Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2014) 38: 764-777
(c) TÜBİTAK
doi:10.3906/mat-1209-27

Half-lightlike submanifolds with planar normal sections in R_{2}^{4}

Feyza Esra ERDOĞAN ${ }^{1}$, Rıfat GÜNEŞㄹ ${ }^{2}$, Bayram ŞAHİN ${ }^{2, *}$
${ }^{1}$ Adıyaman University, Faculty of Education, Department of Mathematics, Adıyaman, Turkey
${ }^{2}$ İnönü University, Faculty of Science and Art, Department of Mathematics, Malatya, Turkey

Received: 14.09.2012 • Accepted: 11.05.2013 • \quad Published Online: 25.04.2014 \quad Printed: 23.05 .2014

Abstract

We investigate half-lightlike submanifolds with planar normal sections of 4-dimensional pseudo-Euclidean space. We obtain necessary and sufficient conditions for a half-lightlike submanifold of R_{2}^{4} such that it has degenerate or nondegenerate planar normal sections.

Key words: Half-lightlike submanifold, planar normal sections

1. Introduction

Surfaces with planar normal sections in Euclidean spaces were first studied by Chen [1]. In [6], Y.H. Kim studied Surfaces with planar normal sections in semi-Riemann setting. As far as we know, however, this topic has not been studied in lightlike geometry. Therefore, as a first step, in this paper we study half-lightlike submanifolds with planar normal sections in R_{2}^{4}.

Let M be a hypersurface in R_{2}^{4}. For a point p in M and a lightlike vector ξ tangent to M at p that spans radical distribution, the vector ξ and transversal space $\operatorname{tr}(T M)$ to M at p determine a 2-dimensional subspace $E(p, \xi)$ in R_{2}^{4} through p. The intersection of M and $E(p, \xi)$ gives a lightlike curve γ in a neighborhood of p, which is called the normal section of M at the point p in the direction of ξ. Let v be a spacelike vector tangent to M at $p(v \in S(T M))$. The vector v and transversal space $\operatorname{tr}(T M)$ to M at p then determine a 2-dimensional subspace $E(p, v)$ in R_{2}^{4} through p. In this case, the intersection of M and $E(p, v)$ gives a spacelike curve γ in a neighborhood of p which is called the normal section of M at p in the direction of v. According to both situations given above, M is said to have degenerate pointwise and nondegenerate pointwise planar normal sections, respectively, if each normal section γ at p satisfies $\gamma^{\prime} \wedge \gamma^{\prime \prime} \wedge \gamma^{\prime \prime \prime}=0[1,7,5,4]$.

2. Preliminaries

The codimension 2 lightlike submanifold (M, g) is called a half-lightlike submanifold if $\operatorname{rank}(\operatorname{radTM})=1$. In this case, there exist 2 complementary nondegenerate distributions $S(T M)$ and $S\left(T M^{\perp}\right)$ of $R a d T M$ in $T M$ and $T M^{\perp}$ respectively, called the screen and coscreen distribution on M. Then we have the following 2 orthogonal decompositions:

$$
T M=\operatorname{RadTM} \oplus_{o r t h} S(T M), T M^{\perp}=\operatorname{RadTM} \oplus_{o r t h} S\left(T M^{\perp}\right)
$$

where the symbol $\oplus_{\text {orth }}$ denotes the orthogonal direct sum.

[^0]We know from [2] that, for any smooth null section ξ of $R a d T M$ on a coordinate neighborhood $U \subset M$, there exists a uniquely defined null vector field $N \in \Gamma(l t r T M)$ satisfying

$$
\bar{g}(N, \xi)=1, \quad \bar{g}(N, N)=\bar{g}(N, X)=0, \forall X \in \Gamma(S(T M))
$$

We call $N, \operatorname{ltr}(T M)$, and $\operatorname{tr}(T M)=S\left(T M^{\perp}\right) \oplus_{\text {orth }} l \operatorname{tr}(T M)$ the lightlike transversal vector field, lightlike transversal bundle, and transversal vector bundle of M with respect to the screen $S(T M)$, respectively. Since RadTM is a 1-dimensional vector subbundle of $T M^{\perp}$ we may consider a supplementary distribution D to RadTM such that it is locally represented by u.

We call D a screen transversal bundle of M. Thus, we say that the vector bundle $\operatorname{tr}(T M)$ is defined over M by

$$
\operatorname{tr}(T M)=D \oplus_{o r t h} \operatorname{Itr}(T M)
$$

Therefore:

$$
\begin{align*}
T \bar{M} & =S(T M) \perp(\operatorname{RadTM} \oplus \operatorname{tr}(T M)) \\
& =S(T M) \perp D \perp(\operatorname{RadTM} \oplus \operatorname{Itr}(T M)) \tag{2.1}
\end{align*}
$$

Denote by P the projection of $T M$ on $S(T M)$ with respect to the decomposition (2.1). Then we write

$$
X=P X+\eta(X) \xi, \quad \forall X \in \Gamma(T M)
$$

where η is a local differential 1-form on M defined by $\eta(X)=g(X, N)$. Suppose $\bar{\nabla}$ is the metric connection on \bar{M}. Since $\{\xi, N\}$ is locally a pair of lightlike sections on $U \subset M$, we define symmetric $F(M)$-bilinear forms D_{1} and D_{2} and 1-forms $\rho_{1}, \rho_{2}, \varepsilon_{1}$, and ε_{2} on U. Using (2.1), we put

$$
\begin{align*}
\bar{\nabla}_{X} Y & =\nabla_{X} Y+D_{1}(X, Y) N+D_{2}(X, Y) u \tag{2.2}\\
\bar{\nabla}_{X} N & =-A_{N} X+\rho_{1}(X) N+\rho_{2}(X) u \tag{2.3}\\
\bar{\nabla}_{X} u & =-A_{u} X+\varepsilon_{1}(X) N+\varepsilon_{2}(X) u \tag{2.4}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$, where $\nabla_{X} Y, A_{N} X$, and $A_{u} X$ belong to $\Gamma(T M)$. We call D_{1} and D_{2} the lightlike second fundamental form and screen second fundamental form of M with respect to $\operatorname{tr}(T M)$, respectively. Both A_{N} and A_{u} are linear operators on $\Gamma(T M)$. The first one is $\Gamma(S(T M))$-valued, called the shape operator of M. Since u is a unit vector field, (2.4) implies $\varepsilon_{2}(X)=0$. In a similar way, since ξ and N are lightlike vector fields, from (2.2)-(2.4) we obtain

$$
\begin{align*}
D_{1}(X, \xi) & =0, \bar{g}\left(A_{N} X, N\right)=0, \bar{g}\left(A_{u} X, Y\right)=\epsilon D_{2}(X, Y)+\varepsilon_{1}(X) \eta(Y) \tag{2.5}\\
\varepsilon_{1}(X) & =-\epsilon D_{2}(X, \xi), \quad \forall X \in \Gamma(T M) \tag{2.6}
\end{align*}
$$

Next, consider the decomposition (2.1), and then we have

$$
\begin{align*}
\nabla_{X} P Y & =\nabla_{X}^{*} P Y+E_{1}(X, P Y) \xi \tag{2.7}\\
\nabla_{X} \xi & =-A_{\xi}^{*} X+u_{1}(X) \xi \tag{2.8}
\end{align*}
$$

where $\nabla_{X}^{*} P Y$ and A_{ξ}^{*} belong to $\Gamma(S(T M))$. A_{ξ}^{*} is a linear operator on $\Gamma(T M)$ and ∇^{*} is a metric connection on $S(T M)$. We call E_{1} the local second fundamental form of $S(T M)$ with respect to $\operatorname{Rad}(T M)$ and A_{ξ}^{*} the
shape operator of the screen distribution. The geometric object from Gauss and Weingarten equations (2.2)(2.4) on one side and (2.7) and (2.8) on the other side are related by

$$
\begin{align*}
E_{1}(X, P Y) & =g\left(A_{N} X, P Y\right), D_{1}(X, P Y)=g\left(A_{\xi}^{*} X, P Y\right) \tag{2.9}\\
u_{1}(X) & =-\rho_{1}(X), A_{\xi}^{*} \xi=0
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$. A half-lightlike submanifold (M, g) of a semi-Riemannian manifold (\bar{M}, \bar{g}) is said to be totally umbilical in \bar{M} if there is a normal vector field $\dot{Z} \in \Gamma(\operatorname{tr}(T M))$ on M, called an affine normal curvature vector field of M, such that

$$
h(X, Y)=D_{1}(X, Y) N+D_{2}(X, Y) u=\dot{Z} \bar{g}(X, Y), \quad \forall X, Y \in \Gamma(T M)
$$

In particular, (M, g) is said to be totally geodesic if its second fundamental form $h(X, Y)=0$ for any $X, Y \in \Gamma(T M)$. By direct calculation it is easy to see that M is totally geodesic if and only if both the lightlike and the screen second fundamental tensors D_{1} and D_{2} respectively vanish on M. Moreover, from (2.3), (2.5), (2.6), and (2.9) we obtain

$$
A_{\xi}=A_{u}=\varepsilon_{1}=\rho_{2}=0
$$

The notion of screen locally conformal half-lightlike submanifolds was introduced by Duggal and Sahin [3] as follows.

A half-lightlike submanifold M, of a semi-Riemannian manifold, is called screen locally conformal if on any coordinate neighborhood U there exists a nonzero smooth function φ such that for any null vector field $\xi \in \Gamma\left(T M^{\perp}\right)$ the relation

$$
\begin{equation*}
A_{N} X=\varphi A_{\xi}^{*} X, \quad \forall X \in \Gamma\left(T M_{\mid U}\right) \tag{2.10}
\end{equation*}
$$

holds between the shape operators A_{N} and A_{ξ}^{*} of M and $S(T M)$, respectively [3].
On the other hand, the notion of minimal half-lightlike submanifolds has been defined by Bejancu and Duggal as follows.

Definition 2.1 Let M be a half-lightlike submanifold of a semi-Riemannian manifold \bar{M}. We then say that M is a minimal half-lightlike submanifold if $\left(\left.\operatorname{tr}\right|_{S(T M)} h=0\right)$ and $\varepsilon_{1}(X)=0$ [3].

Definition 2.2 A half-lightlike submanifold M is said to be irrotational if $\bar{\nabla}_{X} \xi \in \Gamma(T M)$ for any $X \in$ $\Gamma(T M)$, where $\xi \in \Gamma($ RadTM $)$ [3].

For a half-lightlike M, since $D_{1}(X, \xi)=0$, the above definition is equivalent to $D_{2}(X, \xi)=0=\varepsilon_{1}(X)$, $\forall X \in \Gamma(T M)$.

3. Planar normal sections of half-lightlike hypersurfaces in R_{2}^{4}

In this section we consider half-lightlike submanifolds having planar normal section. First, we consider degenerate planar normal sections.

3.1. Degenerate planar normal sections in half-lightlike submanifolds

Let M be a half-lightlike submanifold in R_{2}^{4}. Now we investigate the conditions for a half-lightlike submanifold of R_{2}^{4} to have degenerate planar normal sections.

Theorem 3.1 Let M be a half-lightlike submanifold in R_{2}^{4}. Then M has degenerate planar normal sections if and only if

$$
\begin{equation*}
D_{2}(\xi, \xi) u \wedge \bar{\nabla}_{\xi} D_{2}(\xi, \xi) u=0 \tag{3.1.1}
\end{equation*}
$$

where D_{2} is the screen second fundamental form of M.
Proof If γ is a null curve, for a point p in M, we have

$$
\begin{align*}
\gamma^{\prime}(s)= & \xi \tag{3.1.2}\\
\gamma^{\prime \prime}(s)= & \nabla_{\xi} \xi+D_{2}(\xi, \xi) u \tag{3.1.3}\\
\gamma^{\prime \prime \prime}(s)= & \nabla_{\xi} \nabla_{\xi} \xi+D_{2}\left(\nabla_{\xi} \xi, \xi\right) u \tag{3.1.4}\\
& +\xi\left(D_{2}(\xi, \xi)\right) u+D_{2}(\xi, \xi)\left(-A_{u} \xi+\varepsilon_{1}(\xi) N\right) .
\end{align*}
$$

From the definition of planar normal section and using $\operatorname{Rad}(T M)=S p\{\xi\}$, we get

$$
\begin{equation*}
\nabla_{\xi} \xi \wedge \xi=0 \text { and } \nabla_{\xi} \nabla_{\xi} \xi \wedge \xi=0 \tag{3.1.5}
\end{equation*}
$$

Assume that M has planar degenerate normal sections. Then

$$
\begin{equation*}
\gamma^{\prime \prime \prime}(s) \wedge \gamma^{\prime \prime}(s) \wedge \gamma^{\prime}(s)=0 \tag{3.1.6}
\end{equation*}
$$

Thus, by using (3.1.2)-(3.1.5) in (3.1.6) one can see that $D_{2}(\xi, \xi) u$ and $D_{2}\left(\nabla_{\xi} \xi, \xi\right) u+\xi\left(D_{2}(\xi, \xi)\right) u-$ $D_{2}(\xi, \xi) A_{u} \xi+D_{2}(\xi, \xi) \varepsilon_{1}(\xi) N$ are linearly dependent. Taking the derivative of $D_{2}(\xi, \xi) u$, we obtain

$$
\bar{\nabla}_{\xi} D_{2}(\xi, \xi) u=\xi\left(D_{2}(\xi, \xi)\right) u-D_{2}(\xi, \xi) A_{u} \xi+D_{2}(\xi, \xi) \varepsilon_{1}(\xi) N
$$

where γ is assumed to be parameterized by a distinguished parameter. Hence, we get

$$
D_{2}(\xi, \xi) u \wedge \bar{\nabla}_{\xi} D_{2}(\xi, \xi) u=0
$$

Conversely, assume that $D_{2}(\xi, \xi) u \wedge \bar{\nabla}_{\xi} D_{2}(\xi, \xi) u=0$ for the degenerate tangent vector ξ of M at p. In this case, either $D_{2}(\xi, \xi) u=0$ or $\bar{\nabla}_{\xi} D_{2}(\xi, \xi) u=0$. If $D_{2}(\xi, \xi) u=0$, then M is totally geodesic in \bar{M} and M is totally umbilical. Thus, we obtain

$$
\begin{align*}
\gamma^{\prime}(s) & =\xi \tag{3.1.7}\\
\gamma^{\prime \prime}(s) & =u_{1}(\xi) \xi \tag{3.1.8}\\
\gamma^{\prime \prime \prime}(s) & =\xi\left(u_{1}(\xi)\right) \xi+u_{1}^{2}(\xi) \xi \tag{3.1.9}
\end{align*}
$$

which give that M has degenerate planar normal sections. On the other hand, if $\bar{\nabla}_{\xi} D_{2}(\xi, \xi) u=0$, then M is screen conformal. Hence, we have

$$
\gamma^{\prime \prime \prime}(s) \wedge \gamma^{\prime \prime}(s) \wedge \gamma^{\prime}(s)=\xi \wedge\left(\nabla_{\xi} \xi+D_{2}(\xi, \xi) u\right) \wedge\left(\nabla_{\xi} \nabla_{\xi} \xi+D_{2}\left(\xi, \nabla_{\xi} \xi\right) u+\bar{\nabla}_{\xi} D_{2}(\xi, \xi) u\right)=0
$$

Hence, we complete the proof.
Now we define a function

$$
\begin{aligned}
L_{p}:{\operatorname{Rad} T_{p} M} & \rightarrow R \\
\xi & \rightarrow L_{p}(\xi)=D_{2}^{2}(\xi, \xi) \epsilon
\end{aligned}
$$

where $p \in M$ and $\gamma(0)=p$. If $L_{p}(\xi)=D_{2}^{2}(\xi, \xi) \epsilon=0$, then we obtain $D_{2}(\xi, \xi)=0$ and $\varepsilon_{1}(\xi)=0$. From (3.1.7), (3.1.8), and (3.1.9) we find $\gamma^{\prime \prime \prime}(s) \wedge \gamma^{\prime \prime}(s) \wedge \gamma^{\prime}(s)=0$. Hence, M has degenerate planar normal sections.

We say that the curve γ has a vertex at the point p if the curvature κ of γ satisfies $\frac{d \kappa^{2}(p)}{d s}=0$ and $\kappa^{2}=\left\langle\gamma^{\prime \prime}(s), \gamma^{\prime \prime}(s)\right\rangle$. Now let M have degenerate planar normal sections. Then $L_{p}=0$, and so $D_{2}(\xi, \xi)=0$. Hence, we get

$$
h(\xi, \xi)=D_{2}(\xi, \xi) u=0,\left(\bar{\nabla}_{\xi} h\right)(\xi, \xi)=0,
$$

which gives $\bar{\nabla} h=0$. Moreover, we have

$$
\epsilon \kappa^{2}(s)=\left\langle\gamma^{\prime \prime}(s), \gamma^{\prime \prime}(s)\right\rangle=0
$$

for any $p \in M$.
Consequently, we have the following result.
Corollary 3.2 Let M be a half-lightlike submanifold in R_{2}^{4} with degenerate planar normal sections such that

$$
\begin{aligned}
L_{p}: \operatorname{Rad} T_{p} M & \rightarrow R, \\
\xi & \rightarrow L_{p}(\xi)=D_{2}^{2}(\xi, \xi) \epsilon,
\end{aligned}
$$

where $p \in M$. Then the following statements are equivalent:

1. $D_{2}(\xi, \xi)=0$,
2. $\left(\bar{\nabla}_{\xi} h\right)(\xi, \xi)=0$,
3. $\bar{\nabla} h=0$,
4. For any $p \in M, \kappa=0$.

Now, let us assume that a half-lightlike submanifold M of R_{2}^{4} has degenerate planar normal sections. Then for null vector $\xi \in \operatorname{RadTM}$, we have

$$
\begin{equation*}
\nabla_{\xi} \xi \neq 0, \tag{3.1.10}
\end{equation*}
$$

where $\xi=\gamma^{\prime}(s)$, namely, the normal section γ is not a geodesic arc on a sufficiently small neighborhood of p. Then from (3.1.2)-(3.1.4) we write

$$
\gamma^{\prime \prime \prime}(s)=a(s) \gamma^{\prime \prime}(s)+b(s) \gamma^{\prime}(s),
$$

where, a and b are differentiable functions for all $p \in M$. Hence, we get $D_{2}(\xi, \xi)=\varepsilon_{1}(\xi)=0$.
Consequently, we have the following:

Corollary 3.3 Let a half-lightlike submanifold M in R_{2}^{4} have degenerate planar normal sections. If the normal section γ for any p is not a geodesic arc on a sufficiently small neighborhood of p, then $D_{2}=0$ at RadTM.

Next, assume that γ is parameterized by a distinguished parameter, namely, γ is a geodesic arc on a small neighborhood of $p=\gamma(0)$, i.e. $\nabla_{\xi} \xi=0$. Since $u_{1}(\xi)=\rho_{1}(\xi)=0$, we obtain

$$
\begin{align*}
\gamma^{\prime}(0) & =\xi \\
\gamma^{\prime \prime}(0) & =D_{2}(\xi, \xi) u \tag{3.1.11}\\
\gamma^{\prime \prime \prime}(0) & =\bar{\nabla}_{\xi} D_{2}(\xi, \xi) u=\xi\left(D_{2}(\xi, \xi)\right) u-D_{2}(\xi, \xi) A_{u} \xi-\epsilon D_{2}^{2}(\xi, \xi) N \tag{3.1.12}
\end{align*}
$$

Now, let us suppose that M has degenerate planar normal sections at $\gamma(0)=p$. Therefore, from $\gamma^{\prime \prime \prime}(s) \wedge$ $\gamma^{\prime \prime}(s) \wedge \gamma^{\prime}(s)=0$, we have $\xi \wedge h(\xi, \xi) \wedge \bar{\nabla}_{\xi} h(\xi, \xi)=0$. From (3.1.11) and (3.1.12), $\xi, h(\xi, \xi)$, and $\bar{\nabla}_{\xi} h(\xi, \xi)$ are not linearly dependent. In this case, either $h(\xi, \xi)=0$ or $\bar{\nabla}_{\xi} h(\xi, \xi)=0$. If $\bar{\nabla}_{\xi} h(\xi, \xi)=0$, then we calculate

$$
\begin{align*}
\langle h(\xi, \xi), h(\xi, w)\rangle & =-\left\langle\bar{\nabla}_{\xi} h(\xi, \xi), w\right\rangle \\
& =0 \tag{3.1.13}
\end{align*}
$$

and

$$
\begin{align*}
\langle h(\xi, \xi), h(\xi, w)\rangle & =\left\langle h(\xi, \xi), \bar{\nabla}_{w} \xi\right\rangle-\left\langle h(\xi, \xi), \nabla_{w} \xi\right\rangle \\
& =\epsilon D_{2}(\xi, \xi) D_{2}(w, \xi) \tag{3.1.14}
\end{align*}
$$

From the symmetry of bilinear forms D_{1} and D_{2} at $\Gamma(T M)$, hence from (3.1.13) and (3.1.14), we get $D_{2}=0$ at $\Gamma(T M)$. Furthermore, from $\bar{\nabla}_{w} \xi \in \Gamma(T M),(\xi \in \operatorname{RadTM}$, and $w \in \Gamma(T M))$, we see that M is irrotational. Then we have the following result.

Corollary 3.4 Let M be a half-lightlike submanifold of R_{2}^{4} with degenerate planar normal sections. If the normal section γ for any p is a geodesic arc on a sufficiently small neighborhood of p, then M is irrotational.

Let M be a half-lightlike submanifold in R_{2}^{4} with degenerate planar normal sections. Since γ is a planar curve, we write

$$
\gamma^{\prime \prime \prime}(s)=a(s) \gamma^{\prime \prime}(s)+b(s) \gamma^{\prime}(s)
$$

where a and b are differentiable functions for all $p \in M$. Then (3.1.8) gives

$$
\begin{aligned}
a(s) & =u_{1}(\xi)+\xi\left(\ln \left(D_{2}(\xi, \xi)\right)\right) \\
b(s) & =\xi\left(u_{1}(\xi)\right)-D_{2}(\xi, \xi) \rho_{2}(\xi) \epsilon-u_{1}(\xi) \xi\left(\ln \left(D_{2}(\xi, \xi)\right)\right)
\end{aligned}
$$

Moreover, we have $\epsilon \kappa^{2}(s)=\left\langle\gamma^{\prime \prime}(s), \gamma^{\prime \prime}(s)\right\rangle=0$ for any $p \in M$, which gives $D_{2}(\xi, \xi)=\varepsilon_{1}(\xi)=0$. Thus, we obtain

$$
\begin{align*}
\gamma^{\prime \prime \prime}(s)= & u_{1}^{2}(\xi) \xi+u_{1}(\xi) D_{2}(\xi, \xi) u \\
& +\xi\left(\ln \left(D_{2}(\xi, \xi)\right)\right) D_{2}(\xi, \xi) u \tag{3.1.15}\\
& +\xi\left(u_{1}(\xi)\right) \xi-\epsilon D_{2}(\xi, \xi) \rho_{2}(\xi) \xi
\end{align*}
$$

and

$$
\begin{equation*}
A_{u} \xi=\epsilon \rho_{2}(\xi) \xi \tag{3.1.16}
\end{equation*}
$$

Namely:

Corollary 3.5 Let M be a half-lightlike submanifold of R_{2}^{4} with degenerate planar normal sections, then $A_{u} \xi$ is RadTM-valued.

Now, from (3.1.15) and (3.1.16), we obtain

$$
\begin{align*}
\left(\bar{\nabla}_{\xi} h\right)(\xi, \xi)= & \xi\left(\ln \left(D_{2}(\xi, \xi)\right)\right) D_{2}(\xi, \xi) u \\
& -\epsilon D_{2}(\xi, \xi) \rho_{2}(\xi) \xi-2 u_{1}(\xi) D_{2}(\xi, \xi) u \tag{3.1.17}
\end{align*}
$$

Let M be a half-lightlike submanifold of R_{2}^{4} with degenerate planar normal sections. If the normal section γ for any p is not a geodesic arc on a sufficiently small neighborhood of p, then we obtain

$$
\begin{equation*}
D_{2}(\xi, \xi) u \wedge\left(\bar{\nabla}_{\xi} h\right)(\xi, \xi)=0 \tag{3.1.18}
\end{equation*}
$$

Conversely, we assume that (3.1.18) is satisfied for any degenerate tangent vector ξ of M. Then either $D_{2}(\xi, \xi) u=0$ or $\left(\bar{\nabla}_{\xi} h\right)(\xi, \xi)=0$. If $D_{2}(\xi, \xi) u=0$, then from Theorem 3.1, we see that M has degenerate planar normal sections. On the other hand, if $\left(\bar{\nabla}_{\xi} h\right)(\xi, \xi)=0$, then, by considering (3.1.5), we obtain

$$
\gamma^{\prime \prime \prime}(s) \wedge \gamma^{\prime \prime}(s) \wedge \gamma^{\prime}(s)=\xi \wedge D_{2}(\xi, \xi) u \wedge\left(\bar{\nabla}_{\xi} h\right)(\xi, \xi)=0
$$

Consequently, we have the following:

Corollary 3.6 Let M be half-lightlike submanifold of R_{2}^{4} such that the normal section $\gamma(s)$ for any p is not a geodesic arc on a sufficiently small neighborhood of p. Then half-lightlike submanifold M has planar normal sections if and only if (3.1.18) is satisfied.

Now, let the normal section γ be a geodesic arc on a sufficiently small neighborhood of p, namely, $\nabla_{\xi} \xi=0=u_{1}(\xi)$. Since M has degenerate planar normal sections, we obtain

$$
\gamma^{\prime \prime \prime}(s) \wedge \gamma^{\prime \prime}(s) \wedge \gamma^{\prime}(s)=\left(\xi \wedge D_{2}(\xi, \xi) u \wedge D_{2}(\xi, \xi) A_{u} \xi\right)+\left(\xi \wedge D_{2}(\xi, \xi) u \wedge D_{2}(\xi, \xi) \varepsilon_{1}(\xi) N\right)
$$

From Corollary 3.5, we have $D_{2}(\xi, \xi)=0$ and $\varepsilon_{1}(\xi)=0$. Thus, we have the following result:

Corollary 3.7 Let M be a half-lightlike submanifold with degenerate planar normal section of R_{2}^{4}. The normal section γ for any p is a geodesic arc on a sufficiently small neighborhood of p. Then $D_{2}(\xi, \xi)=0$ or $\varepsilon_{1}(\xi)=0$.

Let M be a screen conformal half-lightlike submanifold of $R_{2}^{4}(c)$ with degenerate planar normal sections. We denote the Riemann curvature tensors of \bar{M} and M by \bar{R} and R, and hence we have

$$
\begin{align*}
\bar{g}(\bar{R}(X, Y) Z, P W)= & \varphi\left[D_{1}(X, Z) D_{1}(Y, P W)-D_{1}(Y, Z) D_{1}(X, P W)\right] \\
& +\epsilon\left[D_{2}(X, Z) D_{2}(Y, P W)-D_{2}(Y, Z) D_{2}(X, P W)\right] \tag{3.1.19}
\end{align*}
$$

Let $p \in M$ and ξ be a null vector of $T_{p} M$. A plane H of $T_{p} M$ is called a null plane directed by ξ if it contains $\xi, \bar{g}(\xi, W)=0$ for any $W \in H$ and there exists $W_{0} \in H$ such that $\bar{g}\left(W_{0}, W_{0}\right) \neq 0$. Then the null sectional curvature of H with respect to ξ and $\bar{\nabla}$ is defined by

$$
\begin{equation*}
K_{\xi}(H)=\frac{R_{p}(W, \xi, \xi, W)}{g_{p}(W, W)} \tag{3.1.20}
\end{equation*}
$$

Since $v \in \Gamma(S(T M))$ and $\xi \in \Gamma(\operatorname{RadTM})$, we have

$$
\begin{aligned}
K_{\xi}(H)= & \varphi\left[D_{1}(v, \xi) D_{1}(\xi, v)-D_{1}(\xi, \xi) D_{1}(v, v)\right] \\
& +\epsilon\left[D_{2}(v, \xi) D_{2}(\xi, v)-D_{2}(\xi, \xi) D_{2}(v, v)\right]
\end{aligned}
$$

By using $D_{1}(v, \xi)=0$ in the last equation, we obtain

$$
\begin{equation*}
K_{\xi}(H)=\epsilon\left[D_{2}(v, \xi) D_{2}(\xi, v)-D_{2}(\xi, \xi) D_{2}(v, v)\right] \tag{3.1.21}
\end{equation*}
$$

Consequently, we have the following:
Corollary 3.8 Let M be a screen conformal half-lightlike submanifold of $R_{2}^{4}(c)$ with degenerate planar normal sections. If M is minimal, then $K_{\xi}(H)=0$.

Example 3.9 Consider a surface M in R_{2}^{4} given by the equation

$$
x^{3}=\frac{1}{\sqrt{2}}\left(x^{1}+x^{2}\right) ; \quad x^{4}=\frac{1}{2} \log \left(1+\left(x^{1}-x^{2}\right)^{2}\right)
$$

It is easy to see that M is a totally umbilical half-lightlike submanifold of R_{2}^{4}. Then by straightforward calculations we obtain

$$
D_{2}(\xi, \xi)=0
$$

Therefore, the intersection of M and $E(p, \xi)$ gives a lightlike curve γ in a neighborhood of p, which is called the normal section of M at point p in the direction of ξ, namely

$$
\begin{aligned}
\gamma^{\prime}(s) & =\xi \\
\gamma^{\prime \prime}(s) & =\bar{\nabla}_{\xi} \xi=0
\end{aligned}
$$

Hence, we obtain

$$
\gamma^{\prime \prime \prime}(s) \wedge \gamma^{\prime \prime}(s) \wedge \gamma^{\prime}(s)=0
$$

3.2. Nondegenerate planar normal sections in half-lightlike submanifolds

In this subsection we investigate the conditions for a screen conformal half-lightlike submanifold M of R_{2}^{4} to have nondegenerate planar normal sections.

Theorem 3.10 Let M be a screen conformal half-lightlike submanifold in R_{2}^{4}. M has spacelike planar normal sections if and only if

$$
\begin{equation*}
T(v, v) \wedge \bar{\nabla}_{v} T(v, v)=0 \tag{3.2.1}
\end{equation*}
$$

where $v \in \Gamma(S(T M))$ and $T(v, v)=E_{1}(v, v) \xi+D_{1}(v, v) N+D_{2}(v, v) u$.

ERDOĞAN et al./Turk J Math

Proof Let M be a screen conformal half-lightlike submanifold and γ a spacelike curve on M. Then we have

$$
\begin{align*}
\gamma^{\prime}(s)= & v, \tag{3.2.2}\\
\gamma^{\prime \prime}(s)= & \bar{\nabla}_{v} v=\nabla_{v}^{*} v+E_{1}(v, v) \xi+D_{1}(v, v) N+D_{2}(v, v) u \tag{3.2.3}\\
\gamma^{\prime \prime \prime}(s)= & \nabla_{v}^{*} \nabla_{v}^{*} v+E_{1}\left(v, \nabla_{v}^{*} v\right) \xi+D_{1}\left(v, \nabla_{v}^{*} v\right) N+D_{2}\left(v, \nabla_{v}^{*} v\right) u \\
& +v\left(E_{1}(v, v)\right) \xi+v\left(D_{1}(v, v)\right) N+v\left(D_{2}(v, v)\right) u \\
& -E_{1}(v, v) A_{\xi}^{*} v+E_{1}(v, v) u_{1}(v) \xi+E_{1}(v, v) D_{2}(v, \xi) u \\
& -D_{1}(v, v) A_{N} v+D_{1}(v, v) \rho_{1}(v) N+D_{1}(v, v) \rho_{2}(v) u \\
& -D_{2}(v, v) A_{u} v+D_{2}(v, v) \varepsilon_{1}(v) N \tag{3.2.4}
\end{align*}
$$

where ∇^{*} is the induced connection of M^{\prime} and $\gamma^{\prime}(s)=v, \gamma^{\prime}(0)=v$. From the definition of a planar normal section and $S(T M)=S p\{v\}$ we have

$$
\begin{equation*}
v \wedge \nabla_{v}^{*} v=0 \text { and } v \wedge \nabla_{v}^{*} \nabla_{v}^{*} v=0 \tag{3.2.5}
\end{equation*}
$$

Assume that M has planar nondegenerate normal sections. Then we have

$$
\gamma^{\prime \prime \prime}(s) \wedge \gamma^{\prime \prime}(s) \wedge \gamma^{\prime}(s)=0
$$

Thus, from (3.2.5),

$$
T(v, v)=E_{1}(v, v) \xi+D_{1}(v, v) N+D_{2}(v, v) u
$$

and

$$
\begin{aligned}
\bar{\nabla}_{v} T(v, v)= & E_{1}\left(v, \nabla_{v}^{*} v\right) \xi+D_{1}\left(v, \nabla_{v}^{*} v\right) N+D_{2}\left(v, \nabla_{v}^{*} v\right) u \\
& +v\left(E_{1}(v, v)\right) \xi+v\left(D_{1}(v, v)\right) N+v\left(D_{2}(v, v)\right) u \\
& -E_{1}(v, v) A_{\xi}^{*} v+E_{1}(v, v) u_{1}(v) \xi+E_{1}(v, v) D_{2}(v, \xi) u \\
& -D_{1}(v, v) A_{N} v+D_{1}(v, v) \rho_{1}(v) N+D_{1}(v, v) \rho_{2}(v) u \\
& -D_{2}(v, v) A_{u} v+D_{2}(v, v) \varepsilon_{1}(v) N
\end{aligned}
$$

are linearly dependent, where γ is assumed to be parameterized by arc length. Thus, we obtain

$$
T(v, v) \wedge \bar{\nabla}_{v} T(v, v)=0
$$

Conversely, we assume that $T(v, v) \wedge \bar{\nabla}_{v} T(v, v)=0$ for a spacelike tangent vector v of M at p. Then either $T(v, v)=0$ or $\bar{\nabla}_{v} T(v, v)=0$. If $T(v, v)=0$, then from (3.2.2), (3.2.3), (3.2.4), and (3.2.5), M has degenerate planar normal sections. If $\bar{\nabla}_{v} T(v, v)=0$, from (3.2.5), we obtain

$$
\gamma^{\prime \prime \prime}(s) \wedge \gamma^{\prime \prime}(s) \wedge \gamma^{\prime}(s)=v \wedge T(v, v) \wedge \bar{\nabla}_{v} T(v, v)=0
$$

ERDOGAN et al./Turk J Math

Example 3.11 Let M be a half-lightlike submanifold of the 4-dimensional semi-Riemann space $\left(R_{2}^{4}, \bar{g}\right)$ of index 2, as given in Example 3.9. Now, for a point p in M and a spacelike vector U_{2} tangent to M at p $\left(U_{2} \in S(T M)\right)$, the vector U_{2} and transversal space $\operatorname{tr}(T M)$ to M at p determine a 2-dimensional subspace $E\left(p, U_{2}\right)$ in R_{2}^{4} through p. The intersection of M and $E\left(p, U_{2}\right)$ gives a spacelike curve γ in a neighborhood of p. Now we research half-lightlike submanifolds of the R_{2}^{4} semi-Riemannian manifold to have the condition of nondegenerate planar normal sections. Hence, we obtain

$$
\begin{aligned}
U_{1}= & \sqrt{2}\left(1+\left(x^{1}-x^{2}\right)^{2}\right) \partial_{1}+\left(1+\left(x^{1}-x^{2}\right)^{2}\right) \partial_{3}+\sqrt{2}\left(x^{1}-x^{2}\right) \partial_{4} \\
U_{2}= & \sqrt{2}\left(1+\left(x^{1}-x^{2}\right)^{2}\right) \partial_{1}+\left(1+\left(x^{1}-x^{2}\right)^{2}\right) \partial_{3}-\sqrt{2}\left(x^{1}-x^{2}\right) \partial_{4} \\
\xi= & \partial_{1}+\partial_{2}+\sqrt{2} \partial_{3} \\
u= & 2\left(x^{2}-x^{1}\right) \partial_{2}+\sqrt{2}\left(x^{2}-x^{1}\right) \partial_{3}+\left(1+\left(x^{1}-x^{2}\right)\right) \partial_{4} \\
& N=-\frac{1}{2} \partial_{1}+\frac{1}{2} \partial_{2}+\frac{1}{\sqrt{2}} \partial_{3}
\end{aligned}
$$

and

$$
\begin{aligned}
\gamma^{\prime}= & U_{2}=\sqrt{2}\left(1+\left(x^{1}-x^{2}\right)^{2}\right) \partial_{1}+\left(1+\left(x^{1}-x^{2}\right)^{2}\right) \partial_{3}-\sqrt{2}\left(x^{1}-x^{2}\right) \partial_{4} \\
\gamma^{\prime \prime}= & 2\left(1+\left(x^{1}-x^{2}\right)^{2}\right) \cdot\left\{2\left(x^{2}-x^{1}\right) \partial_{2}+\sqrt{2}\left(x^{2}-x^{1}\right) \partial_{3}+\partial_{4}\right\} \\
\gamma^{\prime \prime \prime}= & \sqrt{2}\left(1+\left(x^{1}-x^{2}\right)^{2}\right)\left[\begin{array}{c}
4\left(1+3\left(\left(x^{1}-x^{2}\right)^{2}\right)\right) \partial_{2} \\
+2 \sqrt{2}\left(1+3\left(\left(x^{1}-x^{2}\right)^{2}\right)\right) \partial_{3}-4\left(x^{1}-x^{2}\right) \partial_{4}
\end{array}\right] \\
& +\frac{4 \sqrt{2}\left(x^{2}-x^{1}\right)^{3}}{\left(1+\left(x^{1}-x^{2}\right)^{4}\right)}\left(1+\left(x^{1}-x^{2}\right)^{2}\right)\left[\begin{array}{c}
2\left(x^{2}-x^{1}\right) \partial_{2} \\
+\sqrt{2}\left(x^{2}-x^{1}\right) \partial_{3}+\left(1+x^{1}-x^{2}\right) \partial_{4}
\end{array}\right]
\end{aligned}
$$

Then, by direct calculations we find

$$
\begin{align*}
E_{1}\left(U_{2}, U_{2}\right) & =0, \tag{3.2.6}\\
E_{1}\left(U_{2}, \nabla_{U_{2}}^{*} U_{2}\right) & =0 . \tag{3.2.7}
\end{align*}
$$

Thus, from (3.2.6) and (3.2.7), $T\left(U_{2}, U_{2}\right)$ and $\bar{\nabla}_{U_{2}} T\left(U_{2}, U_{2}\right)$ are linearly dependent. Hence we have $\gamma^{\prime \prime \prime}(s) \wedge$ $\gamma^{\prime \prime}(s) \wedge \gamma^{\prime}(s)=0$.

Proposition 3.12 Let M be a half-lightlike submanifold in R_{2}^{4}. If M has planar normal sections, then

$$
\begin{equation*}
\nabla_{v}^{*} v=0 \tag{3.2.8}
\end{equation*}
$$

where γ is a normal section in the direction $v=\gamma^{\prime}(s)$ for $v \in \Gamma(S(T M))$.
Proof From $v \in S(T M)$ we have

$$
\begin{equation*}
\langle v, v\rangle=1 \Rightarrow\left\langle v, \nabla_{v}^{*} v\right\rangle=0 \tag{3.2.9}
\end{equation*}
$$

Using the definition of a normal section and (3.2.9), we complete the proof.
Now we define a function L by

$$
L(p, v)=L_{p}(v)=\langle T(v, v), T(v, v)\rangle
$$

on $\bigcup_{p} M$, where $\bigcup_{p} M=\left\{v \in \Gamma(T M) \left\lvert\,\langle v, v\rangle^{\frac{1}{2}}=1\right.\right\}$. If $L \neq 0$, then M has nondegenerate pointwise normal sections. By a vertex of curve γ we mean a point p on γ such that its curvature κ satisfies $\frac{d \kappa^{2}(0)}{d s}=0$. Let M have planar normal sections. From Proposition 3.12 we obtain

$$
\begin{aligned}
\epsilon \kappa^{2}(s) & =2 E_{1}(v, v) D_{1}(v, v)+D_{2}^{2}(v, v) \epsilon \\
\frac{1}{2} \frac{d \kappa^{2}(0)}{d s} & =v\left(E_{1}(v, v) D_{1}(v, v)\right)+v\left(D_{2}(v, v)\right) D_{2}(v, v) \epsilon
\end{aligned}
$$

If M is totally geodesic, then $D_{1}=D_{2}=0$. Thus γ has a vertex. Consequently, we have the following:
Corollary 3.13 Let M be a half-lightlike submanifold of R_{2}^{4}. If M has nondegenerate planar normal sections the submanifold is totally geodesic screen conformal at $p \in M$, if and only if normal section curve γ has a vertex at $p \in M$.

Corollary 3.14 Let M be a half-lightlike submanifold of R_{2}^{4}. with planar normal sections. Then normal section curve γ has a vertex and the submanifold is totally geodesic if and only if M is minimal.
Proof If M is totally geodesic, then from $\left(\left.\operatorname{tr}\right|_{S(T M)} h=0\right)$ and $\varepsilon_{1}(\xi)=0$, we conclude.
From Corollary 8 and Corollary 9, we give:

Corollary 3.15 Let M be a half-lightlike submanifold in $R_{2}^{4}(c)$ with planar normal sections. Then $K_{\xi}(H)=0$ if and only if normal section curve γ has a vertex at $p \in M$ where $\xi \in \Gamma(\operatorname{RadTM})$.

Corollary 3.16 Let M be a half-lightlike submanifold of R_{2}^{4} and the normal section γ at for any p be a geodesic arc on a sufficiently small neighborhood of p. Then M has nondegenerate planar normal sections if and only if

$$
h(v, v) \wedge\left(\bar{\nabla}_{v} h\right)(v, v)=0,
$$

where is $h(v, v)=D_{1}(v, v) N+D_{2}(v, v) u$.
Proof If normal section γ at for any p is a geodesic arc on a sufficiently small neighborhood of p, we have

$$
\begin{aligned}
\gamma^{\prime}(s)= & v \\
\gamma^{\prime \prime}(s)= & D_{1}(v, v) N+D_{2}(v, v) u \\
\gamma^{\prime \prime \prime}(s)= & v\left(D_{1}(v, v)\right) N+v\left(D_{2}(v, v)\right) u \\
& -D_{1}(v, v) A_{N} v+D_{1}(v, v) \rho_{1}(v) N \\
& +D_{1}(v, v) \rho_{2}(v) u-D_{2}(v, v) A_{u} v \\
& +D_{2}(v, v) \varepsilon_{1}(v) N .
\end{aligned}
$$

ERDOĞAN et al./Turk J Math

Therefore, by taking the covariant derivative of

$$
h(v, v)=D_{1}(v, v) N+D_{2}(v, v) u
$$

we obtain

$$
\left(\bar{\nabla}_{v} h\right)(v, v)=\bar{\nabla}_{v} h(v, v)=\gamma^{\prime \prime \prime}(s)
$$

which gives

$$
\gamma^{\prime \prime \prime}(s) \wedge \gamma^{\prime \prime}(s) \wedge \gamma^{\prime}(s)=v \wedge h(v, v) \wedge\left(\bar{\nabla}_{v} h\right)(v, v)=0
$$

From the last equation above, we have

$$
h(v, v) \wedge\left(\bar{\nabla}_{v} h\right)(v, v)=0
$$

Conversely, we assume that $h(v, v) \wedge\left(\bar{\nabla}_{v} h\right)(v, v)=0$. In this case, we have either $h(v, v)=0$ or $\left(\bar{\nabla}_{v} h\right)(v, v)=$ 0 . If $h(v, v)=0$, we have $D_{1}(v, v)=0$ and $D_{2}(v, v)=0$. In this way, we get

$$
\varepsilon_{1}(\xi)=0
$$

which shows that M is minimal and has planar normal sections. On the other hand, if $\left(\bar{\nabla}_{v} h\right)(v, v)=0$, from $\left(\bar{\nabla}_{v} h\right)(v, v)=\bar{\nabla}_{v} h(v, v)=\gamma^{\prime \prime \prime}(s)=0$, we obtain

$$
\gamma^{\prime \prime \prime}(s) \wedge \gamma^{\prime \prime}(s) \wedge \gamma^{\prime}(s)=0
$$

that is, M has nondegenerate planar normal sections.
We also have the following result:
Corollary 3.17 Let M be a half-lightlike submanifold in R_{2}^{4} and the normal section γ for any p be a geodesic arc on a sufficiently small neighborhood of p. Then the following statements are equivalent:

1. $\left(\bar{\nabla}_{v} h\right)(v, v)=0$,
2. $\bar{\nabla} h=0$,
3. M has nondegenerate planar normal sections of $p \in M$ and γ has a vertex point at $p \in M$,
4. $\quad D_{2}=0$ in $S(T M)$.

Proof For curvature κ at p point of γ, we have

$$
\begin{align*}
\epsilon \kappa^{2}(s) & =D_{2}^{2}(v, v) \epsilon \\
\frac{1}{2} \epsilon \frac{d \kappa^{2}(s)}{d s} & =v\left(D_{2}(v, v)\right) D_{2}(v, v) \epsilon \tag{3.2.10}
\end{align*}
$$

and from $\epsilon \kappa^{2}(s)=\left\langle\gamma^{\prime \prime}(s), \gamma^{\prime \prime}(s)\right\rangle$,

$$
\begin{align*}
\frac{1}{2} \epsilon \frac{d \kappa^{2}(s)}{d s} & =\left\langle\left(\bar{\nabla}_{v} h\right)(v, v), h(v, v)\right\rangle \\
& =0 \tag{3.2.11}
\end{align*}
$$

Hence, from (3.2.10) and (3.2.11), we obtain $D_{2}(v, v)=0$. From here, we complete the proof.

ERDOĞAN et al./Turk J Math

Example 3.18 Consider a surface M in R_{1}^{4} given by the equation

$$
x_{1}=x_{3}, x_{2}=\left(1-x_{4}\right)^{\frac{1}{2}}
$$

Then we obtain:

$$
\begin{aligned}
T M & =S p\left\{\xi=\partial x_{1}+\partial x_{3}, v=-x_{4} \partial x_{2}+x_{2} \partial x_{4}\right\} \\
T M^{\perp} & =S p\left\{\xi=\partial x_{1}+\partial x_{3}, u=x_{2} \partial x_{2}+x_{4} \partial x_{2}\right\}
\end{aligned}
$$

Therefore, we have $\operatorname{RadTM}=S p\{\xi\}, S(T M)=S p\{v\}, S\left(T M^{\perp}\right)=S p\{u\}$, and $\operatorname{ltr}(T M)=S p\left\{N=\frac{1}{2}\left(\partial x_{1}\right.\right.$ $\left.\left.+\partial x_{3}\right)\right\}$, which show that M is a half-lightlike submanifold of R_{1}^{4}. Then using the Gauss and Weingarten formulas and on account of $\nabla_{v} \xi=0$, we have

$$
\bar{g}\left(A_{\xi}^{*} v, v\right)=0 \Rightarrow A_{\xi}^{*} v=0
$$

Moreover, from (2.3) and by straightforward calculations we obtain

$$
A_{N} v=0
$$

or $A_{N} v \in R a d T M$. Using (2.2), we have

$$
D_{1}(v, v)=\bar{g}\left(A_{\xi}^{*} v, v\right)=0
$$

and since $D_{1}(v, \xi)=0$, we have $D_{1}=0$. Using (2.2), we obtain

$$
D_{2}(v, v) \epsilon=\bar{g}\left(v, A_{u} v\right)
$$

Since

$$
\bar{g}\left(\bar{\nabla}_{v} \bar{\nabla}_{v} v, N\right)=\bar{g}\left(A_{u} v, N\right)=0
$$

$A_{u} v \in S(T M)$ and by straightforward calculations we obtain

$$
\begin{aligned}
\bar{g}\left(\bar{\nabla}_{v} \bar{\nabla}_{v} v, u\right) & =2 x_{2} x_{4} \\
\bar{g}\left(\bar{\nabla}_{v} \bar{\nabla}_{v} v, \xi\right) & =-\varepsilon_{1}(u)=0 \\
\rho_{1}(v) & =-\bar{g}\left(A_{N} v, \xi\right)=0, \rho_{2}(v)=-\epsilon \bar{g}\left(A_{N} v, u\right)=0 \\
\varepsilon_{1}(u) & =0 \Rightarrow D_{2}(v, \xi)=0, \epsilon D_{2}(v, v)=-1
\end{aligned}
$$

Thus, M is a screen conformal totally umbilical half-lightlike submanifold. Let $v \in S(T M)$ and $p \in M$. We denote subspace

$$
E(p, v)=\{v\} \cup \operatorname{tr}(T M)
$$

and we have

$$
E(p, v) \cap M=\gamma
$$

where γ is the normal section of M at p in the direction of v. Then we have

$$
\begin{aligned}
\gamma^{\prime}(s) & =v=-x_{4} \partial x_{2}+x_{2} \partial x_{4} \\
\gamma^{\prime \prime}(s) & =\bar{\nabla}_{v} v=-2 x_{2} \partial x_{2}-2 x_{4} \partial x_{4} \\
\gamma^{\prime \prime \prime}(s) & =\bar{\nabla}_{v} \bar{\nabla}_{v} v=2 x_{4} \partial x_{2}-2 x_{2} \partial x_{4}
\end{aligned}
$$

Hence,

$$
\gamma^{\prime \prime \prime}(s) \wedge \gamma^{\prime \prime}(s) \wedge \gamma^{\prime}(s)=0
$$

that is, M has nondegenerate planar normal sections.

References

[1] Chen, B.Y.: Classification of surfaces with planar normal sections. J. Geom. 20, 122-127 (1983).
[2] Duggal, K.L., Bejancu A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Dordrecht. Kluwer Academic Publishers 1996.
[3] Duggal, K.L., Sahin B.: Differential Geometry of Lightlike Submanifolds. Birkhauser. Springer 2010.
[4] Kim, Y.H.: Surfaces in a pseudo-Euclidean Space with planar normal sections. J. Geom. 35, 120-131 (1989).
[5] Kim, Y.H.: Minimal surfaces of pseudo-Euclidean spaces with geodesic normal sections. Differential Geom. Appl. 5, 321-329 (1995).
[6] Kim, Y.H.: Pseudo-Riemannian submanifolds with pointwise planar normal sections. Math. J. Okayama Univ. 34, 249-257 (1992).
[7] Li, S.J.: Submanifolds with pointwise planar normal sections in a sphere. J. Geom. 70, 101-107 (2001).

[^0]: *Correspondence: bayram.sahin@inonu.edu.tr
 2010 AMS Mathematics Subject Classification: 53C42, 53C50.

