

Proc. Conf. Advances in Radioactive Isotope Science (ARIS2014) JPS Conf. Proc. 6, 030012 (2015) http://dx.doi.org/10.7566/JPSCP.6.030012

Half-life Measurements of 2^+_1 States in the Vicinity of 108 Zr and their Implications for Ground-state Deformations

F. BROWNE^{1,2}, A. M. BRUCE¹, T. SUMIKAMA³, I. NISHIZUKA³, S. NISHIMURA², P. DOORNENBAL²,

G. Lorusso², Z. Patel^{2,4}, S. Rice^{2,4}, L. Sinclair^{2,5}, P.-A. Söderström², H. Watanabe^{2,6},

J. WU^{2,7}, Z. Y. XU⁸, H. BABA², N. CHIGA³, R. CARROLL⁴, R. DAIDO⁹, F. DIDIERJEAN¹³,

Y. FANG⁹, G. Gey^{10,11,2}, E. Ideguchi⁹, N. INABE², T. ISOBE², D. KAMEDA², I. KOJOUHAROV¹²,

N. Kurz¹², T. Kubo², S. Lalkovski¹⁴, Z. Li⁷, R. Lozeva¹³, N. Naoki², H. Nishibata⁹, A. Odahara⁹, Zs. Podolyák⁴, P. H. Regan^{4,15}, O. J. Roberts¹, H. Sakurai²,

H. Schaffner¹², G. S. Simpson¹⁰, H. Suzuki², H. Takeda², M. Tanaka⁹, J. Taprogge^{16,17,2},

V. WERNER^{18,19}, O. WIELAND²⁰, and A. YAGI⁹

¹School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ. United Kingdom

²RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan

³Department of Physics, Tohoku University, Aoba, Sendai, Miyagi 980-8578, Japan

⁴Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom

⁵Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom

⁶Department of Physics, Beihang University, Beijing 100191, China

⁷Department of Physics, Peking University, Beijing 100871, China

⁸Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

⁹Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

¹⁰LPSC, UJF/INPG, CNRS/IN2P3, F-38026 Grenoble Cedex, France

¹¹ILL, 38042 Grenoble Cedex, France

¹²GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany

¹³IPHC, CNRS/IN2P3 and University of Strasbourg, Strasbourg, France

¹⁴Department of Physics, University of Sofia, 1164 Sofia, Bulgaria

¹⁵National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom

¹⁶Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

¹⁷Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain

¹⁸A. W. Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA

¹⁹Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

²⁰INFN Sezione di Milano, I-20133 Milano, Italy

E-mail: f.browne@brighton.ac.uk

(Received September 30, 2014)

The A~110 region of neutron-rich nuclei is one containing a rich variety of nuclear structure, with theory suggesting competition between several different shapes. To gain information about these shapes the half-lives of the 2^+_1 states have been measured for $^{102-108}$ Zr and the surrounding region. The nuclei of interest were produced through the in-flight fission of a 345 MeV/nucleon ²³⁸U beam by a ⁹Be target and selected by the BigRIPS separator. At the final focal plane of the separator, the nuclei were implanted into 5 DSSDs (WAS3ABi). Gamma-rays emitted following β -decay, or decay of isomeric states, were detected in an array of 12 clusters of 7 HPGe detectors (EURICA) augmented with 18 LaBr₃(Ce) detectors. Beta-gamma timing, measured between fast scintillators around WAS3ABi and the LaBr₃(Ce) detectors, allowed the measurement of nuclear level half-lives in the nanosecond regime. The efficacy of the β - γ timing was tested by measuring the half-lives of the 2⁺₁ level in ^{102,104}Zr and ^{106,108}Mo. The preliminary results are presented along with experimental details.

KEYWORDS: Ground-state deformation, lanthanum bromide, zirconium, molybdenum, EURICA

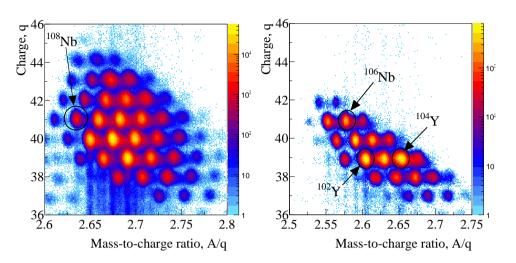
1. Introduction

Atomic nuclei with neutron- and proton-numbers midway between the classical magic numbers (2, 8, 20, 28, 50, 82...) can best be described by collective models. Deformed shapes are manifest in these *mid-shell* regions, with rigid quadrupole deformations giving rise to rotational states. The measurement of the excitation energies and half-lives of these states make it possible to quantify the quadrupole deformation.

Ground-state deformations of the A~110 region of neutron-rich nuclei demonstrate a strong dependence on neutron-number [1, 2]. Differing predictions [3, 4] of the magnitude of ground-state prolate deformation make this region an ideal testing ground of the nuclear models employed in the calculations. To experimentally deduce the deformations, a decay spectroscopy experiment was carried out at the RI Beam Factory (RIBF), RIKEN, to measure the half-lives of the 2_1^+ states of 102,104Zr and 106,108Mo. These proceedings will present the experimental details and some preliminary results.

2. Experimental set-up

Neutron-rich nuclei were produced through the in-flight fission of a 345 MeV/nucleon ²³⁸U beam on a 555 mg/cm² ⁹Be production target. The average primary beam intensity was ~10 pnA throughout the experiment. Fission fragments were selected by the BigRIPS spectrometer according to their mass-to-charge ratio, and by their energy loss in an achromatic wedge degrader (proportional to their atomic number). Particle identification was carried out on an event-by-event basis using the $B\rho$ - ΔE -TOF technique [5].


The fission fragments were implanted into the WAS3ABi active stopper, which comprises 5 DSSDs of 60×40 strips each 1 mm² [6], which is situated between two plastic scintillators (β -plastics) of 2 mm thickness and 65×45 mm² area.

An array of 18 LaBr₃(Ce) detectors [7–9], as well as the EURICA array [11], surrounded WAS3ABi for the purpose of measuring isomeric and β -delayed γ -rays. The excellent timing properties of the LaBr₃(Ce) detectors allow for the measurement of the half-lives of nuclear states in the subnanosecond range. Time difference, ΔT , measurements are taken between the average of the β -plastics and a signal in the LaBr₃(Ce) array.

3. Analysis & results

Two BigRIPS settings were used to select and identify the nuclei of interest, one of large transmittance containing ¹⁰⁸Nb, and one purified for ^{102, 104}Y and ¹⁰⁶Nb. The particle identification plots of these settings are shown in the left and right panels of Fig. 1, respectively. Particle gates were applied to the β -decay parent of the nuclides of interest, as indicated in Fig. 1. To differentiate between a real β -decay event and a background event of the same character, a correlation condition was imposed that requires the β -like event to occur within the same pixel as the implanted ion and to occur within one half life of the parent nucleus being implanted.

Gamma-ray energy- ΔT matrices were constructed, where the energy is measured in the LaBr₃(Ce) array and ΔT is as described at the end of Sec. 2. Gamma-ray energy spectra gated on β -decays from ¹⁰⁴Y and ¹⁰⁶Nb are shown in the left panel of Fig. 2. Background-subtracted time-difference spectra are shown in the right panel of Fig. 2, for the $2_1^+ \rightarrow 0_{g.s}^+$ transitions in the daughter nuclei ¹⁰⁴Zr and ¹⁰⁶Mo. The half lives of higher-lying populated states are expected to be much shorter than that of

Fig. 1. Particle identification plots of two settings; Left: The wide, neutron-rich setting containing 108 Nb (labelled). Right: The purified beam setting focusing on $^{102, 104}$ Y and 106 Nb (labelled).

the $2_1^+ \rightarrow 0_{g,s}^+$ transitions [10] and within the experimental error. Table 1 lists the half-lives measured in this work and compares with literature values, indicating good agreement.

Nucleus	$E(2_{1}^{+})$ (keV)	$T_{1/2}^{\exp}$ (ns)	$T_{1/2}^{\text{lit}}$ (ns)
¹⁰⁶ Mo	171.5	1.26(33)	1.25(3) [12]
¹⁰⁸ Mo	192.8	0.55(13)	0.5(3) [12]
102 Zr	151.8	1.80(30)	1.8(4) [12]
104 Zr	139.3	2.03(29)	2.0(3) [12]

Table I. The measured half-lives compared with the literature values.

4. Discussion

A low 2_1^+ energy and an increase in the reduced matrix element, B(E2), of the $2_1^+ \rightarrow 0_{g,s}^+$ transition are key signatures of ground-state deformation. They also provide the information necessary to quantify the quadrupole deformation, β_2 , assuming an axially symmetric rigid rotor.

The left panel of Fig. 3 shows the evolution of the 2_1^+ energy as a function of neutron-number for nuclei with $38 \le Z \le 44$ and reflects the β_2 values, shown in the right panel of Fig. 3, deduced from the measured 2_1^+ state half-life and excitation energy.

We have presented preliminary half-lives of some 2_1^+ states in neutron-rich nuclei in the A~110 mass region. The ability of the LaBr₃(Ce) array to measure half-lives in the nanosecond regime has been demonstrated, improving and adding to the previously reported results [12, 13].

Acknowledgements

The authors acknowledge the RIKEN Nishina Center accelerator department for their efforts in delivering the ²³⁸U beam. This work is supported by the UK STFC, the UK NMO, DOE grant No. DE-FG02-91ER-40609.

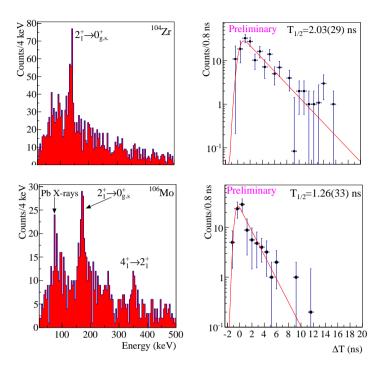
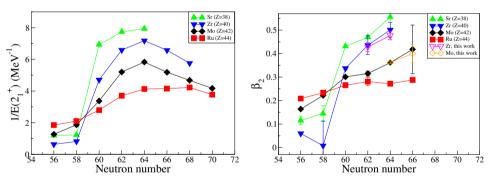



Fig. 2. Gamma-ray energy spectrum measured in the LaBr₃(Ce) array (left) and time difference spectrum for the $2^+_1 \rightarrow 0^+_{g.s.}$ transition (right) in ¹⁰⁴Zr (top) and ¹⁰⁶Mo (bottom). The spectra are measured in coincidence with β -decays detected within 200 ms of a ¹⁰⁴Y implantation and 1 s of a ¹⁰⁶Nb implantation, respectively.

Fig. 3. Evolution of the energy of the 2_1^+ state as a function of neutron-number (left) and the quadrupole deformation parameter calculated from the measured half-lives, assuming axial symmetry (right) [12].

References

- [1] J. K. Hwang et al.: Phys. Rev. C 73, (2006) 044316.
- [2] S. Raman et al.: At. Data Nucl. Data Tables 78, (2001) 1.
- [3] J. Skalski, S. Mizutori and W. Nazarewicz: Nucl. Phys. A 617, (1997) 282.
- [4] Y. Shi, P. M. Walker and F. R. Xu: Phys. Rev. C 85, (2012) 027307.
- [5] N. Fukuda et al.: Nucl. Instrum. Meth. B 317, (2013) 323.
- [6] S. Nishimura, Prog. Theor. Exp. Phys., (2012), 03C006.
- [7] Z. Patel et al., RIKEN Accel. Prog. Rep. 47, (2014).
- [8] P. H. Regan, Appl. Rad. and Isot. 70, (2012) 1125.
- [9] P. H. Regan et al., EPJ web Conf. 63, (2013) 01008.

- [10] C. Hutter et al., Phys. Rev.C 67, (2003) 054315.
- [11] P.-A. Söderström et al., Nucl. Instrum. Meth. B 317, (2013) 649.
- [12] Evaluated Nuclear Structure Data File, http://www.nndc.bnl.gov/ensdf
- [13] F. Browne et al., RIKEN Accel. Prog. Rep. 47, (2014).