

http://journals.tubitak.gov.tr/math/

Research Article

Half-lightlike submanifolds with planar normal sections in \mathbb{R}^4_2

Feyza Esra ERDOĞAN¹, Rıfat GÜNEŞ², Bayram ŞAHİN^{2,*}

¹Adıyaman University, Faculty of Education, Department of Mathematics, Adıyaman, Turkey ²İnönü University, Faculty of Science and Art, Department of Mathematics, Malatya, Turkey

Received: 14.09.2012	•	Accepted: 11.05.2013	•	Published Online: 25.04.2014	٠	Printed: 23.05.2014
-----------------------------	---	----------------------	---	------------------------------	---	----------------------------

Abstract: We investigate half-lightlike submanifolds with planar normal sections of 4-dimensional pseudo-Euclidean space. We obtain necessary and sufficient conditions for a half-lightlike submanifold of R_2^4 such that it has degenerate or nondegenerate planar normal sections.

Key words: Half-lightlike submanifold, planar normal sections

1. Introduction

Surfaces with planar normal sections in Euclidean spaces were first studied by Chen [1]. In [6], Y.H. Kim studied Surfaces with planar normal sections in semi-Riemann setting. As far as we know, however, this topic has not been studied in lightlike geometry. Therefore, as a first step, in this paper we study half-lightlike submanifolds with planar normal sections in R_2^4 .

Let M be a hypersurface in \mathbb{R}_2^4 . For a point p in M and a lightlike vector ξ tangent to M at p that spans radical distribution, the vector ξ and transversal space tr(TM) to M at p determine a 2-dimensional subspace $E(p,\xi)$ in \mathbb{R}_2^4 through p. The intersection of M and $E(p,\xi)$ gives a lightlike curve γ in a neighborhood of p, which is called the normal section of M at the point p in the direction of ξ . Let v be a spacelike vector tangent to M at p ($v \in S(TM)$). The vector v and transversal space tr(TM) to M at p then determine a 2-dimensional subspace E(p,v) in \mathbb{R}_2^4 through p. In this case, the intersection of M and E(p,v) gives a spacelike curve γ in a neighborhood of p which is called the normal section of M at p in the direction of v. According to both situations given above, M is said to have degenerate pointwise and nondegenerate pointwise planar normal sections, respectively, if each normal section γ at p satisfies $\gamma' \wedge \gamma'' \wedge \gamma''' = 0$ [1,7,5,4].

2. Preliminaries

The codimension 2 lightlike submanifold (M,g) is called a half-lightlike submanifold if rank(radTM) = 1. In this case, there exist 2 complementary nondegenerate distributions S(TM) and $S(TM^{\perp})$ of RadTM in TM and TM^{\perp} respectively, called the screen and coscreen distribution on M. Then we have the following 2 orthogonal decompositions:

 $TM = RadTM \oplus_{orth} S(TM), TM^{\perp} = RadTM \oplus_{orth} S(TM^{\perp}),$

where the symbol \oplus_{orth} denotes the orthogonal direct sum.

^{*}Correspondence: bayram.sahin@inonu.edu.tr

²⁰¹⁰ AMS Mathematics Subject Classification: 53C42, 53C50.

We know from [2] that, for any smooth null section ξ of RadTM on a coordinate neighborhood $U \subset M$, there exists a uniquely defined null vector field $N \in \Gamma(ltrTM)$ satisfying

$$\bar{g}(N,\xi) = 1, \quad \bar{g}(N,N) = \bar{g}(N,X) = 0, \forall X \in \Gamma(S(TM)).$$

We call N, ltr(TM), and $tr(TM) = S(TM^{\perp}) \oplus_{orth} ltr(TM)$ the lightlike transversal vector field, lightlike transversal bundle, and transversal vector bundle of M with respect to the screen S(TM), respectively. Since RadTM is a 1-dimensional vector subbundle of TM^{\perp} we may consider a supplementary distribution D to RadTM such that it is locally represented by u.

We call D a screen transversal bundle of M. Thus, we say that the vector bundle tr(TM) is defined over M by

$$tr(TM) = D \oplus_{orth} Itr(TM)$$

Therefore:

$$T\overline{M} = S(TM) \perp (RadTM \oplus tr(TM))$$

= $S(TM) \perp D \perp (RadTM \oplus Itr(TM)).$ (2.1)

Denote by P the projection of TM on S(TM) with respect to the decomposition (2.1). Then we write

$$X = PX + \eta(X)\xi, \quad \forall X \in \Gamma(TM),$$

where η is a local differential 1-form on M defined by $\eta(X) = g(X, N)$. Suppose $\overline{\nabla}$ is the metric connection on \overline{M} . Since $\{\xi, N\}$ is locally a pair of lightlike sections on $U \subset M$, we define symmetric F(M)-bilinear forms D_1 and D_2 and 1-forms $\rho_1, \rho_2, \varepsilon_1$, and ε_2 on U. Using (2.1), we put

$$\overline{\nabla}_X Y = \nabla_X Y + D_1(X, Y) N + D_2(X, Y) u$$
(2.2)

$$\bar{\nabla}_X N = -A_N X + \rho_1 \left(X \right) N + \rho_2 \left(X \right) u \tag{2.3}$$

$$\bar{\nabla}_X u = -A_u X + \varepsilon_1 \left(X \right) N + \varepsilon_2 \left(X \right) u \tag{2.4}$$

for any $X, Y \in \Gamma(TM)$, where $\nabla_X Y$, $A_N X$, and $A_u X$ belong to $\Gamma(TM)$. We call D_1 and D_2 the lightlike second fundamental form and screen second fundamental form of M with respect to tr(TM), respectively. Both A_N and A_u are linear operators on $\Gamma(TM)$. The first one is $\Gamma(S(TM))$ -valued, called the shape operator of M. Since u is a unit vector field, (2.4) implies $\varepsilon_2(X) = 0$. In a similar way, since ξ and N are lightlike vector fields, from (2.2)–(2.4) we obtain

$$D_{1}(X,\xi) = 0, \ \bar{g}(A_{N}X,N) = 0, \ \bar{g}(A_{u}X,Y) = \epsilon D_{2}(X,Y) + \epsilon_{1}(X)\eta(Y),$$
(2.5)

$$\varepsilon_1(X) = -\epsilon D_2(X,\xi), \quad \forall X \in \Gamma(TM).$$
(2.6)

Next, consider the decomposition (2.1), and then we have

$$\nabla_X PY = \nabla_X^* PY + E_1(X, PY)\xi, \qquad (2.7)$$

$$\nabla_X \xi = -A_{\xi}^* X + u_1(X) \xi, \qquad (2.8)$$

where $\nabla_X^* PY$ and A_{ξ}^* belong to $\Gamma(S(TM))$. A_{ξ}^* is a linear operator on $\Gamma(TM)$ and ∇^* is a metric connection on S(TM). We call E_1 the local second fundamental form of S(TM) with respect to Rad(TM) and A_{ξ}^* the shape operator of the screen distribution. The geometric object from Gauss and Weingarten equations (2.2)–(2.4) on one side and (2.7) and (2.8) on the other side are related by

$$E_{1}(X, PY) = g(A_{N}X, PY), D_{1}(X, PY) = g(A_{\xi}^{*}X, PY), \qquad (2.9)$$
$$u_{1}(X) = -\rho_{1}(X), A_{\xi}^{*}\xi = 0,$$

for any $X, Y \in \Gamma(TM)$. A half-lightlike submanifold (M, g) of a semi-Riemannian manifold $(\overline{M}, \overline{g})$ is said to be totally umbilical in \overline{M} if there is a normal vector field $Z \in \Gamma(tr(TM))$ on M, called an affine normal curvature vector field of M, such that

$$h(X,Y) = D_1(X,Y)N + D_2(X,Y)u = \hat{Z}\bar{g}(X,Y), \quad \forall X,Y \in \Gamma(TM).$$

In particular, (M,g) is said to be totally geodesic if its second fundamental form h(X,Y) = 0 for any $X, Y \in \Gamma(TM)$. By direct calculation it is easy to see that M is totally geodesic if and only if both the lightlike and the screen second fundamental tensors D_1 and D_2 respectively vanish on M. Moreover, from (2.3), (2.5), (2.6), and (2.9) we obtain

$$A_{\xi} = A_u = \varepsilon_1 = \rho_2 = 0.$$

The notion of screen locally conformal half-lightlike submanifolds was introduced by Duggal and Sahin [3] as follows.

A half-lightlike submanifold M, of a semi-Riemannian manifold, is called screen locally conformal if on any coordinate neighborhood U there exists a nonzero smooth function φ such that for any null vector field $\xi \in \Gamma(TM^{\perp})$ the relation

$$A_N X = \varphi A_{\xi}^* X, \quad \forall X \in \Gamma \left(T M_{|U} \right)$$
(2.10)

holds between the shape operators A_N and A_{ε}^* of M and S(TM), respectively [3].

On the other hand, the notion of minimal half-lightlike submanifolds has been defined by Bejancu and Duggal as follows.

Definition 2.1 Let M be a half-lightlike submanifold of a semi-Riemannian manifold \overline{M} . We then say that M is a minimal half-lightlike submanifold if $(tr \mid_{S(TM)} h = 0)$ and $\varepsilon_1(X) = 0$ [3].

Definition 2.2 A half-lightlike submanifold M is said to be irrotational if $\overline{\nabla}_X \xi \in \Gamma(TM)$ for any $X \in \Gamma(TM)$, where $\xi \in \Gamma(RadTM)$ [3].

For a half-lightlike M, since $D_1(X,\xi) = 0$, the above definition is equivalent to $D_2(X,\xi) = 0 = \varepsilon_1(X)$, $\forall X \in \Gamma(TM)$.

3. Planar normal sections of half-lightlike hypersurfaces in R_2^4

In this section we consider half-lightlike submanifolds having planar normal section. First, we consider degenerate planar normal sections.

3.1. Degenerate planar normal sections in half-lightlike submanifolds

Let M be a half-lightlike submanifold in R_2^4 . Now we investigate the conditions for a half-lightlike submanifold of R_2^4 to have degenerate planar normal sections.

Theorem 3.1 Let M be a half-lightlike submanifold in \mathbb{R}_2^4 . Then M has degenerate planar normal sections if and only if

$$D_2(\xi,\xi) \, u \wedge \bar{\nabla}_{\xi} D_2(\xi,\xi) \, u = 0, \tag{3.1.1}$$

where D_2 is the screen second fundamental form of M.

Proof If γ is a null curve, for a point p in M, we have

$$\gamma'(s) = \xi, \tag{3.1.2}$$

$$\gamma''(s) = \nabla_{\xi}\xi + D_2(\xi,\xi) u, \qquad (3.1.3)$$

$$\gamma^{\prime\prime\prime}(s) = \nabla_{\xi} \nabla_{\xi} \xi + D_2 \left(\nabla_{\xi} \xi, \xi \right) u \tag{3.1.4}$$

$$+\xi \left(D_{2}\left(\xi,\xi\right)\right)u+D_{2}\left(\xi,\xi\right)\left(-A_{u}\xi+\varepsilon_{1}\left(\xi\right)N\right).$$

From the definition of planar normal section and using $Rad(TM) = Sp\{\xi\}$, we get

$$\nabla_{\xi}\xi \wedge \xi = 0 \text{ and } \nabla_{\xi}\nabla_{\xi}\xi \wedge \xi = 0. \tag{3.1.5}$$

Assume that M has planar degenerate normal sections. Then

$$\gamma^{\prime\prime\prime}(s) \wedge \gamma^{\prime\prime}(s) \wedge \gamma^{\prime}(s) = 0. \tag{3.1.6}$$

Thus, by using (3.1.2)–(3.1.5) in (3.1.6) one can see that $D_2(\xi,\xi) u$ and $D_2(\nabla_{\xi}\xi,\xi) u + \xi (D_2(\xi,\xi)) u - D_2(\xi,\xi) A_u\xi + D_2(\xi,\xi) \varepsilon_1(\xi) N$ are linearly dependent. Taking the derivative of $D_2(\xi,\xi) u$, we obtain

$$\bar{\nabla}_{\xi} D_2\left(\xi,\xi\right) u = \xi \left(D_2\left(\xi,\xi\right)\right) u - D_2\left(\xi,\xi\right) A_u \xi + D_2\left(\xi,\xi\right) \varepsilon_1\left(\xi\right) N,$$

where γ is assumed to be parameterized by a distinguished parameter. Hence, we get

$$D_2(\xi,\xi) \, u \wedge \overline{\nabla}_{\xi} D_2(\xi,\xi) \, u = 0.$$

Conversely, assume that $D_2(\xi,\xi) u \wedge \overline{\nabla}_{\xi} D_2(\xi,\xi) u = 0$ for the degenerate tangent vector ξ of M at p. In this case, either $D_2(\xi,\xi) u = 0$ or $\overline{\nabla}_{\xi} D_2(\xi,\xi) u = 0$. If $D_2(\xi,\xi) u = 0$, then M is totally geodesic in \overline{M} and M is totally umbilical. Thus, we obtain

$$\gamma'(s) = \xi , \qquad (3.1.7)$$

$$\gamma''(s) = u_1(\xi)\xi, \tag{3.1.8}$$

$$\gamma^{\prime\prime\prime}(s) = \xi(u_1(\xi))\xi + u_1^2(\xi)\xi.$$
(3.1.9)

which give that M has degenerate planar normal sections. On the other hand, if $\bar{\nabla}_{\xi} D_2(\xi,\xi) u = 0$, then M is screen conformal. Hence, we have

$$\gamma^{\prime\prime\prime}(s) \wedge \gamma^{\prime\prime}(s) \wedge \gamma^{\prime}(s) = \xi \wedge (\nabla_{\xi}\xi + D_2(\xi,\xi)u) \wedge (\nabla_{\xi}\nabla_{\xi}\xi + D_2(\xi,\nabla_{\xi}\xi)u + \bar{\nabla}_{\xi}D_2(\xi,\xi)u) = 0.$$

Hence, we complete the proof.

Now we define a function

$$\begin{array}{rcl} L_p: RadT_pM & \to & R, \\ & \xi & \to & L_p\left(\xi\right) = D_2^2\left(\xi,\xi\right)\epsilon \end{array}$$

where $p \in M$ and $\gamma(0) = p$. If $L_p(\xi) = D_2^2(\xi,\xi) \epsilon = 0$, then we obtain $D_2(\xi,\xi) = 0$ and $\varepsilon_1(\xi) = 0$. From (3.1.7), (3.1.8), and (3.1.9) we find $\gamma'''(s) \wedge \gamma''(s) = 0$. Hence, M has degenerate planar normal sections.

We say that the curve γ has a vertex at the point p if the curvature κ of γ satisfies $\frac{d\kappa^2(p)}{ds} = 0$ and $\kappa^2 = \langle \gamma''(s), \gamma''(s) \rangle$. Now let M have degenerate planar normal sections. Then $L_p = 0$, and so $D_2(\xi, \xi) = 0$. Hence, we get

$$h(\xi,\xi) = D_2(\xi,\xi) u = 0, (\nabla_{\xi}h)(\xi,\xi) = 0,$$

which gives $\overline{\nabla}h = 0$. Moreover, we have

$$\epsilon \kappa^{2}(s) = \langle \gamma''(s), \gamma''(s) \rangle = 0$$

for any $p \in M$.

Consequently, we have the following result.

Corollary 3.2 Let M be a half-lightlike submanifold in R_2^4 with degenerate planar normal sections such that

$$\begin{array}{rcl} L_p: RadT_pM & \to & R, \\ & \xi & \to & L_p\left(\xi\right) = D_2^2\left(\xi,\xi\right)\epsilon, \end{array}$$

where $p \in M$. Then the following statements are equivalent:

- 1. $D_2(\xi,\xi) = 0$,
- 2. $\left(\bar{\nabla}_{\xi}h\right)(\xi,\xi) = 0,$
- 3. $\overline{\nabla}h = 0$,
- 4. For any $p \in M$, $\kappa = 0$.

Now, let us assume that a half-lightlike submanifold M of R_2^4 has degenerate planar normal sections. Then for null vector $\xi \in RadTM$, we have

$$\nabla_{\xi}\xi \neq 0, \tag{3.1.10}$$

where $\xi = \gamma'(s)$, namely, the normal section γ is not a geodesic arc on a sufficiently small neighborhood of p. Then from (3.1.2)–(3.1.4) we write

$$\gamma^{\prime\prime\prime}(s) = a(s)\gamma^{\prime\prime}(s) + b(s)\gamma^{\prime}(s),$$

where, a and b are differentiable functions for all $p \in M$. Hence, we get $D_2(\xi, \xi) = \varepsilon_1(\xi) = 0$.

Consequently, we have the following:

Corollary 3.3 Let a half-lightlike submanifold M in R_2^4 have degenerate planar normal sections. If the normal section γ for any p is not a geodesic arc on a sufficiently small neighborhood of p, then $D_2 = 0$ at RadTM.

Next, assume that γ is parameterized by a distinguished parameter, namely, γ is a geodesic arc on a small neighborhood of $p = \gamma(0)$, i.e. $\nabla_{\xi} \xi = 0$. Since $u_1(\xi) = \rho_1(\xi) = 0$, we obtain

$$\gamma'(0) = \xi,$$

 $\gamma''(0) = D_2(\xi,\xi)u,$
(3.1.11)

$$\gamma'''(0) = \bar{\nabla}_{\xi} D_2(\xi,\xi) u = \xi \left(D_2(\xi,\xi) \right) u - D_2(\xi,\xi) A_u \xi - \epsilon D_2^2(\xi,\xi) N.$$
(3.1.12)

Now, let us suppose that M has degenerate planar normal sections at $\gamma(0) = p$. Therefore, from $\gamma'''(s) \wedge \gamma''(s) = 0$, we have $\xi \wedge h(\xi, \xi) \wedge \overline{\nabla}_{\xi} h(\xi, \xi) = 0$. From (3.1.11) and (3.1.12), ξ , $h(\xi, \xi)$, and $\overline{\nabla}_{\xi} h(\xi, \xi)$ are not linearly dependent. In this case, either $h(\xi, \xi) = 0$ or $\overline{\nabla}_{\xi} h(\xi, \xi) = 0$. If $\overline{\nabla}_{\xi} h(\xi, \xi) = 0$, then we calculate

$$\langle h(\xi,\xi), h(\xi,w) \rangle = - \langle \bar{\nabla}_{\xi} h(\xi,\xi), w \rangle$$

= 0 (3.1.13)

and

$$\langle h(\xi,\xi), h(\xi,w) \rangle = \langle h(\xi,\xi), \overline{\nabla}_w \xi \rangle - \langle h(\xi,\xi), \nabla_w \xi \rangle$$

= $\epsilon D_2(\xi,\xi) D_2(w,\xi).$ (3.1.14)

From the symmetry of bilinear forms D_1 and D_2 at $\Gamma(TM)$, hence from (3.1.13) and (3.1.14), we get $D_2 = 0$ at $\Gamma(TM)$. Furthermore, from $\overline{\nabla}_w \xi \in \Gamma(TM)$, $(\xi \in RadTM, \text{ and } w \in \Gamma(TM))$, we see that M is irrotational. Then we have the following result.

Corollary 3.4 Let M be a half-lightlike submanifold of R_2^4 with degenerate planar normal sections. If the normal section γ for any p is a geodesic arc on a sufficiently small neighborhood of p, then M is irrotational.

Let M be a half-lightlike submanifold in R_2^4 with degenerate planar normal sections. Since γ is a planar curve, we write

$$\gamma^{\prime\prime\prime}(s) = a(s)\gamma^{\prime\prime}(s) + b(s)\gamma^{\prime}(s),$$

where a and b are differentiable functions for all $p \in M$. Then (3.1.8) gives

$$a(s) = u_1(\xi) + \xi \left(\ln \left(D_2(\xi, \xi) \right) \right),$$

$$b(s) = \xi \left(u_1(\xi) \right) - D_2(\xi, \xi) \rho_2(\xi) \epsilon - u_1(\xi) \xi \left(\ln \left(D_2(\xi, \xi) \right) \right).$$

Moreover, we have $\epsilon \kappa^2(s) = \langle \gamma''(s), \gamma''(s) \rangle = 0$ for any $p \in M$, which gives $D_2(\xi, \xi) = \varepsilon_1(\xi) = 0$. Thus, we obtain

$$\gamma^{\prime\prime\prime\prime}(s) = u_1^2(\xi)\,\xi + u_1(\xi)\,D_2(\xi,\xi)u +\xi\,(\ln\,(D_2\,(\xi,\xi)))\,D_2\,(\xi,\xi)\,u +\xi\,(u_1\,(\xi))\,\xi - \epsilon D_2(\xi,\xi)\rho_2\,(\xi)\,\xi$$
(3.1.15)

and

$$A_u \xi = \epsilon \rho_2\left(\xi\right) \xi. \tag{3.1.16}$$

Namely:

Corollary 3.5 Let M be a half-lightlike submanifold of R_2^4 with degenerate planar normal sections, then $A_u\xi$ is RadTM-valued.

Now, from (3.1.15) and (3.1.16), we obtain

$$(\nabla_{\xi} h) (\xi, \xi) = \xi (\ln (D_2(\xi, \xi))) D_2(\xi, \xi) u -\epsilon D_2(\xi, \xi) \rho_2(\xi) \xi - 2u_1(\xi) D_2(\xi, \xi) u.$$
 (3.1.17)

Let M be a half-lightlike submanifold of R_2^4 with degenerate planar normal sections. If the normal section γ for any p is not a geodesic arc on a sufficiently small neighborhood of p, then we obtain

$$D_2(\xi,\xi)u \wedge \left(\bar{\nabla}_{\xi}h\right)(\xi,\xi) = 0. \tag{3.1.18}$$

Conversely, we assume that (3.1.18) is satisfied for any degenerate tangent vector ξ of M. Then either $D_2(\xi,\xi)u = 0$ or $(\bar{\nabla}_{\xi}h)(\xi,\xi) = 0$. If $D_2(\xi,\xi)u = 0$, then from Theorem 3.1, we see that M has degenerate planar normal sections. On the other hand, if $(\bar{\nabla}_{\xi}h)(\xi,\xi) = 0$, then, by considering (3.1.5), we obtain

$$\gamma^{\prime\prime\prime}(s) \wedge \gamma^{\prime\prime}(s) \wedge \gamma^{\prime}(s) = \xi \wedge D_2(\xi,\xi)u \wedge \left(\bar{\nabla}_{\xi}h\right)(\xi,\xi) = 0.$$

Consequently, we have the following:

Corollary 3.6 Let M be half-lightlike submanifold of R_2^4 such that the normal section $\gamma(s)$ for any p is not a geodesic arc on a sufficiently small neighborhood of p. Then half-lightlike submanifold M has planar normal sections if and only if (3.1.18) is satisfied.

Now, let the normal section γ be a geodesic arc on a sufficiently small neighborhood of p, namely, $\nabla_{\xi}\xi = 0 = u_1(\xi)$. Since M has degenerate planar normal sections, we obtain

$$\gamma^{\prime\prime\prime}(s) \wedge \gamma^{\prime\prime}(s) \wedge \gamma^{\prime}(s) = (\xi \wedge D_2(\xi,\xi)u \wedge D_2(\xi,\xi)A_u\xi) + (\xi \wedge D_2(\xi,\xi)u \wedge D_2(\xi,\xi)\varepsilon_1(\xi)N).$$

From Corollary 3.5, we have $D_2(\xi,\xi) = 0$ and $\varepsilon_1(\xi) = 0$. Thus, we have the following result:

Corollary 3.7 Let M be a half-lightlike submanifold with degenerate planar normal section of R_2^4 . The normal section γ for any p is a geodesic arc on a sufficiently small neighborhood of p. Then $D_2(\xi, \xi) = 0$ or $\varepsilon_1(\xi) = 0$.

Let M be a screen conformal half-lightlike submanifold of $R_2^4(c)$ with degenerate planar normal sections. We denote the Riemann curvature tensors of \overline{M} and M by \overline{R} and R, and hence we have

$$\bar{g}\left(\bar{R}(X,Y)Z,PW\right) = \varphi\left[D_1(X,Z)D_1(Y,PW) - D_1(Y,Z)D_1(X,PW)\right] \\ +\epsilon\left[D_2(X,Z)D_2(Y,PW) - D_2(Y,Z)D_2(X,PW)\right].$$
(3.1.19)

Let $p \in M$ and ξ be a null vector of T_pM . A plane H of T_pM is called a null plane directed by ξ if it contains ξ , $\bar{g}(\xi, W) = 0$ for any $W \in H$ and there exists $W_0 \in H$ such that $\bar{g}(W_0, W_0) \neq 0$. Then the null sectional curvature of H with respect to ξ and $\bar{\nabla}$ is defined by

$$K_{\xi}(H) = \frac{R_p(W,\xi,\xi,W)}{g_p(W,W)}.$$
(3.1.20)

Since $v \in \Gamma(S(TM))$ and $\xi \in \Gamma(RadTM)$, we have

$$K_{\xi}(H) = \varphi [D_{1}(v,\xi)D_{1}(\xi,v) - D_{1}(\xi,\xi)D_{1}(v,v)] + \epsilon [D_{2}(v,\xi)D_{2}(\xi,v) - D_{2}(\xi,\xi)D_{2}(v,v)].$$

By using $D_1(v,\xi) = 0$ in the last equation, we obtain

$$K_{\xi}(H) = \epsilon \left[D_2(v,\xi) D_2(\xi,v) - D_2(\xi,\xi) D_2(v,v) \right].$$
(3.1.21)

Consequently, we have the following:

Corollary 3.8 Let M be a screen conformal half-lightlike submanifold of $R_2^4(c)$ with degenerate planar normal sections. If M is minimal, then $K_{\xi}(H) = 0$.

Example 3.9 Consider a surface M in R_2^4 given by the equation

$$x^{3} = \frac{1}{\sqrt{2}} (x^{1} + x^{2}); \quad x^{4} = \frac{1}{2} \log \left(1 + (x^{1} - x^{2})^{2}\right).$$

It is easy to see that M is a totally umbilical half-lightlike submanifold of R_2^4 . Then by straightforward calculations we obtain

$$D_2\left(\xi,\xi\right) = 0$$

Therefore, the intersection of M and $E(p,\xi)$ gives a lightlike curve γ in a neighborhood of p, which is called the normal section of M at point p in the direction of ξ , namely

$$\gamma'(s) = \xi,$$

$$\gamma''(s) = \overline{\nabla}_{\xi}\xi = 0.$$

Hence, we obtain

$$\gamma^{\prime\prime\prime}(s) \wedge \gamma^{\prime\prime}(s) \wedge \gamma^{\prime}(s) = 0.$$

3.2. Nondegenerate planar normal sections in half-lightlike submanifolds

In this subsection we investigate the conditions for a screen conformal half-lightlike submanifold M of R_2^4 to have nondegenerate planar normal sections.

Theorem 3.10 Let M be a screen conformal half-lightlike submanifold in R_2^4 . M has spacelike planar normal sections if and only if

$$T(v,v) \wedge \bar{\nabla}_v T(v,v) = 0, \qquad (3.2.1)$$

where $v \in \Gamma(S(TM))$ and $T(v, v) = E_1(v, v)\xi + D_1(v, v)N + D_2(v, v)u$.

Proof Let M be a screen conformal half-lightlike submanifold and γ a spacelike curve on M. Then we have

$$\gamma'(s) = v , \qquad (3.2.2)$$

$$\gamma''(s) = \bar{\nabla}_{v}v = \nabla_{v}^{*}v + E_{1}(v,v)\xi + D_{1}(v,v)N + D_{2}(v,v)u, \qquad (3.2.3)$$

$$\gamma^{\prime\prime\prime\prime}(s) = \nabla_{v}^{*} \nabla_{v}^{*} v + E_{1}(v, \nabla_{v}^{*} v) \xi + D_{1}(v, \nabla_{v}^{*} v) N + D_{2}(v, \nabla_{v}^{*} v) u + v (E_{1}(v, v)) \xi + v (D_{1}(v, v)) N + v (D_{2}(v, v)) u -E_{1}(v, v) A_{\xi}^{*} v + E_{1}(v, v) u_{1}(v) \xi + E_{1}(v, v) D_{2}(v, \xi) u -D_{1}(v, v) A_{N} v + D_{1}(v, v) \rho_{1}(v) N + D_{1}(v, v) \rho_{2}(v) u -D_{2}(v, v) A_{u} v + D_{2}(v, v) \varepsilon_{1}(v) N,$$
(3.2.4)

where ∇^* is the induced connection of M' and $\gamma'(s) = v$, $\gamma'(0) = v$. From the definition of a planar normal section and $S(TM) = Sp\{v\}$ we have

$$v \wedge \nabla_v^* v = 0 \text{ and } v \wedge \nabla_v^* \nabla_v^* v = 0.$$
 (3.2.5)

Assume that M has planar nondegenerate normal sections. Then we have

$$\gamma^{\prime\prime\prime}(s) \wedge \gamma^{\prime\prime}(s) \wedge \gamma^{\prime}(s) = 0.$$

Thus, from (3.2.5),

$$T(v,v) = E_1(v,v)\xi + D_1(v,v)N + D_2(v,v)u$$

and

$$\begin{split} \bar{\nabla}_{v} T\left(v,v\right) &= E_{1}\left(v,\nabla_{v}^{*}v\right)\xi + D_{1}\left(v,\nabla_{v}^{*}v\right)N + D_{2}\left(v,\nabla_{v}^{*}v\right)u \\ &+ v\left(E_{1}\left(v,v\right)\right)\xi + v\left(D_{1}\left(v,v\right)\right)N + v\left(D_{2}\left(v,v\right)\right)u \\ &- E_{1}\left(v,v\right)A_{\xi}^{*}v + E_{1}\left(v,v\right)u_{1}\left(v\right)\xi + E_{1}\left(v,v\right)D_{2}\left(v,\xi\right)u \\ &- D_{1}\left(v,v\right)A_{N}v + D_{1}\left(v,v\right)\rho_{1}\left(v\right)N + D_{1}\left(v,v\right)\rho_{2}\left(v\right)u \\ &- D_{2}\left(v,v\right)A_{u}v + D_{2}\left(v,v\right)\varepsilon_{1}\left(v\right)N \end{split}$$

are linearly dependent, where γ is assumed to be parameterized by arc length. Thus, we obtain

$$T(v,v) \wedge \bar{\nabla}_v T(v,v) = 0.$$

Conversely, we assume that $T(v,v) \wedge \overline{\nabla}_v T(v,v) = 0$ for a spacelike tangent vector v of M at p. Then either T(v,v) = 0 or $\overline{\nabla}_v T(v,v) = 0$. If T(v,v) = 0, then from (3.2.2), (3.2.3), (3.2.4), and (3.2.5), M has degenerate planar normal sections. If $\overline{\nabla}_v T(v,v) = 0$, from (3.2.5), we obtain

$$\gamma^{\prime\prime\prime}(s) \wedge \gamma^{\prime\prime}(s) \wedge \gamma^{\prime}(s) = v \wedge T(v,v) \wedge \bar{\nabla}_{v}T(v,v) = 0.$$

Example 3.11 Let M be a half-lightlike submanifold of the 4-dimensional semi-Riemann space (R_2^4, \overline{g}) of index 2, as given in Example 3.9. Now, for a point p in M and a spacelike vector U_2 tangent to M at p $(U_2 \in S(TM))$, the vector U_2 and transversal space tr(TM) to M at p determine a 2-dimensional subspace $E(p, U_2)$ in R_2^4 through p. The intersection of M and $E(p, U_2)$ gives a spacelike curve γ in a neighborhood of p. Now we research half-lightlike submanifolds of the R_2^4 semi-Riemannian manifold to have the condition of nondegenerate planar normal sections. Hence, we obtain

$$U_{1} = \sqrt{2} \left(1 + (x^{1} - x^{2})^{2} \right) \partial_{1} + \left(1 + (x^{1} - x^{2})^{2} \right) \partial_{3} + \sqrt{2} (x^{1} - x^{2}) \partial_{4},$$

$$U_{2} = \sqrt{2} \left(1 + (x^{1} - x^{2})^{2} \right) \partial_{1} + \left(1 + (x^{1} - x^{2})^{2} \right) \partial_{3} - \sqrt{2} (x^{1} - x^{2}) \partial_{4},$$

$$\xi = \partial_{1} + \partial_{2} + \sqrt{2} \partial_{3},$$

$$u = 2 (x^{2} - x^{1}) \partial_{2} + \sqrt{2} (x^{2} - x^{1}) \partial_{3} + (1 + (x^{1} - x^{2})) \partial_{4}.$$

$$N = -\frac{1}{2} \partial_{1} + \frac{1}{2} \partial_{2} + \frac{1}{\sqrt{2}} \partial_{3}$$

and

$$\gamma' = U_2 = \sqrt{2} \left(1 + (x^1 - x^2)^2 \right) \partial_1 + \left(1 + (x^1 - x^2)^2 \right) \partial_3 - \sqrt{2} (x^1 - x^2) \partial_4,$$

$$\gamma'' = 2 \left(1 + (x^1 - x^2)^2 \right) \cdot \left\{ 2 (x^2 - x^1) \partial_2 + \sqrt{2} (x^2 - x^1) \partial_3 + \partial_4 \right\},$$

$$\gamma''' = \sqrt{2} \left(1 + (x^1 - x^2)^2 \right) \left[\begin{array}{c} 4 \left(1 + 3 \left((x^1 - x^2)^2 \right) \right) \partial_2 \\ + 2\sqrt{2} \left(1 + 3 \left((x^1 - x^2)^2 \right) \right) \partial_3 - 4 (x^1 - x^2) \partial_4 \end{array} \right] \\ + \frac{4\sqrt{2} (x^2 - x^1)^3}{\left(1 + (x^1 - x^2)^2 \right)} \left(1 + (x^1 - x^2)^2 \right) \left[\begin{array}{c} 2 (x^2 - x^1) \partial_2 \\ + \sqrt{2} (x^2 - x^1) \partial_3 + (1 + x^1 - x^2) \partial_4 \end{array} \right].$$

Then, by direct calculations we find

$$E_1(U_2, U_2) = 0, (3.2.6)$$

$$E_1\left(U_2, \nabla^*_{U_2} U_2\right) = 0. (3.2.7)$$

Thus, from (3.2.6) and (3.2.7), $T(U_2, U_2)$ and $\overline{\nabla}_{U_2} T(U_2, U_2)$ are linearly dependent. Hence we have $\gamma'''(s) \wedge \gamma''(s) = 0$.

Proposition 3.12 Let M be a half-lightlike submanifold in \mathbb{R}_2^4 . If M has planar normal sections, then

$$\nabla_v^* v = 0, \tag{3.2.8}$$

where γ is a normal section in the direction $v = \gamma'(s)$ for $v \in \Gamma(S(TM))$.

Proof From $v \in S(TM)$ we have

$$\langle v, v \rangle = 1 \Rightarrow \langle v, \nabla_v^* v \rangle = 0.$$
 (3.2.9)

Using the definition of a normal section and (3.2.9), we complete the proof.

Now we define a function L by

$$L(p,v) = L_p(v) = \langle T(v,v), T(v,v) \rangle$$

on $\bigcup_p M$, where $\bigcup_p M = \left\{ v \in \Gamma(TM) \mid \langle v, v \rangle^{\frac{1}{2}} = 1 \right\}$. If $L \neq 0$, then M has nondegenerate pointwise normal sections. By a vertex of curve γ we mean a point p on γ such that its curvature κ satisfies $\frac{d\kappa^2(0)}{ds} = 0$. Let M have planar normal sections. From Proposition 3.12 we obtain

$$\epsilon \kappa^{2}(s) = 2E_{1}(v,v) D_{1}(v,v) + D_{2}^{2}(v,v) \epsilon,$$

$$\frac{1}{2} \frac{d\kappa^{2}(0)}{ds} = v(E_{1}(v,v) D_{1}(v,v)) + v(D_{2}(v,v)) D_{2}(v,v) \epsilon.$$

If M is totally geodesic, then $D_1 = D_2 = 0$. Thus γ has a vertex. Consequently, we have the following:

Corollary 3.13 Let M be a half-lightlike submanifold of R_2^4 . If M has nondegenerate planar normal sections the submanifold is totally geodesic screen conformal at $p \in M$, if and only if normal section curve γ has a vertex at $p \in M$.

Corollary 3.14 Let M be a half-lightlike submanifold of R_2^4 . with planar normal sections. Then normal section curve γ has a vertex and the submanifold is totally geodesic if and only if M is minimal.

Proof If *M* is totally geodesic, then from $(tr \mid_{S(TM)} h = 0)$ and $\varepsilon_1(\xi) = 0$, we conclude. From Corollary 8 and Corollary 9, we give:

Corollary 3.15 Let M be a half-lightlike submanifold in $R_2^4(c)$ with planar normal sections. Then $K_{\xi}(H) = 0$ if and only if normal section curve γ has a vertex at $p \in M$ where $\xi \in \Gamma(RadTM)$.

Corollary 3.16 Let M be a half-lightlike submanifold of R_2^4 and the normal section γ at for any p be a geodesic arc on a sufficiently small neighborhood of p. Then M has nondegenerate planar normal sections if and only if

$$h(v,v) \wedge (\nabla_v h)(v,v) = 0,$$

where is $h(v, v) = D_1(v, v) N + D_2(v, v) u$.

Proof If normal section γ at for any p is a geodesic arc on a sufficiently small neighborhood of p, we have

$$\gamma'(s) = v$$

$$\gamma''(s) = D_1(v, v) N + D_2(v, v) u$$

$$\gamma'''(s) = v(D_1(v, v))N + v(D_2(v, v))u$$

$$-D_1(v, v) A_N v + D_1(v, v) \rho_1(v) N$$

$$+D_1(v, v) \rho_2(v) u - D_2(v, v) A_u v$$

$$+D_2(v, v) \varepsilon_1(v) N.$$

Therefore, by taking the covariant derivative of

$$h(v, v) = D_1(v, v) N + D_2(v, v) u,$$

we obtain

$$\left(\nabla_{v}h\right)\left(v,v\right) = \nabla_{v}h\left(v,v\right) = \gamma^{\prime\prime\prime}\left(s\right),$$

which gives

$$\gamma^{\prime\prime\prime}(s) \wedge \gamma^{\prime\prime}(s) \wedge \gamma^{\prime}(s) = v \wedge h(v,v) \wedge (\bar{\nabla}_{v}h)(v,v) = 0.$$

From the last equation above, we have

$$h(v,v) \wedge (\bar{\nabla}_v h)(v,v) = 0.$$

Conversely, we assume that $h(v,v) \wedge (\bar{\nabla}_v h)(v,v) = 0$. In this case, we have either h(v,v) = 0 or $(\bar{\nabla}_v h)(v,v) = 0$. If h(v,v) = 0, we have $D_1(v,v) = 0$ and $D_2(v,v) = 0$. In this way, we get

$$\varepsilon_1\left(\xi\right) = 0,$$

which shows that M is minimal and has planar normal sections. On the other hand, if $(\bar{\nabla}_v h)(v, v) = 0$, from $(\bar{\nabla}_v h)(v, v) = \bar{\nabla}_v h(v, v) = \gamma'''(s) = 0$, we obtain

$$\gamma^{\prime\prime\prime}(s) \wedge \gamma^{\prime\prime}(s) \wedge \gamma^{\prime}(s) = 0;$$

that is, M has nondegenerate planar normal sections.

We also have the following result:

Corollary 3.17 Let M be a half-lightlike submanifold in R_2^4 and the normal section γ for any p be a geodesic arc on a sufficiently small neighborhood of p. Then the following statements are equivalent:

- 1. $(\overline{\nabla}_v h)(v,v) = 0,$
- $2. \ \bar{\nabla}h=0,$
- 3. M has nondegenerate planar normal sections of $p \in M$ and γ has a vertex point at $p \in M$,
- 4. $D_2 = 0$ in S(TM).

Proof For curvature κ at p point of γ , we have

$$\epsilon \kappa^{2}(s) = D_{2}^{2}(v,v) \epsilon,$$

$$\frac{1}{2} \epsilon \frac{d\kappa^{2}(s)}{ds} = v \left(D_{2}(v,v) \right) D_{2}(v,v) \epsilon,$$
(3.2.10)

and from $\epsilon \kappa^{2}(s) = \langle \gamma''(s), \gamma''(s) \rangle$,

$$\frac{1}{2}\epsilon \frac{d\kappa^2(s)}{ds} = \langle (\bar{\nabla}_v h) (v, v), h (v, v) \rangle$$

= 0. (3.2.11)

Hence, from (3.2.10) and (3.2.11), we obtain $D_2(v, v) = 0$. From here, we complete the proof.

Example 3.18 Consider a surface M in R_1^4 given by the equation

$$x_1 = x_3, x_2 = (1 - x_4)^{\frac{1}{2}}.$$

Then we obtain:

$$TM = Sp \{\xi = \partial x_1 + \partial x_3, v = -x_4 \partial x_2 + x_2 \partial x_4\},$$

$$TM^{\perp} = Sp \{\xi = \partial x_1 + \partial x_3, u = x_2 \partial x_2 + x_4 \partial x_2\}.$$

Therefore, we have $RadTM = Sp\{\xi\}$, $S(TM) = Sp\{v\}$, $S(TM^{\perp}) = Sp\{u\}$, and $ltr(TM) = Sp\{N = \frac{1}{2}(\partial x_1 + \partial x_3)\}$, which show that M is a half-lightlike submanifold of R_1^4 . Then using the Gauss and Weingarten formulas and on account of $\nabla_v \xi = 0$, we have

$$\bar{g}\left(A_{\xi}^{*}v,v\right)=0 \Rightarrow A_{\xi}^{*}v=0.$$

Moreover, from (2.3) and by straightforward calculations we obtain

$$A_N v = 0$$

or $A_N v \in RadTM$. Using (2.2), we have

$$D_1(v,v) = \bar{g}\left(A_{\xi}^*v,v\right) = 0,$$

and since $D_1(v,\xi) = 0$, we have $D_1 = 0$. Using (2.2), we obtain

$$D_2(v,v)\,\epsilon = \bar{g}\left(v, A_u v\right).$$

Since

$$\bar{g}(\bar{\nabla}_v \bar{\nabla}_v v, N) = \bar{g}\left(A_u v, N\right) = 0,$$

 $A_u v \in S(TM)$ and by straightforward calculations we obtain

$$\begin{split} \bar{g}\left(\bar{\nabla}_v\bar{\nabla}_vv,u\right) &= 2x_2x_4\\ \bar{g}\left(\bar{\nabla}_v\bar{\nabla}_vv,\xi\right) &= -\varepsilon_1\left(u\right) = 0\\ \rho_1\left(v\right) &= -\bar{g}\left(A_Nv,\xi\right) = 0, \rho_2\left(v\right) = -\epsilon\bar{g}\left(A_Nv,u\right) = 0\\ \varepsilon_1\left(u\right) &= 0 \Rightarrow D_2\left(v,\xi\right) = 0, \epsilon D_2\left(v,v\right) = -1. \end{split}$$

Thus, M is a screen conformal totally umbilical half-lightlike submanifold. Let $v \in S(TM)$ and $p \in M$. We denote subspace

$$E\left(p,v\right) = \left\{v\right\} \cup tr\left(TM\right)$$

and we have

$$E\left(p,v\right)\cap M=\gamma,$$

where γ is the normal section of M at p in the direction of v. Then we have

$$\gamma'(s) = v = -x_4 \partial x_2 + x_2 \partial x_4$$

$$\gamma''(s) = \bar{\nabla}_v v = -2x_2 \partial x_2 - 2x_4 \partial x_4$$

$$\gamma'''(s) = \bar{\nabla}_v \bar{\nabla}_v v = 2x_4 \partial x_2 - 2x_2 \partial x_4.$$

Hence,

$$\gamma^{\prime\prime\prime}\left(s\right)\wedge\gamma^{\prime\prime}\left(s\right)\wedge\gamma^{\prime}\left(s\right)=0;$$

that is, M has nondegenerate planar normal sections.

References

- [1] Chen, B.Y.: Classification of surfaces with planar normal sections. J. Geom. 20, 122–127 (1983).
- [2] Duggal, K.L., Bejancu A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Dordrecht. Kluwer Academic Publishers 1996.
- [3] Duggal, K.L., Sahin B.: Differential Geometry of Lightlike Submanifolds. Birkhauser. Springer 2010.
- [4] Kim, Y.H.: Surfaces in a pseudo-Euclidean Space with planar normal sections. J. Geom. 35, 120–131 (1989).
- [5] Kim, Y.H.: Minimal surfaces of pseudo-Euclidean spaces with geodesic normal sections. Differential Geom. Appl. 5, 321–329 (1995).
- [6] Kim, Y.H.: Pseudo-Riemannian submanifolds with pointwise planar normal sections. Math. J. Okayama Univ. 34, 249–257 (1992).
- [7] Li, S.J.: Submanifolds with pointwise planar normal sections in a sphere. J. Geom. 70, 101–107 (2001).