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Abstract

We study the cosegmentation problem where the objec-

tive is to segment the same object (i.e., region) from a pair

of images. The segmentation for each image can be cast

using a partitioning/segmentation function with an addi-

tional constraint that seeks to make the histograms of the

segmented regions (based on intensity and texture features)

similar. Using Markov Random Field (MRF) energy terms

for the simultaneous segmentation of the images together

with histogram consistency requirements using the squared

L2 (rather than L1) distance, after linearization and ad-

justments, yields an optimization model with some interest-

ing combinatorial properties. We discuss these properties

which are closely related to certain relaxation strategies re-

cently introduced in computer vision. Finally, we show ex-

perimental results of the proposed approach.

1. Introduction

Cosegmentation refers to the simultaneous segmentation

of similar regions from two (or more) images. It was re-

cently proposed by Rother et al. [1] in the context of simul-

taneously segmenting a person or object of interest from an

image pair. The idea has since found applications in seg-

mentation of videos [2] and shown to be useful in several

other problems as well [3; 4]. The model [1] nicely cap-

tures the setting where a pair of images have very little in

common except the foreground. Notice how the calculation

of image to image distances (based on the entire image) can

be misleading in these cases. As an example, consider Fig.

1, where approximately the same object appears in the pair

of images. The background and the object’s spatial position

in the respective image(s) may be unrelated, and we may

want to automatically extract only the coherent regions from

the image pair simultaneously. This view of segmentation

is also very suitable for biomedical imaging applications

where it is important to identify small (and often inconspic-

uous) pathologies, either for evaluating the progression of

disease or for a retrospective group analysis. Here, stan-

dard segmentation techniques, which are usually designed

to reliably extract the distinct regions of the image, may

give unsatisfactory results. However, if multiple images of

a particular organ (e.g., brain) are available, the commonal-

ity shared across the images may significantly facilitate the

task of obtaining a clinically usable segmentation. For in-

stance, since the primary brain structures remain relatively

unchanged from one subject to the next, extracting this co-

herence as the foreground leaves the variation (i.e., patient

specific pathology) as the “residuals” in the background.

Figure 1. The same object in different positions in two images with

different backgrounds.

Segmentation of objects and regions in multiple images

has typically been approached in a class-constrained fash-

ion. That is, given a large set of images of the object (or

an object class) of interest, how can we solve the problem

of segmenting or recognizing the object in a set of unanno-

tated images? Of course, one option is to use a set of hand-

segmented images or a manually specified model(s) – an

approach employed in several papers, see [5; 6; 3] and refer-

ences therein. Such training data has also been successfully

used for performing segmentation and recognition in paral-

lel [7; 8], and for segmentation in a level-sets framework

[9]. A number of ideas have been proposed for the unsu-

pervised setting as well: [10] suggested using a database of

(yet to be segmented) images using a generative probabilis-

tic model, and [11] learned the figure-ground labeling by an

iterative refinement process. In [1], the object of interest is

segmented using just one additional image. The authors ap-

proach the problem by observing that similar regions (that

we desire to segment) in a pair of images will have similar

histograms, noting that such a measure has been success-
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fully used for region matching [12]. A generative model

was proposed – assuming a Gaussian model on the target

histogram (of the to-be-segmented foreground); they sug-

gested maximizing the posterior probability that the fore-

ground models in both images are the same. The formula-

tion results in a challenging optimization problem, and re-

quires an iterative minimization. Some clever observations

allow the solution of subproblems using graph-cuts, where

it is shown that the objective function value improves (or in

the worst case, does not deteriorate) at each iterative step.

However, the approximation factor guarantees associated

with graph-cuts obtained for each iteration (subproblem)

do not carry over to the original optimization. Recently,

[13] proposed constructing a Joint Image Graph for soft im-

age segmentation and calculating point correspondences in

the image pair. Because the underlying discrete problem is

hard, the authors used a relaxation method followed by an

iterative two step approach to find the solution.

In this paper, inspired by [1], we also seek to match the

histograms1 of the segmented regions. But rather than a

generative model (with predefined distribution families) for

the histograms, we consider the matching requirement as an

algebraic constraint. Our successive formulation includes

histogram constraints as additional, appropriately regular-

ized, terms in the segmentation objective function. We an-

alyze the structure of the model using the squared L2 dis-

tance (SSD) for measuring histogram similarity, instead of

the L1-norm [1]. After linearization and adjustments of

the objective function, the constraint matrix of the resul-

tant linear program exhibits some interesting combinato-

rial properties, especially in terms of the LP solutions of

the ‘relaxation’. We observe this by analyzing the deter-

minant of the submatrices of the constraint matrix, which

suggests a nice 2-modular structure [14]. The form of the

objective function (after linearization) also corroborates the

fact that if we choose SSD to specify histogram variations,

the problem permits roof-duality relaxation [15; 16] re-

cently introduced in computer vision [17; 18; 19]. Either

way, the primary benefit is that unlike the (harder) L1-norm

based problem, the LP solution of the new relaxed LP con-

tains only multiples of “half-integral” values. Demonstrat-

ing that the cosegmentation problem exhibits these desir-

able characteristics (without major changes to the under-

lying objective function) is a primary contribution of this

paper. These properties allow a simple rounding scheme

that gives good solutions in practice and enables bounding

the sub-optimality due to rounding under some conditions.

We discuss these aspects in §3.1-§3.3. Finally, we present

experimental results on a set of image pairs in §4 and con-

cluding remarks in §5.

1We consider intensity histograms in our implementation, though the

proposed model can be directly extended for other types of histograms

(such as ones incorporating texture features) as well, as noted in [1].

2. Histogram matching

Let the two input images be Ii = [Ii(p)], i ∈ {1, 2}, p ∈
{1, · · · , n}, where each image has n pixels. Let the inten-
sity histogram bins be given by sets H1, · · · ,Hβ , where Hb

corresponds to the b-th bin. For each image Ii, a coefficient
matrix Ci of size n×β is such that for pixel j and histogram
bin Hb,

Ci(p, b) =



1 if Ii(p) ∈ Hb;

0 otherwise.
(1)

The entry Ci(p, b) is 1 if pixel intensity Ii(p) belongs to

H
{i}
b (i.e., the intensity of Ii(p) is in bin b), where i refers

to the first or the second image. Summing over the columns
of Ci gives the histogram for each image as a vector. Now,
consider X1,X2 ∈ Bn as a pair of {0, 1} assignment vec-
tors for images I1 and I2, that specifies the assignment of
pixels to foreground and background regions by a segmen-
tation method. For i ∈ {1, 2}, Xi(p) = 1 if Ii(p) is classi-
fied as foreground and 0 otherwise. We want to cosegment
(i.e., by assigning to foreground) two regions from the im-
age pair with the requirement that the two histograms of the

foreground pixels are similar. The histogram, H{i} for im-
age Ii, for the pixels assigned to the foreground is

H
{i}
b =

n
X

p=1

Ci(p, b)Xi(p) ∀b ∈ {1, 2, · · · , β}, ∀i ∈ {1, 2}.

(2)

Since Xi(p) is 0 if pixel p is a background pixel, we can

simply focus on the histogram of the foreground pixels and

penalize the variation. We note that an expression similar to

(2) was discussed in a technical report accompanying [1] to

obtain a supermodularity proof.
Modeling image segmentation problems as maximum

a posteriori (MAP) estimation of Markov Random Fields
with pairwise interactions has been very successful [20; 21]
and gives good empirical results. It also seems suitable
for the segmentation objective here. In this framework,
given an image I , each pixel (random variable) p ∈ I ,
can take one among a discrete set of intensity labels, L =
{L1,L2, · · · ,Lk}. The pixel must (ideally) be assigned a
label fp ∈ L similar to its original intensity, to incur a small
deviation (or data) penalty, D(p, fp); simultaneously two
adjacent (and similar) pixels, p, q, must be assigned similar
labels to avoid a high separation (or smoothness) penalty
W (p, q) : p ∼ q (where ∼ indicates adjacency in a chosen
neighborhood system). This gives the following objective
function for arbitrary number of labels:

min
X

p∼q

W (p, q)Y (p, q)+
X

fp∈L

n
X

p=1

X̂(p, fp)D(p, fp)) p, q ∈ I,

(3)

where Y (p, q) = 1 indicates that p and q are assigned to

different labels and X̂(·, ·) gives the pixel-to-label assign-
ments. Proceeding from (2) and allowing for cases where
the histograms do not match perfectly, we can specify the
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following simple binary model where X, Y ∈ {0, 1} (labels
are foreground or background) using an error tolerance, ǫ

min

2
X

i=1

X

p∼q

Wi(p, q)Yi(p, q) +

2
X

i=1

n
X

p=1

Xi(p)Di(p) (4)

s.t.

˛

˛

˛

˛

˛

n
X

p=1

C1(p, b)X1(p) −
n
X

p=1

C2(p, b)X2(p)

˛

˛

˛

˛

˛

≤ ǫ ∀b,

|Xi(p) − Xi(q)| ≤ Yi(p, q) ∀i, ∀(p ∼ q).

Here, Di(p) is a simplified form of the function Di(p, fp)
for the figure-ground segmentation case. We set Di(p) =
Di(p, fg) − Di(p, bg) where ‘fg’ (and ‘bg’) indicates fore-

ground (and background). The objective also has a constant

term given by
∑

p Di(p, bg)2 that makes it positive.

3. Successive model

The previous model may be modified by including the
histogram constraint as an additional (regularized) term in
the objective function:

min

2
X

i=1

X

p∼q

Wi(p, q)Yi(p, q)+

2
X

i=1

n
X

p=1

Xi(p)Di(p)+λ·R(C1,C2)

(5)

where λ is the regularizer controlling the relative influence
of the histogram difference in the objective and R(C1,C2)
measures the difference of the two foreground histograms.
Including this term (or the constraints in (4)), however,
makes the optimization more challenging. Further analy-
sis shows that the difficulty of the resultant optimization
model can be attributed not only to the inclusion of the extra
penalty in the objective but to the choice of the norm in this
additional term. Using the squared L2 distance (rather than
L1) has significant advantages as we will discuss shortly.
First, using squared L2 distances, we can represent the form
of histogram differences as

R(C1,C2) =

β
X

b=1

 

n
X

p=1

C1(p, b)X1(p) −
n
X

q=1

C2(q, b)X2(q)

!2

(6)

This squared term can be linearized as follows. Consider

two corresponding bins H
{1}
b and H

{2}
b in the two images.

Let |H
{1}
b | = n1b and |H

{2}
b | = n2b, and the number of fore-

ground pixels after the segmentation in those bins is νb and
ν̂b respectively. Then, the squared term estimates the sum
of (νb− ν̂b)

2 over b, i.e.,
∑

b(νbνb−2νbν̂b + ν̂bν̂b). We may
use an auxiliary variable, Zi(p, q), such that Zi(p, q) = 1

if both nodes p and q belong to bin H
{i}
b and are also part

of the foreground in image Ii, and 0 otherwise. Then, sum-
ming over all such Zi’s : i ∈ {1, 2}, gives the terms νbνb

and ν̂bν̂b. Similarly, we may use another auxiliary vari-
able, V (p, q), which is set to 1 if node p (and node q) be-

longs to bin H
{1}
b (and bin H

{2}
b ), and is part of the fore-

2The data term is Xi(p)Di(p, fg) + (1 − Xi(p))Di(p, bg) =
Di(p, bg) + (Di(p, fg) − Di(p, bg)) Xi(p).

ground in image I1 (and image I2). To specify the lin-
earized representation, let us first introduce some notation.

Let (̂p, q)i denote those pairs (p, q) that satisfy Ci(p, b) = 1

and Ci(q, b) = 1 for some bin H
{i}
b and image i (i.e., intra-

image links). Also, (p, q) denotes those pairs (p, q) that sat-

isfy C1(p, b) = 1 and C2(q, b) = 1 for bins H
{1}
b and H

{2}
b

(i.e., inter-image links). To summarize, this procedure in-
troduces ‘lifting’ variables for linearization (see [22; 17] for
other examples) and allows rewriting the model as

min

2
X

i=1

X

p∼q

Wi(p, q)Yi(p, q) +

2
X

i=1

n
X

p=1

Xi(p)Di(p) +

λ

β
X

b=1

0

B

@

2
X

i=1

X

(̂p,q)i

Zi(p, q) − 2
X

(p,q)

Vpq

1

C

A
(7)

s.t. Xi(p) − Xi(q) ≤ Yi(p, q), ∀i, ∀(p ∼ q),

Xi(p) + Xi(q) ≤ Zi(p, q) + 1 ∀(̂p, q)
i
,

X1(p) ≥ V (p, q), X2(q) ≥ V (p, q) ∀(p, q),

X,Y,Z,V ∈ {0, 1}.

3.1. Properties of the constraint matrix in (7)

The preferred alternative to solving the {0, 1} integer

program (IP) in (7) directly (using branch-bound methods)

is to relax the {0, 1} requirement to [0, 1], and then obtain

an integral solution from the [0, 1] solution via rounding. In

general, little can be said about the real valued solution. In

some special cases, the situation is better and the cosegmen-

tation problem described in (7) belongs to this category.

If the model has only (monotone) constraints of the form

in the first set of inequalities in (7), the constraint ma-

trix is totally unimodular (i.e., the determinants of each of

its square submatrices are in {0,±1}). By the Hoffman-

Kruskal theorem [23], the optimal vertex solution of the lin-

ear program is integral. In cosegmentation, the constraints,

Xi(j) + Xi(l) ≤ Zi(j, l) + 1, are non-monotone, and spoil

unimodularity. Fortunately, the model still retains a desir-

able structure – first, we derive this by analyzing the modu-

larity properties of the constraint matrix. Later, we discuss

how the objective function may also be interpreted to recog-

nize the nice structure of the model. These properties will

help show that the values in the optimal LP solution cannot

be arbitrary reals in [0, 1]. We first provide some definitions.

Definition 1 (Nonseparable matrix) A matrix is nonsepa-

rable if there do not exist partitions of the columns and rows

to two (or more) subsets C1, C2 and R1, R2 such that all

nonzero entries in each row and column appear only in the

submatrices defined by the sets R1 × C1 and R2 × C2.

Let the constraint matrix of (7) be denoted as A. Below, we

outline the key properties of the constraint matrix for the

cosegmentation problem.
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Lemma 1 A is a nonseparable matrix.

Proof: The entries in X refer to the pixels of an image. For

two pixels that are adjacent w.r.t. the chosen neighborhood

system N (e.g., four neighborhood), the columns of their

corresponding X entries will be non-zero in at least one

row (for the constraint where they appear together). Then,

they must be in the same partition (either R1 or R2). Other

‘neighbors’ of these pixels must also be in the same par-

tition. Because each pixel is reachable from another via a

path in N , the same logic applied repeatedly shows that the

X columns (correspond to pixels) must be in the same par-

tition. Each Y and Z variable appears in at least one con-

straint (non-zero entry in A) together with X, and so must

belong in the same partition as X. Each V variable appears

in two constraints, with X1(·), and X2(·), and so must also

be in the same partition. Therefore, A is non-separable. �

Theorem 1 The determinant of all submatrices of A be-

longs to {−2,−1, 0, 1, 2}, i.e., its absolute value is bounded

by 2.

Proof: We prove by induction. Since the entries in A

are drawn from {−1, 0, 1}, the 1 × 1 matrix case is simple.

Now assume it holds for any m− 1×m− 1 submatrix and

consider m × m submatrices. By construction, A (and any

non-singular square submatrix) has at most three non-zero

entries in a row. Let Ā be a m×m non-singular submatrix

of A. To obtain the result, we must consider the following

three cases.

Case 1: Ā has one non-zero entry in any row/column.

Case 2: Ā has two non-zero entries in every row and col-

umn.

Case 3: Ā has three non-zero entries in any row.

It is easy to verify that the structure of A rules out other

possibilities. For presentation purposes, we will start with

Case 3 and consider Case 2 last.

Case 3: Ā has three non-zero entries in any row. First,

observe that the rows with three non-zero entries must come

from the first three constraints in (7). In each such con-

straint, there is at least one variable, Yi(j, l), Yi(l, j), or

Zi(j, l), that does not occur in any other constraint. There-

fore, the corresponding columns of that variable must have

only one non-zero entry, say at position (p, q). We may

permute Ā so that (p, q) moves to location (1, 1). Let

M[u,v] denote the matrix obtained from M by deleting row

u and column v. The determinant of Ā is expressed as

Ā(1, 1) det(Ā[1,1]), where Ā[1,1] is m − 1 × m − 1. Now,

Ā(1, 1) ∈ {±1, 0} and det(Ā[1,1]) ∈ {±2,±1, 0}, so the

product of these terms is in {±2,±1, 0}.

Case 1: Ā has 1 non-zero entry in any row. This can be

shown using the same argument as in case 3 above.

Case 2: Ā has 2 non-zero entries in every row and col-

umn. This case was proved by Hochbaum et al. [24]

(Lemma 6.1) and the same idea can be applied here.

Wlog, we may assume that the two non-zero entries in

row i of Ā are in columns i and (i + 1)mod m (due

to Lemma 1). Hence, det(Ā) = Ā(1, 1) det(Ā[1,1]) −
(−1)mĀ(m, 1) det(Ā[m,1]). The submatrix determinants

equal 1 since they are both triangular matrices (with non-

zero diagonal elements). Thus, det(Ā) ∈ {±2,±1, 0}. �

Corollary 1 The model in (7) has super-optimal half inte-

gral solutions, i.e., each variable in the optimal LP solution

is in {0, 1
2 , 1}.

Corollary 1 shows that A has 2-modular structure with

half-integral solutions [14]. This property leads to a two-

approximation for a wide variety of NP-hard problems in-

cluding vertex cover and many variations of 2-SAT [24].

Notice that if the objective function has only positive terms,

we can round all the 1
2 variables up to 1, leave the integral

variables unchanged, and still ensure that the value of the

objective is within a factor of two of the optimal solution

[24]. This is not applicable in our case due to the negative

term in the objective function. However, we can still obtain

approximations if the half integral solution satisfies some

conditions, as we show in §3.3.

3.2. PseudoBoolean optimization

In the last section, we analyzed the constraint matrix of

the LP to derive desired properties. An analogous approach

is to analyze the objective function in (5), which is given by

the MRF terms (submodular) and the histogram variation

(non-submodular). To facilitate this discussion, first recall

that a Pseudo-Boolean (PB) function has the form:

f(x1, x2, · · · , xn) =
∑

S⊂U

cS
∏

j∈S

xj

where U = {1, 2, . . . , n}, x = (x1, x2, · · · , xn) ∈ Bn de-

notes a vector of binary variables, S is a subset of U , and cS
denotes the coefficient of S. That is, a function f : Bn 7→ R

is called a pseudo-Boolean function. If the cardinality of S
is upper bounded by 2, the corresponding form is

f(x1, x2, · · · , xn) =
∑

i

cixi +
∑

(i,j)

cijxixj

These are Quadratic Pseudo-Boolean functions (QPB). The

histogram term in (6) from our model can also be written

in this form. If the objective permits a representation as a

QPB, an upper (or lower) bound can be derived using roof

(or floor) duality [16], recently utilized in several vision

problems [18; 19; 17]. Obtaining a solution then involves

representing each variable as a pair of literals, xi and x̄i,

each representing a node in a graph where edges are added

based on the coefficients of the terms in the corresponding

QPB. A max-flow/min-cut on this new graph yields a part

of the optimal solution, i.e., the {0, 1} values in the solution

2031



(called ‘persistent’) are exactly the same as an optimal solu-

tion to the problem instance. The unassigned variables cor-

respond to half-integral values as discussed in the previous

section. Independent of the method employed, once such a

super-optimal/half-integral solution [24] is found, the chal-

lenge is to derive an integral solution via rounding.

3.3. Rounding and approximation

The approximation depends critically on how the vari-

ables are rounded. If we fix the {0, 1} variables, and round
1
2 ’s to 1, a good approximation may be obtained. However,

such a solution may not be feasible w.r.t. the constraints in

a worst case setting (although in practice, a simple rounding

heuristic exploiting half-integral solutions may work). We

discuss this issue next where we fix the X variables. Note

that “fixing” the set of {0, 1} variables (as in [25; 24]) is the

same as “persistence” in the pseudo-Boolean optimization

literature, i.e., only the 1
2 valued variables are modified.

We refer to the block of X variables in the solution vec-
tor as X for convenience; X includes X1 and X2. The
corresponding block in the optimal LP solution is given as
X∗

1 , and X∗
2 (in the present context we will refer to X’s

as sets). Clearly, X∗
i = X

∗|{0}
i ∪ X

∗|{1}
i ∪ X

∗|{ 1

2
}

i , where

X
∗|{0}
i , X

∗|{1}
i and X

∗|{ 1

2
}

i refers to the 0, 1 and 1
2 entries

in X∗ respectively. Let X
∗|{ 1

2
}

i|Hb
⊆ X

∗|{ 1

2
}

i refer to those en-

tries that are in histogram bin b in image i (for presentation
purposes, we assume Hb in image 1 corresponds to Hb in
image 2, and so we drop the image superscript). A subset

of the constraints in (7) relating X
∗|{ 1

2
}

1|Hb
and X

∗|{ 1

2
}

2|Hb
are

X
∗
1 (p) + X

∗
1 (q) ≤ Z

∗
1 (p, q) + 1, X

∗
1 (p), X∗

1 (q) ∈ X
∗|{ 1

2
}

1|Hb
,(8)

X
∗
1 (q) ≥ V

∗(q, r), X
∗
1 (q) ∈ X

∗|{ 1

2
}

1|Hb
, (9)

X
∗
2 (r) ≥ V

∗(q, r), X
∗
2 (r) ∈ X

∗|{ 1

2
}

2|Hb
, (10)

X
∗
1 (p) ≥ V

∗(p, r), X
∗
1 (p) ∈ X

∗|{ 1

2
}

1|Hb
, (11)

X
∗
2 (r) ≥ V

∗(p, r), X
∗
2 (r) ∈ X

∗|{ 1

2
}

2|Hb
. (12)

First, consider the 1
2 -valued entries. Since X∗

1 (p), X∗
1 (q)

and X∗
2 (r) are all 1

2 , and (7) is a minimization, Z∗
1 (p, q) is

0 and V ∗(q, r) is 1
2 at optimality. Setting X∗

1 (p), X∗
1 (q)

and X∗
2 (r) to 1 satisfies (9)-(12), regardless of the value of

V ∗(·, ·), but (8) is violated if Z∗
1 (p, q) is unchanged. On

the other hand, if we round X∗
1 (q) (or X∗

1 (p)) to 0, (8) is

satisfied, but (9) or (11) is violated. Therefore, to ensure

a feasible solution, we must round a few 1
2 variables (V

and X) to 0, and set a few Z variables (which were 0 in

the optimal solution) to 1. In the general case, this might

increase the objective function arbitrarily. However, under

some conditions, we can still bound the gap.

For convenience, let ai = |X
∗|{1}

i|Hb
|, di = |X

∗|{ 1

2
}

i|Hb
| and

ci = |X
∗|{0}

i|Hb
|. In the rounding, we do not change the {0, 1}

X∗ variables; only the half-integral variables are rounded to

1 or 0. Assume that a rounding scheme, R, sets d
(1)
i entries

to 1 and d
(0)
i entries to 0, so di = d

(1)
i + d

(0)
i . Consider

the histogram mismatch penalty in the the objective first. In
the optimal solution, let this term be O∗

Hk
= λ(O∗

Z − O∗
V ) =

λ
“

P2
i=1

P

(̂p,q)i
Z∗

i (p, q) − 2
P

(p,q) V ∗
pq

”

for Hb. In terms

of ai, di and ci,

O
∗
Z =

2
X

i=1

X

(̂p,q)i∈Hb

Z
∗
i (p, q) =

2
X

i=1

(a2
i +

1

2
aidi);

O
∗
V =

X

(p,q)∈Hb

V
∗

pq = a1a2 +
1

2
d1d2 +

1

2
a1d2 +

1

2
a2d1

Let the increase in O∗
Hk

due to rounding be ρ = ρZ + ρV ,
where ρZ (and ρV ) is the increase due to Z (and V ). These
can be expressed as

ρZ =

2
X

i=1

((d
(1)
i )

2
+

1

2
aid

(1)
i −

1

2
aid

(0)
i );

ρV =
1

2
(d1d2 + a1d2 + a2d1 − 2d

(1)
1 d

(1)
2 − 2a1d

(1)
2 − 2a2d

(1)
2 )

For i ∈ {1, 2}, we can prove the following result:

Lemma 2 If a1 ≥ αa2, ai ≥ αdi, d1 ≥ d2, then ρZ +

2ρV ≤ ξ ·(O∗
Z −2O∗

V ) where ξ = max( 3(α+1)
2(α2−2α−1) ,

4
α−2 ).

For α = 3, ρZ + 2ρV ≤ 4 · (O∗
Z − 2O∗

V ).

In Lemma 2, the increase is bounded by a multiple of

the lower bound (O∗
Z − 2O∗

V ) if the conditions are satis-

fied. Notice that ξ decreases with an increase in α. What

remains to be addressed is (1) to specify what the round-

ing scheme R is, and (2) the loss due to rounding for

the MRF terms in the objective in (7). First, consider R:

how to round X
∗|{ 1

2
}

i to {0, 1}. To do this, we solve the

original MRF problem in (7) (but without the histogram

constraints) on both images using max-flow/min-cut. Let

γMRF be the value of such a solution and γ
( 1

2
)

MRF be the

part of γMRF corresponding only to variables in X
∗|{ 1

2
}

i .

Clearly, γ
( 1

2
)

MRF ≤ γMRF . We round X
∗|{ 1

2
}

i variables based

on their assignment in the MRF solution. Let O∗
X,Y =

∑2
i=1

∑
p∼q Wi(p, q)Y ∗

i (p, q) +
∑2

i=1

∑n

p=1 X∗
i (p)Di(p)

be the optimal LP solution. Again, O∗
X,Y can be written

as O∗
X,Y = O∗

X,Y (0, 1) + O∗
X,Y ( 1

2 ). Since γMRF is the

smallest possible solution for the original (unconstrained)

MRF, γ
( 1

2
)

MRF ≤ γMRF ≤ O∗
X,Y . The solution after rounding

is OX,Y = OX,Y (0, 1) + γ
( 1

2
)

MRF ≤ O∗
X,Y + O∗

X,Y = 2O∗
X,Y .

We can now state the following result:

Theorem 2 If a1 ≥ αa2, ai ≥ αdi, d1 ≥ d2 where α = 3,

then OX,Y,Z,V ≤ 5 · O∗
X,Y,Z,V .
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4. Experimental results

We performed evaluations of our cosegmentation

algorithm on several image pairs used in [1] (see

http://research.microsoft.com/∼carrot/software.htm)

together with additional image pairs that we collected

from miscellaneous sources. The complete data will be

made publicly available after publication. The image sizes

were 128 × 128, and we used the RBF kernel to calculate

the data D(·) and smoothness costs W (·, ·) in (7). In

the current implementation, histogram consistency was

enforced using RGB intensities and gradients only, but this

can be extended to use texture features. Notice that the

size of our problem is dependent on the number of bins

used. Using few bins makes the problem size large (as a

function of the number of pairs in each bin). Also, such a

histogram is insufficient to characterize the image properly:

dissimilar pixels may now belong to the same bin. This

makes histogram constraints counterproductive. On the

other hand, too many bins do not enforce the consistency

properties strongly. We found using 30-50 bins per color

channel for our experiments achieves a nice balance

between these competing effects, and solving the LP on a

modern workstation using CPLEX takes 15-20s. In this

section, we cover (a) qualitative results of segmentation,

(b) error rate, i.e., percentage of misclassified pixels (using

hand-segmented images as ground truth), and (c) empirical

calculation of the loss in optimality due to rounding. For

(a) and (b), we also illustrate results from a graph-cuts

based MRF segmentation method (GC) [20] applied on

the images independently as well as results from the

cosegmentation algorithm of [1].

For comparison with [1], we used the trust region graph

cuts approach (TRGC) using an implementation shared

with us by the authors of [1]. In TRGC, the energy is itera-

tively minimized by expressing the new configuration of the

non-submodular part of the function as a combination of an

initial configuration of the variables and the solution from

the previous step. Therefore, it requires an initial segmen-

tation of the images. For this purpose, we used the solution

of graph cuts based MRF segmentation (without histogram

constraints). Also, since it is difficult to optimize both im-

ages simultaneously using the L1 norm, the approach in [1]

keeps one image fixed and then optimizes the second im-

age w.r.t. the first, and repeats this process. In our experi-

ments, we found that either (a) the solution converged in un-

der five iterations or (b) in some cases a poor segmentation

generated in one of the early iterations adversely affected

the subsequent iterations. To avoid the second problem, the

number of iterations was kept small. We evaluated various

values of the regularizer λ, and report the settings that cor-

respond to the best results.

In Fig. 2, we show cosegmentation results of the three

approaches for a set of image pairs with a similar ob-

ject in the foreground but different backgrounds. The first

two columns correspond to the MRF solution (without his-

togram constraints), columns three and four illustrate solu-

tions obtained using our approach, and the last two columns

show the segmentations from [1]. In the first row (Stone),

the stone in image-2 is larger (which gives dissimilar fore-

ground histograms), but the algorithm successfully seg-

ments the object in both images. Notice that our method

compares well to [1] for this image pair. For the next im-

age pair (Banana), our algorithm is able to recognize the

object in both images but shows a significant improvement

in image-2 compared to GC with the same parameter set-

tings and is comparable to the results of TRGC. For the

third image pair (Woman), our algorithm segments roughly

the same foreground as GC for image-1. For image-2, sev-

eral regions in the background with similar intensities as the

foreground are incorrectly labeled by GC. Using the his-

togram constraints eliminates these regions from the seg-

mentation yielding a cleaner and more accurate segmenta-

tion. On this image pair, our solution is better than TRGC.

In the fourth (Horse) and fifth (Lasso) image pairs, GC does

not perform well on image-1, but yields similar results as

our method on image-2. Note that the object (foreground)

in Lasso image-1 is difficult to discern from the background

making it a challenging image to segment. However, using

the histogram constraints, we are able to obtain a reasonable

final segmentation. When compared to TRGC, our segmen-

tation seems to correctly identify more foreground pixels

for Lasso image-1. Table 1 shows the error rate (i.e., the

average pixel misclassification error for each image pair).

These were generated by comparing the segmentation with

hand segmented images. In general, the misclassification

error rate was 1 − 5% as shown in Table 1.

Values for λ. The specific value of λ used in our exper-

iments was determined empirically by iterating over four

possible values: starting from λ = 10−4 and increasing it

by an order of magnitude until λ = 1.0. The extracted fore-

grounds were then compared using mutual information, and

λ = 0.01 was found to work best for our experiments. We

show a plot of this behavior in Fig. 4. As the images sug-

gest, λ values at either end of the range [100, 10−4] are not

ideal for cosegmentation. When λ is too large (≥ 1.0), the

foreground becomes smaller and less smooth. This is be-

cause the histogram term overwhelms the MRF terms and

returns only those foreground pixels where the histogram

bins match perfectly. We found that if λ ≤ 10−4, the results

are similar to those obtained by graph-cuts segmentation.

Also, Fig. 4 shows that the segmentations are relatively sta-

ble for wide range of λ values. This makes it relatively easy

to select a reasonable λ value using our approach. We note

that in our experiments, cosegmentation results using the L1

norm seem to be more sensitive to the value of λ.

Half-integrality/inconsistent pixels. In the proposed
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(a) (b) (c) (d) (e) (f)

Figure 2. The images in columns (a) and (b) are solutions from independent graph-cuts based segmentations on both images, the pair of

images in columns (c) and (d) are solutions from our cosegmentation algorithm applied on the images simultaneously, and images in (e)

and (f) are solutions obtained from the algorithm in [1]. The segmentation is shown in blue.

Instance our error rate (λ = 0.01) approximation GC error rate error rate [1]

Stone 1.56% 1.04 3.57% 1.92%
Banana 3.02% 1.02 7.75% 3.33%
Woman 2.14% 1.06 > 10% ≈ 10%
Horse 4.80% 1.02 5.70% 4.92%
Lasso 2.87% 1.03 7.9% 3.72%

Table 1. Misclassification errors (% of pixels misclassified) in the segmentation and empirical approximation estimates of the solution.

λ = 100 λ = 10−1 λ = 10−2 λ = 10−3 λ = 10−4

MI= 0.601 MI= 0.761 MI= 0.767 MI= 0.766 MI= 0.677

Figure 3. The extracted foreground (after MI-based affine registra-

tion) for the pair of stone images as a function of λ.

model, the number (or proportion) of variables assigned 1
2

values varies as a function of λ. In practice, a higher value

of λ leads to more “inconsistent” pixels (terminology bor-

rowed from [17; 18]). In our case, for λ = 0.01, the number

of ( 1
2 ) pixels was 0-20%. The cumulative increase in the ob-

jective function due to these variables (i.e., rounding loss)

was 0-6% of the lower bound (shown in Table 1), suggest-

ing that our worst case estimate in Thm. 2 is conservative.

In addition, some new results indicate that even further per-

formance improvements are possible [26; 18].

5. Conclusions

We propose a new algorithm for the cosegmentation

problem. The model uses an objective function with MRF

terms together with a penalty on the sum of squared dif-

ferences of the foreground regions’ histograms. We show

that if SSD is used as the penalty function for histogram

mismatch, the optimal LP solution is comprised of only

{0, 1
2 , 1} values. Half integrality leads to a simple round-
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ing strategy that gives good segmentations in practice and

also allows an approximation analysis under some condi-

tions. The proposed approach also permits general appear-

ance models and requires no initialization.
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