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Using first-principles calculations within density functional theory, we explore the feasibility of

converting ternary half-Heusler compounds into a new class of three-dimensional topological insulators

(3DTI). We demonstrate that the electronic structure of unstrained LaPtBi as a prototype system exhibits a

distinct band-inversion feature. The 3DTI phase is realized by applying a uniaxial strain along the [001]

direction, which opens a band gap while preserving the inverted band order. A definitive proof of the

strained LaPtBi as a 3DTI is provided by directly calculating the topological Z2 invariants in systems

without inversion symmetry. We discuss the implications of the present study to other half-Heusler

compounds as 3DTI, which, together with the magnetic and superconducting properties of these materials,

may provide a rich platform for novel quantum phenomena.
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Recent years have seen a surge of interest in a new class
of materials called topological insulators [1–3]. These
materials are distinguished from ordinary insulators by
nontrivial topological invariants associated with the bulk
electronic structure [4–6]. The existence of the topological
invariants dictates that the excitation gap must vanish at the
boundaries of a topological insulator, resulting in the for-
mation of robust metallic surface states. A number of
spectacular quantum phenomena have been predicted
when the surface states are under the influence of magne-
tism and superconductivity [7–11]. To fully explore these
phenomena thus demands great versatility from the host
material. However, so far the experimental realizations of
topological insulators are limited to a few classes of simple
materials, including HgTe quantum well [12,13], Bi1�xSbx
alloy [14,15], and tetradymite semiconductors such as
Bi2Se3, Bi2Te3, and Sb2Te3 [16–18]. Realizing the neces-
sary conditions for the predicted phenomena in these ma-
terials can be difficult.

The search for topological insulators has greatly bene-
fited from the topological band theory. It has been shown
that for all known topological insulators, in addition to the
strong spin-orbit coupling, their electronic structure can be
characterized by a band-inversion which involves the
switching of bands with opposite parity around the Fermi
level [12,14,16]. This is very similar to the quantum Hall
effect in which two bands are allowed to exchange their
Chern numbers only when they come into contact with
each other [19]. The above observation suggests small
band gap semiconductors or semimetals with heavy ele-
ments as promising candidates as these materials are likely
to develop an inverted band order.

In this Letter we predict a new class of topological
insulators realized in small band gap ternary half-Heusler
compounds [20]. In particular, using first-principles calcu-
lations we demonstrate that LaPtBi as a prototype system
becomes a strong topological insulator upon the applica-
tion of a uniaxial strain along the [001] direction. This
result is first discussed using the aforementioned band-
inversion mechanism, then verified by direct calculation
of the Z2 topological invariants from the bulk band struc-
ture [21,22]. Remarkably, ternary half-Heusler compounds
already boast an impressive list of the much desired prop-
erties such as magnetism [23] and superconductivity [24].
Together with the predicted topological properties, these
materials provide an exciting platform for novel quantum
phenomena.
Ternary half-Heusler compounds have the chemical for-

mula XYZ, where X and Y are transition or rare earth
metals and Z is a heavy element. Figure 1 shows the crystal
structure of LaPtBi, which consists of three interpenetrat-
ing, face-centered-cubic lattices with Pt sitting at the
unique site. It can be regarded as a hybrid compound of
LaBi with the rock-salt structure, and LaPt and PtBi with
the zinc blende structure. Unlike tetradymite semiconduc-
tors, the spatial inversion symmetry is broken in half-
Heusler structure.
When the total valence electron count in a primitive unit

cell is 18, the half-Heusler compounds are expected to have
a band gap. However, some compounds display a distinc-
tive semimetal behavior with LaPtBi being one of the
examples [25]. To investigate the band topology, we em-
ploy the full-potential linearized augmented plane-wave
method [26] with the local spin density approximation for
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the exchange-correlation potential [27]. Fully relativistic
band calculations were performed using the program pack-
age WIEN2K [28]. A converged ground state was obtained
using 10 000 k points in the first Brillouin zone and
KmaxRMT ¼ 9, where RMT represents the muffin-tin radius
and Kmax the maximum size of the reciprocal-lattice vec-
tors. Wave functions and potentials inside the atomic
sphere are expanded in spherical harmonics up to l ¼ 10
and 4, respectively. Spin-orbit coupling are included by a
second-variational procedure [26], where states up to 9 Ry
above Fermi energy are included in the basis expansion,
and the relativistic p1=2 corrections were also considered

for 5p, 6p of Pt, and 6p of Bi in order to improve the
accuracy [29,30]. The calculations were performed using
the experimental lattice constant of 6.83 Å [31]. Figure 2
shows the fully relativistic energy band structure of
LaPtBi. As anticipated from experiments [25], LaPtBi is
a semimetal with very small electron and hole pockets
around the � point. Our result is consistent with previous
calculations [32].

As already pointed out by Ogüchi [32], the band struc-
ture near the Fermi level at the � point is determined
mainly by PtBi with the zinc blende structure, and the La
states participate in the band structure additively. This
separation allows us to draw a direct comparison with a
known topologically nontrivial compound HgTe [12,14],
which is a II–VI material also with the zinc blende struc-
ture. Let us focus on the bands at the � point close to the
Fermi level. Similar to the case of HgTe, symmetry analy-
sis shows that the fourfold degenerate �8 states lies above
the twofold degenerate �7 and �6 states. As discussed by
Fu and Kane [14], such a band inversion is a strong
indication that LaPtBi is in a topologically nontrivial state.
To remove the semimetallic behavior, we apply a uniaxial
strain along the [001] direction with constant volume to
break the fourfold degeneracy of the �8 states. Figure 3
shows the resulting band structure. We find that although a
local band gap can be opened, the system responds differ-
ently to compression and elongation: Upon compression
the material remains a semimetal, while it becomes an
insulator when stretched. The inverted band order stays
the same. For comparison, we also calculated the band
structure with hydrostatic strain, shown in Fig. 4. A global
band gap is opened by the hydrostatic strain when the
lattice is compressed while the semimetallic behavior is
retained with expansion. However, in the former case, the
�6 states now jumps above the �8 states with the Fermi
energy lies in between. In this situation, the material should
be in a topologically trivial phase.
Although the band inversion near the � point is a strong

indication that LaPtBi under uniaxial strain is in a topo-
logically insulating phase, it is not definitive because the
topological invariant is a global property of the entire
Brillouin zone. Fu and Kane have proposed a parity crite-
rion to identify topological insulators in systems with both
time-reversal and spatial inversion symmetry [14].
However, it cannot be applied here because of the lack of
inversion symmetry in the half-Heusler structure. Instead,
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FIG. 2. Band structure of LaPtBi with experimental lattice
constant a ¼ 6:83 �A. The band order at the � point is �8, �7,
and �6 in descendent order of energy. There is a small gap
between the �7 and �6 states.

FIG. 3. Band structure of LaPtBi under uniaxial strain with
constant volume along [001] direction, with a reduction the c=a
ratio by 5% in (a), and an increase in the c=a ratio by 5% in (b).

La
Pt
Bi

FIG. 1 (color online). Crystal structure of half-Heusler com-
pound LaPtBi in the F �43m space group. Yellow spheres at
(0.5,0.5,0.5) are atom La, light blue spheres at (0.25,0.25,0.25)
are atom Pt, and red spheres at (0,0,0) are atom Bi.
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we calculate the topological invariants directly from the
bulk band structure.

We first briefly describe the formalism for a 2D system.
In the presence of time-reversal symmetry, Kramer’s theo-
rem dictates that the energy eigenstates must come in pairs.
This allows us to enforce the so-called time-reversal con-
straint on the Bloch functions:

junð�kÞi ¼ �unðkÞi; (1)

where junðkÞi is the periodic part of the Bloch function,

and � ¼ ei�Sy=@K is the time reversal operator with Sy the

spin operator andK the complex conjugation. Accordingly,
we only need to obtain Bloch functions in half of the
Brillouin zone, denoted by Bþ, as those in the other half
are fixed by Eq. (1). The band topology is characterized by
the Z2 invariant, given by [21]

Z 2 ¼ 1

2�

�I
@Bþ

dk �AðkÞ �
Z
Bþ

d2kF ðkÞ
�
mod 2; (2)

where AðkÞ ¼ i
P

nhunðkÞjrkunðkÞi is the Berry connec-
tion and F ðkÞ ¼ rk �AðkÞjz is the Berry curvature; the
sum is over occupied bands. A topological insulator is
characterized by Z2 ¼ 1 while ordinary insulators have
Z2 ¼ 0. The nonzero Z2 invariant is an obstruction to
smoothly defining the Bloch functions in Bþ under the
time-reversal constraint.

To numerically perform the integration, we follow the
recipe by Fukui and Hatsugai [22]. The Bloch functions
junðkÞi are first obtained on a k-space mesh in Bþ. The
mesh must include the four time-reversal invariant k
points: 0, G1=2, G2=2, and ðG1 þG2Þ=2, expressed in
terms of the reciprocal-lattice vectors. After applying the
time-reversal constraint, next we introduce the link vari-
able central to many Berry-phase-related calculations
[33,34], given by U�ðkjÞ ¼ detkhunðkjÞjumðkj þ�Þik,
where � is the unit vector on the mesh, and n and m run
through occupied bands. The finite element expressions for
A and F are A�ðkjÞ ¼ Im logU�ðkjÞ, and F ðkjÞ ¼
Im logU�ðkjÞU�ðkj þ�ÞU�1

� ðkj þ �ÞU�1
� ðkjÞ, where the

return value of the complex logarithm function is confined
to its principal branch ð��;��. We can then insert these
expressions into Eq. (2) to calculate the Z2 invariant. We
define an integer field nðkjÞ for each plaquette:

nðkjÞ ¼ 1

2�
f½��A�ðkjÞ ���A�ðkjÞ� �F ðkjÞg; (3)

where �� is the forward difference operator. The Z2

invariant is given by the sum of the n field in half of the
Brillouin zone [22], i.e., Z2 ¼ P

kj2BþnðkjÞmod 2.

In 3D, the topology of the bands are characterized by
four independent Z2 invariants [4,5]. These can be com-
puted by considering six tori in the Brillouin zone. For
example, the torus Z0 is spanned by G1 and G2 with the
third component fixed at 0, and Z1 is obtained by fixing the
third component at G3=2. The other four tori X0, X1, Y0,
and Y1 are defined similarly. For each torus, one can
calculate the corresponding Z2 invariant using the steps
outlined above for 2D systems. Out of the six possible Z2

invariants only four of them are independent. Following
Ref. [4,5], we use the notation �0; ð�1�2�3Þ, with �0 ¼
ðz0 þ z1Þmod 2, �1 ¼ x1, �2 ¼ y1, and �3 ¼ z1, where z0
is the Z2 invariant associated with the 2D torus Z0. The
other Z2 invariants are defined similarly. A nonzero �0

indicates that the system is a strong topological insulator.
Figure 5 shows the n-field configuration for LaPtBi

under uniaxial strain from first-principles calculations.
The corresponding band structure is shown in Fig. 3(b).

FIG. 4. Band structure of LaPtBi under hydrostatic strain, a ¼
a� 7%a in (a), a ¼ aþ 7%a in (b).

FIG. 5 (color online). The n-field configuration for LaPtBi
under uniaxial strain computed under the time-reversal con-
straint. The four tori are Z0, Z1, X0, and Y0 with the shaded
area indicating half of the area. � and � are the unit vectors of
the k-space mesh. The white and black circles denote n ¼ 1 and
�1, respectively, while the blank denotes 0. The Z2 invariant for
each individual tori is obtained by summing the n field over half
of the tori. These read z0 ¼ 1, z1 ¼ 0, x0 ¼ 1, and y0 ¼ 1. The
Z2 invariants of the system are 1;(000).
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Note that although the n field itself depends on the gauge
choice, the sum over half of the Brillouin zone is gauge-
invariant module 2 [35]. We find that LaPtBi under a
uniaxial strain becomes a strong topological insulator
with the topological invariants 1;(000). However, under
hydrostatic strain [Fig. 4(a)], LaPtBi becomes an ordinary
insulator. Furthermore, although the band structure in
Fig. 3(a) shows a semimetallic phase, we can still calculate
the Z2 invariants for the bands because a local energy gap
separates the conduction and valance bands throughout the
Brillouin zone. In this case, LaPtBi becomes a topological
metal with �0 ¼ 1.

Having firmly established that LaPtBi under uniaxial
strain realizes a topological insulating phase, we have
calculated a number of other half-Heusler ternary com-
pounds by first-principles method. We find that many half-
Heusler compounds, such as LuPtSb, ScPtBi, YPdBi, and
ThPtPb have inverted band structure, and are possible
candidates for three-dimensional insulators by uniaxial
strain. Generally, for half-Heusler compounds with small
band gaps, the topologically insulating phase can be real-
ized by a combination of hydrostatic strain to change the
band order and uniaxial strain to open an energy gap.
Details of the first-principles calculations will be reported
elsewhere [36].

In conclusion, we have shown that the 18-electron ter-
nary half-Heusler compounds can be tuned into a new class
of three-dimensional topological insulators via proper
strain engineering. This is confirmed by first-principles
calculation of the topological Z2 invariants in systems
without inversion symmetry. This quantum nature, plus
other interesting physical properties of these materials,
such as magnetism [23] and superconductivity [24], char-
acterize these materials as an exciting platform for novel
quantum phenomena.
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Note added.—After the completion of the bulk of this
work (see, e.g., the brief announcement in Ref. [20]), two
more related studies have appeared [38,37], confirming
and expanding the predictions of the present Letter.
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