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Abstract. We give conditions which oblige properly embedded constant mean
curvature one surfaces in hyperbolic 3-space to intersect. Our results are in-
spired by the theorem that two disjoint properly immersed minimal surfaces
in R3 must be planes.

The half-space theorem says that a properly immersed minimal surface in R3

that is disjoint from a plane (thus in a half-space) is a plane. The strong half-
space theorem says that two disjoint properly immersed minimal surfaces in R3 are
planes. The latter is deduced from the former by finding a plane between the two
surfaces. These theorems are due to D. Hoffman and W. Meeks [H-M].

In this paper we establish results of this nature in hyperbolic 3-space for mean
curvature one surfaces and horospheres.

Let N denote a horosphere of H3, and B the horoball of H3 bounded by N ; the
mean curvature of N is one and the mean curvature vector of N points into B. Let
C be the other connected component of H3\N .

Theorem 1. Let M be a properly embedded constant mean curvature one surface
in H3, and assume M ∩N = ∅. If M ⊂ B, then M is a horosphere. If M ⊂ C and
the mean curvature vector of M points towards N (i.e. it points into the component
of H3 bounded by N ∪M), then M is a horosphere.

In the same spirit we shall establish:

Theorem 2. Let N be a catenoid cousin [B] (this is presented in section 1) and
let B be the connected component of H3 to which the mean curvature vector of
N points (that is, B is the mean convex domain bounded by N). Let M be a
properly embedded constant mean curvature one surface in H3, disjoint from N .
Then M ∩ B = ∅ and the mean curvature vector of M does not point towards N
(notice that such M exist, e.g., any horosphere in H3\B).

Theorem 3. Let M1 and M2 be disjoint properly embedded constant mean curva-
ture one surfaces in H3. Let W be the connected domain of H3 bounded by M1 and
M2. Then W is not mean convex, i.e. the mean curvature vectors of M1 and M2

do not both point into W .
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1. Preliminaries

The proofs of the theorems are inspired by the proof of Hoffman-Meeks. Minimal
surfaces in R3 are locally isometric to constant mean curvature one surfaces in H3

and in many ways they behave analogously [B]. The half-space theorem in R3 uses
a catenoid and its’ homotheties. In H3, a one-parameter family of catenoid cousins
plays the same role.

The catenoid cousins are rotational embedded constant mean curvature one sur-
faces. Take for H3 the model {x3 ≥ 0} ⊂ R3 and let I be the geodesic of H3

corresponding to the positive x3-axis. The catenoid cousins with rotational axis I
and waist at height c > 0 are a one-parameter family N(t), 0 < t < ∞, of constant
mean curvature one surfaces, each homeomorphic to S1 ×R having the following
properties:

i) As t → 0, N(t) converges to two horospheres meeting at the point (0, 0, c), one
horosphere is the horizontal plane at height c and the other is the sphere centered
at (0, 0, c/2), of (euclidean) radius c/2; see Figure 1(a), (b).
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Figure 1

ii) For t1 6= t2, t1, t2 > 0, N(t1) ∩N(t2) consists of two (horizontal) circles c(t1)
and c(t2).

iii) For t1 < t2, c(t1) ∪ c(t2) bounds a compact annulus A(t1, t2) contained in
N(t2). As t varies from t1 to infinity, the annuli A(t1, t) exhaust C(t1), where C(t1)
is the connected component of H3\N(t1) which does not contain I; see Figure 1(c).

iv) Fix t > 0 and let h(r) = x3 be the height (euclidean will do) of N(t), for
r2 = x2

1 + x2
2 (this makes sense for r large). Then h(r) →∞ as r →∞.
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For each c > 0, there is a family N(t) of catenoid cousins at waist height c. In
fact, euclidean homothety from (0, 0, 0) is a hyperbolic isometry and these isome-
tries act transitively on I. The properties i) through iv) will be established in an
appendix.

Any constant mean curvature one rotational surface that is embedded and has
axis I is one of the catenoid cousins N(t) for a certain waist height c.

2. Proofs of the theorems

Proof of Theorem 1. Let M be a properly embedded constant mean curvature hy-
persurface in hyperbolic n-space whose asymptotic boundary at infinity is at most
two points. Then it is known that M is a rotational hypersurface about the geo-
desic joining the two points [L-R]. When the asymptotic boundary of such an M
is one point, do Carmo and Lawson proved M is a horosphere [doC-L].

Now let N be a horosphere and M a constant mean curvature one surface in
H3, properly embedded. We assume M ∩N = ∅. If M is contained in the horoball
B bounded by N , then the asymptotic boundary of M is one point, the point at
infinity of N . Thus M is a horosphere.

So assume M ⊂ C = H3\B and the mean curvature vector of M points towards
N . We work in the upper half-space model of H3. Let N be the horosphere which
is the horizontal plane at height c0. Then M ⊂ {0 < x3 < c0}. By the usual
maximum principle (and our hypothesis on the direction of the mean curvature
vector of M) we can assume M is asymptotic to N at infinity, i.e. there exists a
sequence pn ∈ M such that r(pn) →∞ as n →∞, and x3(pn) → c0 (more precisely,
lower N until it touches M for the first time; if this touching point is not at infinity,
then M equals the lowered horizontal plane); we recall that r2 = x2

1 + x3
2. Since

M is properly embedded, no point of N is an accumulation point of N . Let ε > 0
be chosen so that the ball of radius ε centered at (0, 0, c0) does not meet M . Let
c = c0− ε/2 and consider the family of catenoid cousins N(t) with the waist height
c. Denote by A(t) the part of N(t) above height c.

By property i) of the family N(t), A(t) converges to the horosphere {x3 = c}
as t → 0. Also ∂A(t) → (0, 0, c) as t → 0. By property iv), the height of A(t) is
unbounded.

Now let ε and t0 be close enough to zero so that A(t0)∩M = ∅. As t varies from
t0 to 0, A(t) converges to {x3 = c}, uniformly on compact sets. There are points of
M above height c (strictly) and M is properly embedded, so there is a first value
of t (largest t in (0, t0)) such that A(t) ∩M 6= ∅ (A(t) does not first touch M at
infinity since the height of A(t) is unbounded). The mean curvatures of A(t) and
M point in the same direction at the point where they touch, so M = A(t) by the
maximum principle. This is impossible since A(t) meets N and M is disjoint from
N ; see Figure 2.

Proof of Theorem 2. First we show that M ∩ B = ∅. If not, then M ⊂ B so the
asymptotic boundary of M is at most two points, the points at infinity of N . By
the theorem of Levitt and Rosenberg which we cited in the first paragraph of the
proof of Theorem 1, M is a rotational surface with I as axis [L-R]. Thus M is
a horosphere or a catenoid cousin. But there is no horosphere or catenoid cousin
inside N . For the horosphere one can see this directly or apply Theorem 1 (which
would oblige N to be a horosphere). Any two catenoid cousins with the same
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axis intersect; this is property ii) when they have the same waist height, and in
general they differ by a homothety from (0, 0, 0). So it remains to show that when
M ⊂ C = H3\B, then the mean curvature vector of M does not point towards N .

We use property iv). Let N = N(t1) and consider the compact annuli A(t1, t)
as t goes from t1 to infinity. M is properly embedded, so for t small, A(t1, t) is
disjoint from M . As t increases there is a first value of t where A(t1, t) touches M .
At this point, the mean curvature vectors of M and A(t1, t) coincide, ∂A(t1, t) ⊂ N
so the touching point is an interior point of A(t1, t) and the maximum principle
then implies M is a catenoid cousin. This is impossible since M ∩N = ∅.

Proof of Theorem 3. Let γ be an arc from a point q1 ∈ M1 to a point q2 ∈ M2.
Let En ⊂ En+1 be an exhaustion of M1 by compact connected submanifolds with
boundary En equal to Γn. Also suppose q1 ∈ E1. Let Σn be a solution to the H = 1
Plateau problem with ∂Σn = Γn, Σn ⊂ W , and Σn homologous to En relative to
Γn in W . One obtains Σn by minimizing the functional |Σ̃n| + 2|Q| where Q is a
domain with ∂Q = En + Σ̃n. ∂W is a good barrier, so a minimum exists and is
smooth [A-R].

Each Σn intersects γ since the linking number is a homology invariant, so a
subsequence of the Σn converges to a stable H = 1 surface Σ in W .

By a theorem of Silveira, the horosphere is the only complete stable H = 1
surface in H3 [S], so Σ is a horosphere and then so are M1 and M2 by Theorem
1. This is impossible since two disjoint horospheres do not bound a mean convex
domain.

Remarks. 1. It seems that if M1 and M2 are properly embedded mean curvature
one surfaces in H3 and if the mean curvature vector of M1 points towards M2,
M1 ∩M2 = ∅, then M1 and M2 are horospheres.

2. Is there any properly embedded mean curvature one surface in H3 that is
simply connected and different from the horosphere? In R3, the helicoid and plane
exist.

3. Is there a properly embedded mean curvature one annulus in H3, other than a
catenoid cousin? First, one could try to decide this for such M that are transverse
to the horospheres x3 = constant. The part of the annulus above a horosphere is
conformally a punctured disk since ln x3 is superharmonic on the surface. In R3,
the only properly embedded minimal annulus is a catenoid.
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3. Appendix

In this section we will prove the properties of constant mean curvature one
surfaces of revolution. First, it is known that the distance from the generating
curve to the rotation axis attains a minimum at a unique point.

For the half-space model of H3, where the orbit space is the two-dimensional half-
plane one rotates the generating curve about the geodesic x = 0, and the generating
curve has coordinates (x(s), y(s)) parametrized by arc-length with respect to the
metric of R2. Any curve in H2 parametrized by arc-length with respect to the
metric of R2 has geodesic curvature kg in H2 given by kg = y(s)α′(s) + cos(α(s)),
where α(s) denotes the angle the curve makes with the x-axis. Thus, the principal
curvatures are given by

k1 = y(s)α′(s) + cos(α(s))

and

k2 = cos(α(s)) +
y(s)
x(s)

sin(α(s)).

Hence the generating curves for a rotational surface of constant curvature H
satisfy the following system of differential equations:

x′(s) = cos(α(s)),

y′(s) = sin(α(s)),

α′(s) =
2H − 2 cos(α(s)) − y(s)

x(s) sin(α(s))

y(s)
.

Now using the last equation we have

y(s)
(

α′(s) +
sin(α(s))

x(s)

)
= 2H − 2 cos(α(s)).

To prove property iv), we want to show first that y(s) is unbounded as s →∞. We
observe that the generating curve is tangent to the line y = λ0x, λ0 > 0, at the waist
point (x(s0), y(s0)). At this point y′(s0) and x′(s0) are positive and α′(s0) < 0.
We have that y′(s) ≥ 0 for all s ≥ s0; otherwise a piece of the generating curve will
be below the level y ≡ b for some constant b; using the maximum principle with
the horosphere y ≡ b gives a contradiction. Also if x′(s) or α′(s) changes sign for
some s > s0, then it is clear that a piece of the generating curve is above the line
y = a + λ1x, λ1 > 0, a > 0. But the cone of revolution of this line (x > 0) has
H > 1, and the maximum principle gives a contradiction. Since the right hand side
of the above equation is positive when H ≥ 1, we must have that

α′(s) +
sin(α(s))

x(s)
≥ 0.

We get, using the first equation of the system, that

x′(s)
x(s)

≥ −α′(s) cosα(s)
sinα(s)

.

By making the change of variable u(s) = sin α(s), we obtain

log x(s) − log x(s0) ≥ − log(u(s))− log(u(s0)).
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Taking the exponential of this expression we obtain

x(s) ≥ C

u(s)
=

C

sin(α(s))
,

where C = x(s0)u(s0). Thus, −1/x(s) ≥ sin(α(s))
−C . If we further assume by

contradiction that y(s) ≤ C̃, then we obtain that − y(s)
x(s) ≥ −D sin(α(s)), where

D = C̃
C > 0. Now the third equation of the system gives us that

y(s)α′(s) ≥ 2− 2 cos(α(s)) −D sin2(α(s))

= 2− 2 cos(α(s)) −D(1 − cos2 α(s))

≥ 2− 2 cos(α(s)) − 2D(1− cosα(s))

since −D(1 − cos2 α(s)) = −D(1 − cosα(s))(1 + cosα(s)) ≥ −2D(1 − cosα(s)).
Since α′ < 0, so is the right hand side of the above equation, and we obtain, using
the second equation of the system, that

α′(s) sin α(s)
2− 2 cos(α(s)) − 2D(1− cosα(s))

≤ y′(s)
y(s)

.

Now, by the change of variable u(s) = cosα(s), we obtain that

log(y(s1))− log(y(s0)) =
∫ s1

s0

y′(s) ds

y(s)

≥
∫ cos α(s1)

cos α(s0)

−du

(2− 2D)(1− u)

= − log(1 − u)
2D − 2

∣∣∣∣cos α(s1)

cos α(s0)

.

If D > 1, this integral goes to ∞ as s → ∞. Certainly, we can make D bigger by
taking a bigger upper bound C̃ for y(s). This proves property iv).

It is more convenient to now work in the ball model of H3 where the generating
curve is again denoted (x(s), y(s)) and the surface is obtained by rotating around
the x-axis. x measures hyperbolic distance along the rotation axis and y is the
hyperbolic distance of the point on the profile curve to the x-axis. In this coordinate
system the hyperbolic metric is given by

cosh2(y) ds2 + dy2.

Castillon [C] using this coordinate system proved a beautiful theorem describing
these surfaces of revolution as coming from a rolling construction. He found a first
integral of the differential equation that these surfaces must satisfy:

dx

ds
=

sin α

cosh y
,

dy

ds
= cosα.(1)

The principal curvatures are given by

k1 =
dα

ds
+ sin α tanh y, k2 = sinα coth y.

The mean curvature is given by

2H =
dα

ds
+ sin α(tanh y + coth y).
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Then the first integral in terms of y and α is:

F (y, α) = −H sinh2 y + sinh y cosh y sin α.

Thus, on a profile curve the F (y, α) is equal to a constant C. Now this constant is
related to the point closest to the x-axis, where α = π/2 and

C = − sinh2 y + sinh y cosh y.(2)

Observe that as this minimum distance varies from zero to infinity, C varies from
0 to 1

2 . Also, the derivative of C in terms of y at this minimum point is

cosh 2y − sinh 2y > 0.

Thus C is monotonically increasing in terms of the minimum distance to the origin.
We also need the following facts. The point yC(0) is a local minimum of the

profile curve. Also because of the comparison principle (by this we mean that if
M2 is locally on one side of M1 at a point x ∈ M1 ∩M2 and if the mean curvature
vector of M1 points to the side where M2 is at x, then HM2 ≥ HM1), at no other
point does the distance to the rotation axis have a local maximum; thus y is an
increasing function of x, for x ≥ 0.

Observe that as C increases to 1
2 the minimum distance of the profile curve to

the x-axis goes to infinity (since y is monotone increasing for x ≥ 0).
Let yC1(0) and yC2(0) be the points on the profile curves corresponding to the

solutions yC1 and yC2 at x = 0. Then letting C2 increase to 1
2 and keeping C1 fixed,

the intersection points of the profile curves yC1(x) and yC2(x) (if they exist) are at
least a distance yC2(0) from the x-axis. So to establish property iii), it suffices to
show the two profile curves intersect.

By (1), we have that dx
dy = tan α(y)

cosh y . By (2), we have that sinα(y) = C+sinh2 y
sinh y cosh y .

Since tan(sin−1(w)) = w√
1−w2 we obtain that

dx

dy
=

tan(sin−1( C+sinh2 y
sinh y cosh y ))

cosh y

=
C + sinh2 y

cosh y
√

sinh2 y cosh2 y − C2 − 2C sinh2 y − sinh4 y

=
C + sinh2 y

cosh y
√

sinh2 y(1− 2C)− C2

=
(C − 1) + cosh2 y

cosh y
√

cosh2 y(1− 2C)− (C − 1)2
.

Now observe that limy→∞ dx
dy = 1√

1−2C
> 0 if C < 1

2 .
Thus if C1 < C2, we have yC1(0) < yC2(0) while yC1(x) > yC2(x) for x large, so

the curves intersect.
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(1987), 341–347.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2762 LUCIO RODRIGUEZ AND HAROLD ROSENBERG
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