudhary and
Kumar [5] called the logistic exponential extension distribution. New exponentiated exponential extension
distribution was also presented by Chaudhary and Kumar [6].

The major objective of this work is to improve the GE distribution’s flexibility by simply adding one
additional parameter in order to get a satisfactory fit to real datasets. The article’s remaining sections are
organized as follows. Half-Cauchy generalized exponential distribution is defined in Section 2, and some of
its statistical and mathematical features are covered and examined. Maximum likelihood estimators (MLE)
method commonly used estimation technique that is employed in Section 3 to estimate the parameters of the
proposed model. Section 4 presents the application of the suggested model. In Section 5, some concluding
remarks are given.

2 The Half-Cauchy Generalized Exponential (HCGE) Distribu-
tion

We have used the half Cauchy family of distributions to extend the GE distribution in this study. The
T -family defined by Ristic and Balakrishnan [22] is used to create the half-Cauchy family of distribution
and its CDF may be written as

F (x) = 1−
− ln[G(x)]∫

0

r (t) dt. (5)

In this case, G(x) is the CDF of any baseline distribution and r(t) is the PDF of any distribution. By using
r(t) as the PDF of the half-Cauchy distribution specified in (2) as below, we can define the half-Cauchy
family of distribution

F (x) = 1−
− ln[G(x)]∫

0

2

π

θ

θ2 + t2
dt

= 1− 2

π
arctan

{
−1

θ
ln [G (x)]

} (6)

The PDF that corresponds to (6) can be written as

f(x) =
2

π

g(x)

θG(x)

[
1 +

{
−1

θ
logG(x)

}2
]−1

(7)
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The CDF and PDF of the HCGE distribution are now obtained by substituting (3) and (4) in (6) and (2),
and they are, respectively, as follows

F (x) = 1− 2

π
arctan

[
−α

θ
ln

(
1− e−λx

)]
; x > 0, α, λ, θ > 0 (8)

f(x) =
2

π

αλ

θ
e−λx

(
1− e−λx

)−1
[
1 +

[
−α

θ
ln
(
1− e−λx

)]2]−1

;x > 0, α, λ, θ > 0 (9)

It is clear from the Figure 1 that the PDF can have various types of shapes for different values of the
parameters.

2.1 Reliability function

The HCGE distribution’s reliability function is

R (x) =
2

π
arctan

[
−α

θ
ln

(
1− e−λx

)]
; x > 0, α, λ, θ > 0 (10)

2.2 Hazard rate function (HRF)

The HCGE’s hazard rate function is

h (x) =
αλ

θ
e−λx

(
1− e−λx

)−1 {
arctan

[
−α/θ ln

(
1− e−λx

)]}−1
[
1 +

[
−α/θ ln

(
1− e−λx

)]2]−1

(11)

We have plotted the graph of HRF of HCGE distribution in Figure 2 and found that it can have increasing
or j-shaped or bathtub or up-side-down bathtub according to different values of the parameters.

2.3 Reversed hazard rate function (RHRF)

The reversed hazard rate function of HCGE distribution can be defined as

RHRF =
2

π

αλ

θ
e−λx

(
1− e−λx

)−1
{
1− 2

π
arctan

[
−α/θ ln

(
1− e−λx

)]}−1 [
1 +

[
−α/θ ln

(
1− e−λx

)]2]−1

(12)
Figure 1 shows the multiple PDF forms, we have plotted for varying HCGE distribution parameter values.
We have also plotted the various shapes of HRF for different values of the parameters of HCGE distribution
in Figure 2.

2.4 Cumulative hazard function (CHF)

The suggested model’s CHF is defined as

H (x) =

x∫
−∞

h (t) dt

= − log [1− F (x)]

= − log

[
2

π
arctan

{
−α

θ
ln

(
1− e−λx

)}]
(13)

2.5 Quantile function of the HCGE distribution

The quantile function can be obtained by inverting the CDF defined in (8) as

Q (u) = F−1 (u) .
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Figure 1: The graphs of PDF for different values of α, λ and θ.

Hence we can expressed the quantile function as

Q(u) = − 1

λ
ln

[
1− exp

{
− θ

α
tan

(
π (1− u)

2

)}]
; u ∈ (0, 1) (14)

Here u is the random variable that follows U (0,1). To generate the random numbers for HCGE distribution,
we can utilize the following expression

x = − 1

λ
ln

[
1− exp

{
− θ

α
tan

(
π (1− v)

2

)}]
; v ∈ (0, 1) .

2.6 Skewness and kurtosis for HCGE distribution

Skewness: The Bowley’s coefficient of skewness based on quantiles can be achieved as

S (B) =
Q (0.75) +Q (0.25)− 2Q (1/2)

Q (3/4)−Q (0.25)
.

Kurtosis: Moors [17] used octiles to define the coefficient of kurtosis as

Ku (M) =
Q (0.875) +Q (0.375)−Q (0.625)−Q (0.125)

Q (3/4)−Q (1/4)
.

3 Parameter Estimation

3.1 Maximum likelihood estimation (MLE)

Here, we have discussed the ML estimators (MLE’s) of the HCGE model are estimated by using MLE
method. Let x− = (x1, . . . , xn) be a random sample drawn from a population of size n followsHCGE(α, λ, θ).

Then, the log likelihood function is

ℓ(α, λ, θ|x) = n ln(2/π) + n ln

(
αλ

θ

)
− λ

n∑
i=1

xi −
n∑

i=1

lnC(xi)−
n∑

i=1

ln

[
1 +

[
−α

θ
lnC(xi)

]2]
(15)
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Figure 2: The graphs of HRF for different values of α, λ and θ.

Now, differentiating (15) with respect to α, λ and θ, we get

∂ℓ

∂α
=

n

α
− 2α

θ2

n∑
i=1

{lnC(xi)}2
[
1 +

[
−α

θ
lnC(xi)

]2]−1

∂ℓ

∂λ
=

n

λ
−

n∑
i=1

xi −
n∑

i=1

xie
−λxiC(xi)

−1 − 2
(α
θ

)2 n∑
i=1

xie
−λxiC(xi)

−1 lnC(xi)

[
1 +

[
−α

θ
lnC(xi)

]2]−1

∂ℓ

∂θ
= −n

θ
+

2α2

θ3

n∑
i=1

[
C(xi) lnC(xi)

[
1 +

[
−α

θ
lnC(xi)

]2]−1
]
,

where C(xi) = 1 − e−λxi . The ML estimators for the HCGE(α, λ, θ) model are obtained by solving for
α, λ and θ, using the three non-linear equations ∂ℓ

∂α = ∂ℓ
∂λ = ∂ℓ

∂θ = 0. But normally, it is not possible
to solve non-linear equations above, so with the aid of a suitable piece of software, one can solve them
easily. If the parameter vector of HCGE(α, λ, θ) be denoted by Θ = (α, λ, θ) and the associated MLE of

Θ as Θ̂ = (α̂, λ̂, θ̂) then, the resulting asymptotic normality is,
(
Θ̂−Θ

)
→ N3

[
0, (I (Θ))

−1
]
. The Fisher’s

information matrix, denoted by I (Θ) here, is provided by

I (Θ) = −


E
(

∂2l
∂α2

)
E
(

∂2l
∂α∂λ

)
E
(

∂2l
∂α∂θ

)
E
(

∂2l
∂α∂λ

)
E
(

∂2l
∂λ2

)
E
(

∂2l
∂λ∂θ

)
E
(

∂2l
∂α∂θ

)
E
(

∂2l
∂λ∂θ

)
E
(

∂2l
∂θ2

)
 .

The asymptotic variance (I (Θ))
−1

of the MLE has no practical significance because we do not know what
Θ is. The estimated parameter values are therefore plugged into the approximate the asymptotic variance.
The information matrix I (Θ) provided by the observed fisher information matrix Θ̂ is employed as a

O(Θ̂) = −


∂2l
∂α̂2

∂2l
∂α̂∂λ̂

∂2l
∂α̂∂θ̂

∂2l
∂α̂∂λ̂

∂2l
∂λ̂2

∂2l
∂θ̂∂λ̂

∂2l
∂α̂∂θ̂

∂2l
∂θ̂∂λ̂

∂2l
∂θ̂2


|(α̂,λ̂,θ̂)

= −H (Θ)|(Θ=Θ̂)
.

5



Half -Cauchy Generalized Exponential Distribution: Theory and Application

Here, H denotes the Hessian matrix. The observed information matrix is built using the Newton-Raphson
method to maximize likelihood, and the resulting variance-covariance matrix is as follows

[
−H (Θ)|(Θ=Θ̂)

]−1

=

 var(α̂) cov(α̂, λ̂) cov(α̂, θ̂)

cov(α̂, λ̂) var(λ̂) cov(λ̂, θ̂)

cov(α̂, θ̂) cov(λ̂, θ̂) var(θ̂)

 (16)

Let Zc/2 denotes the upper percentile of the standard variate. So, using the asymptotic normality of
MLEs, the following approximations of 100(1 − c)% confidence intervals for α, λ and θ can be created:

α̂± Zc/2

√
var(α̂) , λ̂± Zc/2

√
var(λ̂) and θ̂ ± Zc/2

√
var(θ̂).

4 Application to Real Dataset

In this part, we have used the real data set from a test that involved accelerated life for 59 conductors
performed by Nelson and Doganaksoy [18]. Electro-migration, or the movement of atoms within the
conductors of a circuit, is a cause of failures in microcircuits. No observations have been censored, and
failure times are given in hours. The R software’s optim() function is used to determine the MLEs of

6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 8.591, 6.129, 11.038, 5.381, 6.958,
4.288, 6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 5.807, 6.725, 8.532, 9.663, 6.369, 7.024,
8.336, 9.218, 7.945, 6.869, 6.352, 4.700, 6.948, 9.254, 5.009, 7.489, 7.398, 6.033, 10.092, 7.496, 4.531,

7.974, 8.799, 7.683, 7.224, 7.365, 6.923, 5.640, 5.434, 7.937, 6.515, 6.476, 6.071, 10.491, 5.923

the proposed distribution for detail see [15, 21]. The log likelihood value that we have determined is
l = −111.7792. For the parameters α, λ and θ, we have shown the MLEs in Table 1 together with their
standard errors (SE). The ML estimates are generated exclusively, as shown by the graphs of the profile log-

Table 1: SE and MLE for α, λ and θ of HCGE distribution
Parameter MLE SE
alpha 6.61405 5.48858
lambda 0.9352 0.11109
theta 0.01028 0.01178

likelihood function in Figure 3 for α, λ and θ. It is evident from the P -P and Q-Q plots in Figure 4 that the
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Figure 3: Graphs of Profile log-likelihood function for α, λ and θ.

suggested model closely matches the data. Using a real dataset that was previously utilized by researchers,
we have demonstrated in this section the goodness-of-fit for the half-Cauchy generalized exponential model.
We have chosen the five distributions such as Exponential power (EP) distribution by Smith and Bain [26],
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Figure 4: The P -P (left panel) and Q-Q (right panel) plots for the HCGE distribution.

x

D
en

si
ty

2 4 6 8 10 12

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

HCGE
PC
MW
WE
GE
EP

2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

 

x

C
D

F

Empirical
Fitted

Figure 5: Empirical distribution function with estimated distribution function (right panel) and the
Histogram and the density function of fitted distributions (left panel).

Generalized Exponential (GE) distribution by Gupta and Kundu [12], Modified Weibull (MW) by Lai et
al. [14], Weibull Extension Model by Tang et al. [27] and Power Cauchy distribution by Rooks et al.
[24] to contrast the recommended model’s potential. We have calculated the corrected Akaike information
criterion (CAIC), the Hannan-Quinn information criterion (HQIC) and the Bayesian information criterion
(BIC) in order to assess the adequacy of the HCGE(α, λ, θ) model. Table 2 displays these results. Figure
5 displays the histogram along with a few selected distributions, as well as the density functions of the
fitted distributions, the empirical distribution function, and the estimated distribution function. Table 3
displays the results of the Cramer-Von Mises (CVM), Kolmogorov-Smirnov (KS), and Anderson-Darling
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Table 2: AIC, CAIC, BIC, HQIC, and Log-likelihood (LL)
Model AIC BIC CAIC HQIC LL
HCGE 229.558 235.791 229.995 231.991 -111.78
PC 228.183 232.338 228.397 229.805 -112.09
MW 231.044 237.276 231.48 233.477 -112.52
WE 233.349 239.582 233.786 235.782 -113.67
GE 233.895 238.05 234.109 235.517 -114.95
EP 237.003 241.158 237.21 238.625 -116.5

(AD) statistics in order to compare the goodness-of-fit of the suggested distribution to that of competing
distributions. We draw the conclusion that the HCGE distribution has a much better fit to the data and
more consistent and trustworthy findings when compared to others because it has a higher p-value and the
lowest value of the test statistic.

Table 3: The goodness-of-fit statistics and the p-value
Model KS(p-value) AD(p-value) CVM(p-value)
HCGE 0.0580(0.9821) 0.0247(0.9908) 0.1799(0.9950)
PC 0.0480(0.9982) 0.0199(0.9973) 0.1780(0.9953)
MW 0.0914(0.6738) 0.0821(0.6816) 0.4839(0.7626)
WE 0.1067(0.4796) 0.1154(0.5160) 0.6800(0.5751)
GE 0.1042(0.5103) 0.1173(0.5079) 0.7368(0.5282)
EP 0.1365(0.2021) 0.2398(0.2021) 1.3735(0.2098)

5 Conclusions

We have introduced a novel continuous distribution in this paper termed the half-Cauchy generalized expo-
nential distribution. Along with a thorough consideration of some of the new distribution’s mathematical
and statistical characteristics, the exact equations for the skewness, and kurtosis, quantile function, survival
function, hazard function, cumulative hazard function are addressed and examined. The most often used
estimating approach, MLE method, is used to calculate the model parameters. Testing the appropriateness
and application of the suggested distribution on a real data set revealed that it is far more flexible than
some chosen distributions.
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