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Half-Time Image Reconstruction in
Thermoacoustic Tomography

Mark A. Anastasio*, Jin Zhang, Xiaochuan Pan, Yu Zou, Geng Ku, and Lihong V. Wang

Abstract—Thermoacoustic tomography (TAT) is an emerging
imaging technique with great potential for a wide range of
biomedical imaging applications. In this paper, we propose and
investigate reconstruction approaches for TAT that are based on
the half-time reflectivity tomography paradigm. We reveal that
half-time reconstruction approaches permit for the explicit control
of statistically complementary information that can result in the
optimal reduction of image variances. We also show that half-time
reconstruction approaches can mitigate image artifacts due to het-
erogeneous acoustic properties of an object. Reconstructed images
and numerical results produced from simulated and experimental
TAT measurement data are employed to demonstrate these effects.

Index Terms—Image reconstruction, photoacoustic tomog-
raphy, reflectivity tomography, spherical Radon transform,
thermoacoustic tomography.

I. INTRODUCTION

T
HERMOACOUSTIC tomography (TAT) is an emerging

imaging technique with great potential for a wide range of

biomedical imaging applications [1]–[4]. In TAT, a short elec-

tromagnetic pulse (e.g., microwave or laser) is used to irradiate

a biological tissue. When the electromagnetic pulse is absorbed

by the tissue, a thermoacoustic effect results in the emission of

acoustic signals that can be measured by use of a wide-band ul-

trasonic transducer. The objective of TAT is to produce an image

that represents a map of the spatially variant electromagnetic ab-

sorption properties of the tissue. Such an image may be of great

value because a strong correlation exists between electromag-

netic absorption in biological tissue and the pathological condi-

tion of the tissue [5], [6].

Although prototype TAT scanners have been built and inves-

tigated recently, there remains a great need for the develop-

ment of accurate and robust tomographic reconstruction algo-

rithms. Exact [3] and approximate [1], [7] reconstruction algo-

rithms have been developed for TAT employing spherical scan-

ning apertures. Equivalently, image reconstruction can be ac-

complished through transformation of the TAT data function

into a reflectivity tomography data function [8]–[10], followed

Manuscript received May 26, 2004; revised October 8, 2004. The Associate
Editor responsible for coordinating the review of this paper and recommending
its publication was C. R. Crawford. Asterisk indicates corresponding author.

*M. A. Anastasio is with the Department of Biomedical Engineering, Illi-
nois Institute of Technology, 10 W. 32nd St., E1-116, Chicago, IL 60616 USA
(e-mail: anastasio@iit.edu).

J. Zhang is with the Department of Biomedical Engineering, Illinois Institute
of Technology, Chicago, IL 60616 USA.

X. Pan and Y. Zou are with the Department of Radiology, The University of
Chicago, Chicago, IL 60637 USA.

G. Ku and L. V. Wang are with the Department of Biomedical Engineering,
Texas A&M University, College Station, TX 77843USA.

Digital Object Identifier 10.1109/TMI.2004.839682

by application of a reflectivity tomography reconstruction algo-

rithm. However, a common feature of these reconstruction ap-

proaches is that they require complete knowledge of the data

functions. Moreover, they do not provide for the explicit ex-

ploitation of data redundancies that are inherent in the tomo-

graphic measurements.

Previously we have investigated the so-called half-time re-

construction problem of reflectivity tomography. Using a layer-

stripping type of procedure [11] and concepts from microlocal

analysis, we demonstrated [12], [13] that an image could be

reconstructed uniquely and stably from measurement data, ac-

quired at all source-receiver locations on the scanning aperture,

that were truncated at delay time . Here, rep-

resents twice the time it takes for the probing wavefield to prop-

agate from the source to the center of the scanning aperture. In

the language of tomography, at each view angle (i.e., source-re-

ceiver position), half-time image reconstruction requires knowl-

edge of the set of integrals of the object function over spher-

ical surfaces that have radii less than or equal to the radius of

the scanning aperture. In this sense, the half-time reconstruction

problem of reflectivity tomography is analogous to the half-de-

tector problem [14] of X-ray tomography with a parallel-beam

tomography.

In this paper, we propose and investigate reconstruction ap-

proaches for TAT that are based on the half-time reflectivity

tomography paradigm. We reveal that half-time reconstruction

approaches permit for the explicit control of statistically com-

plementary information that can result in the optimal reduction

of reconstructed image variances. We also show that half-time

reconstruction approaches can mitigate image artifacts due to

heterogeneous acoustic properties of an object. Reconstructed

images and numerical results are produced from simulated and

experimental two-dimensional (2-D) TAT measurement data to

demonstrate these effects.

II. REVIEW OF TAT IMAGING MODEL

Consider an electromagnetic pulse with time dependence

that is used to irradiate a tissue sample. When the elec-

tromagnetic pulse is absorbed by the tissue, a thermoacoustic

effect results in the generation of a pressure wavefield

that can be measured by use of a wide-band ultrasonic trans-

ducer that is located on the surface of a spherical measurement

aperture that encloses the sample (see Fig. 1). In the 2-D

case, the measurement aperture corresponds to a circle. As-

suming that the object to be imaged has homogeneous acoustic

properties (but spatially varying electromagnetic absorption

0278-0062/$20.00 © 2005 IEEE
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Fig. 1. TAT measurement configuration.

properties), the pressure wavefield that is measured1

as a function of time at location can be expresses as

[3]

(1)

where denotes the spatial energy absorption function that

resides inside a sphere of radius , is the (constant) ve-

locity of sound in the object and background medium, and the

constant represents the isobaric volume expansion coefficient

divided by the specific heat of the (acoustically) homogeneous

medium. The reconstruction problem of TAT is to invert (1) for

determination of from knowledge of for

and . Assuming three-dimensional (3-D) scanning

apertures, inversion formulae have been derived [3], [7] that

can accomplish this.

A mathematical relationship between the TAT data function

and the spherical Radon transform can be derived readily.

Specifically, by acting on both sides of (1), one can show

that

(2)

where and can be interpreted as a spherical

Radon transform of . Equation (2) has the same mathemat-

ical form as the imaging model in reflectivity tomography [8],

[9]. Consequently, image reconstruction in TAT can be accom-

plished by inverting the spherical Radon transform in (2) via a

reflectivity tomography reconstruction algorithm.

A. Half-Time TAT Data Functions

Consider half-time data functions and

that are defined as

otherwise
(3)

and

otherwise.
(4)

1In practice, the function p(~r ; t ) is deconvolved by the impulse response
of the receiving transducer and the finite width of the probing electromagnetic
pulse.

Existing reflectivity tomography reconstruction algorithms

[8]–[10] assume that the data are complete (untruncated),

and therefore will generally produce distorted images when

applied directly to or . Previously, we have

employed a layer-stripping procedure [12], [13] to explicitly

identify redundant information in the (untruncated) data func-

tion and demonstrated that is determined uniquely

from knowledge of the half-time data functions or

. A similar result has been derived recently by Finch

et al. [10] using a different mathematical approach. To date,

exact and explicit inversion formulae for reconstruction of

from knowledge of the half-time data functions or

remain undiscovered. However, we have demon-

strated that accurate images can be reconstructed stably from

knowledge of the half-time data functions by use of iterative

reconstruction algorithms [12], [13]. Another iterative recon-

struction approach for TAT is described in [15].

B. Discrete TAT Imaging Model

In practice, the detected pressure wavefield is discretized tem-

porally and measured at a finite number of receiver locations.

Let denote the discretized pressure signal, where

, describes the temporal sam-

pling points with sampling interval and the vectors ,

represent the receiver locations on the aper-

ture . A discrete approximation of (2) is given by

(5)

where and the notation denotes a sampled

version of the continuous function . Similarly, the sam-

pled versions of the half-time data functions and

will be denoted by and ,

respectively.

III. EXPLOITATION OF STATISTICALLY COMPLEMENTARY DATA

In this section, we describe how half-time reconstruction

approaches, along with knowledge of the (second-order) data

noise statistics, can be employed to form statistically optimal

reconstruction procedures for TAT.

A. Noise Model

With consideration of data noise, the detected pressure wave-

field can be described as

(6)

where is an additive noise component that models de-

tector noise and/or stochastic variations in the pressure wave-

field. Here and elsewhere, boldface and normal typefaces denote

a stochastic quantity and its mean, respectively. The operators

and will denote the variance and covariance,

respectively, of the associated stochastic quantities. According
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to (5) and (6), is also a stochastic quantity with covari-

ance

(7)

Equation (7) describes how the second-order statistics of the

data noise determine the second-order statistics of the (spherical

Radon transform) data function .

It is often reasonable to assume that is an uncorre-

lated stochastic process [16] that is described by

(8)

where and denotes the Kro-

necker delta function. Substitution from (8) into (7) results in

(9)

where is the smaller of and . In the case of stationary noise

with , (9) reduces to

(10)

Because , (9) and/or (10) indicate that the noise

in is correlated with respect to the -coordinate and

is a monotonically increasing function of .

Therefore values of that correspond to large may be

corrupted significantly by noise.

B. Data Function Signal-to-Noise Ratio

For the noise models discussed in Section III-A, the magni-

tude of the noise in will be smaller than in .

Depending on the structure of the object, this can result in

having a larger signal-to-noise ratio (SNR) than

. As an example of this effect, we can calculate

analytically the SNR of the noisy circular Radon transform

data function for the 2-D case where is comprised

of uniform disks and represents a circle with radius .

(A similar analysis can be performed readily for the 3-D case

where is comprised of uniform spheres, but it provides

qualitatively similar conclusions.)

Consider that is a uniform disk with unit amplitude that

is centered at the origin and has a radius . For a given

, from elementary geometry one finds that

(11)

Fig. 2. A plot of (12) for the cases R = 1:0 (solid line) and R = 0:5

(dashed line). The parameters R = 1:2 and D = 1 were employed.

where recall that is the radius of the scanning aperture. For

the noise model corresponding to (10) one obtains

(12)

where . A plot of (12) as a function of

for (solid line) and (dashed

line) are given in Fig. 2. These plots show that the data func-

tion (that corresponds to ) possesses

larger SNR values than does the data function (that

corresponds to ). Note that this effect becomes

more pronounced as . This is significant because

it is highly desirable to have in compact TAT scan-

ners. In Section VI, we demonstrate numerically that, for ob-

jects of practical interest, images reconstructed from

have significantly lower variances than those reconstructed from

.

C. Explicit Control of Image Variance

As described in Section II-A, either of the half-time data

functions or can be employed for

reconstruction of the image . This indicates that the (com-

plete) data function contains a twofold redundancy.

In the presence of data noise, the images reconstructed from

and will not be identical in general.

One way to reconstruct an image that has an optimally

reduced variance without introducing a bias is to identify and

exploit statistically complementary information that is con-

tained in and . When the data functions

are noiseless and consistent, this is tantamount to identifying

redundancies in and . Unfortunately,

simple point-to-point mappings that relate values of

and in data space do not exist [11]. This is unlike

the conventional Radon transform case for which data redun-

dancies can be identified readily by use of obvious symmetry

properties. Although data redundancies are not identified easily

in the data space, as described next, we can utilize the half-time

reconstruction paradigm to exploit statistically complementary

information in and and thereby control

the statistical properties of the reconstructed image.
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Let , , and denote estimates of that

are reconstructed from , , and , re-

spectively. For example, in Section VI we reconstruct such im-

ages by use of a nonlinear iterative reconstruction algorithm. In

general, these images will contain statistically complementary

information that can be utilized to form an estimate of that

has a reduced variance. For example, we can form the estimate

(13)

where and represent any two distinct images in the

three element set

and is a real-valued combination coefficient. For a given

pair of images to combine [i.e, for a given and ],

(13) represents an infinite family of estimators for obtaining

that is indexed by the choice of . Because

and are chosen from a set of three possible images, (13)

describes three infinite families of such estimators.

From (13) the variance of can be expressed as

(14)

It is clear, therefore, that different choices for will pro-

duce estimators that have different variances. To obtain

that has an optimally reduced variance, we can choose

such that

(15)

which defines an optimal combination coefficient that min-

imizes (14). Substitution from (14) into (15) yields

(16)

Therefore, from knowledge of the (joint) second-order statis-

tical properties of and , an estimate can be

formed that has the minimum variance obtainable by the cor-

responding family of estimators described by (13). The iden-

tification of the family of estimators that can produce an es-

timate of that has the smallest variance depends on the

second-order statistics of the data function (and hence

the second-order statistics of and ) and

the choice of the algorithms that are used for reconstruction of

the images , , and . In Section V, we em-

ploy several noise models and a given reconstruction algorithm

to investigate numerically the families of estimators described

by (13).

IV. MITIGATION OF ARTIFACTS FROM ACOUSTIC

INHOMOGENEITIES

In this section, we describe how half-time reconstruction ap-

proaches can mitigate artifacts that arise from heterogeneities in

the acoustic properties of an object.

A. Acoustic Heterogeneities in TAT

It is customary in TAT to assume that the object is acousti-

cally homogeneous. As described by (1) and (2), under this as-

sumption the TAT image reconstruction problem can be solved

by inverting a spherical Radon transform. In many applications

of TAT, including imaging of the female breast [4], the object

of interest may not possess a constant acoustic speed. In these

cases, (1) is an approximation and the images obtained by in-

verting (2) can contain distortions and artifacts.

In [4], the effects of acoustic heterogeneities in TAT breast

imaging were studied. It was demonstrated that multi-path in-

terference in breast TAT was negligible, but phase distortions

caused by time-of-flight (TOF) variations could be problematic.

It is reasonable to assume that similar conclusions apply to other

imaging applications involving objects that possess only small

variations in acoustic properties. To account for acoustic hetero-

geneities, the forward model in (1) can be generalized as

(17)

where describes the TOF from point to . As de-

scribed in [4], can be approximated accurately as

(18)

where is the local acoustic speed and the set de-

scribes a line connecting and . When the object has a con-

stant acoustic speed , (18) yields

, and (17) reduces to (1).

If the acoustic speed distribution is known, the TOF

function can be determined by use of (18) and one

can attempt to invert (17) to determine exactly. However,

in current applications of TAT is not available and images

are reconstructed by use of algorithms that assume a constant

acoustic speed. As described next, the image artifacts that arise

due to ignoring acoustic heterogeneities can be mitigated, in

many cases, by use of a half-time reconstruction method.

We will consider that the image is reconstructed by the

method described in Section II. In analogy with (2), we form the

data function

(19)

(Because the phenomenon described below do not rely on sam-

pling effects, we will consider here the continuous versions of

the data functions.) The data function is then processed

by a (full-time) reflectivity tomography reconstruction algo-

rithm for reconstruction of an image . However, because
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Fig. 3. A schematic of the heterogeneous acoustic velocity distribution c(~r).
The value c denotes the (known) background velocity while c denotes the
velocity of the heterogeneous region. Superimposed on the schematic are
contours that represent locations having constant optical path lengths to the
receiver position for the cases c = c (solid lines) and c = 1:0759c
(dashed lines). Please refer to Section IV-B for a complete description.

the data is inconsistent with respect to the imaging

model in (2), and can contain significant

artifacts and distortions. It is easy to understand the origin of

these data inconsistencies. On substitution from (17) into (19)

one finds that

(20)

For a given value of , represents a weighted integral

of over the surface that is not spherical

generally. Accordingly, and contain different

information regarding . When and therefore

, (20) reduces to (2).

B. Half-Time Reconstruction Approach

Let and denote half-time data functions

that are defined from in analogy with (3) and (4).

For many objects of practical interest, the use of a half-time

reconstruction method that employs can reduce the

severity of the distortions and artifacts in . To understand

this heuristically, we can examine the 2-D problem and con-

sider the acoustic velocity distribution shown in Fig. 3. This

distribution is comprised of two uniform concentric regions

that have acoustic velocities and , with , and radii

and , respectively. This type of heterogeneous velocity

distribution could represent an acoustic model of the female

breast [4], for example. We will assume that the homogeneous

matching medium (that the object is embedded in) also has an

acoustic velocity .

As discussed above, the acoustic heterogeneity, which in

Fig. 3 is represented by the inner disk with , will

cause the data functions and to differ. The key

observation is that the magnitude of this difference will depend

on the value of . More specifically, the magnitude of the

difference will be smaller, in general, for small values of than

for large values of . This is because

will become generally larger as the path-length through the

acoustic heterogeneity that the pressure wavefield must propa-

gate increases. For example, as seen in Fig. 3, for

the acoustic heterogeneity is not encountered and therefore

. For , the acoustic hetero-

geneity has an impact on the TOF and therefore the curve

becomes distorted from the circular curve

, and the degree of this distortion increases

with increasing . This effect is demonstrated in Fig. 3 for two

different values of . The solid and dashed lines represent the

curves and that were calculated

analytically assuming the values , ,

, and (arbitrary units), respectively.

These observations indicate that, for a large class of objects,

when acoustic heterogeneities are present the data will

become less spherical Radon transform-like (or less circular

Radon transform-like in the 2-D case) as increases. Therefore,

the magnitude of the inconsistent component of will be-

come larger with increasing . This suggests that a half-time re-

construction method that employs can produce im-

ages with reduced artifact and distortion levels than contained

in images reconstructed from or . This effect

is demonstrated clearly by the numerical results in Section VI.

V. NUMERICAL STUDIES

We performed numerical studies using simulation and experi-

mental TAT measurement data to investigate the half-time-based

reconstruction approaches for TAT discussed in Sections III and

IV. Although both the simulation and experimental data corre-

sponded to 2-D TAT measurement geometries, the conclusions

derived from these studies are applicable immediately to the 3-D

case.

A. Half-Time-Based Methods for Controlling Image Variance

We investigated quantitatively the statistical properties

of the half-time-based reconstruction methods discussed in

Section III. In these studies, it was assumed that the acoustic

properties of the object were homogeneous.

Simulated Noiseless TAT Measurement Data: The 2-D nu-

merical phantom shown in Fig. 4, left panel, was chosen to rep-

resent . From knowledge of , which had a radius of

(arbitrary units), the (full-time) noiseless data function

was calculated numerically by use of (5) assuming the

2-D measurement geometry shown in Fig. 1 with .

Here, the angle replaces as the indicator of the ultra-

sound receiver position on the circular scanning aperture. The

data function was determined at equally

spaced values of on the scanning aperture over the interval

and at equally spaced values of over the

interval .

Half-time data functions and were de-

fined as

otherwise
(21)

and

otherwise.
(22)
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Fig. 4. The numerical phantom for A(~r) employed in our simulation studies is shown in the left panel. The center and right panels display images reconstructed
from the noiseless data functions g[� ; �t ] and g [� ; �t ], respectively.

Noise Models: To generate noisy data functions,

was treated as a realization of a stochastic process. According

to (5) and (6), can be expressed as

(23)

For convenience, in our simulations the data were normalized in

such a way that . The noise processes

were treated as realizations of zero-mean uncorrelated Gaussian

stochastic processes with variances chosen according to the

rules

(24)

where , 2, or 3. This family of noise models can describe

electronic noise contributed by the detector system and other

stochastic effects that contaminate the data function.

Reconstruction Algorithm: Analytic inversion formulae for

reconstructing images in TAT from half-time data functions

have not been identified. However, because (5) is a positive in-

tegral equation, the expectation maximization (EM) algorithm

[11], [17] could be employed for reconstruction of . A

desirable characteristic of the EM algorithm is that it ensures

the nonnegativity of the reconstructed image , which is

required by the physics of the problem. The EM algorithm was

employed for reconstruction of the images , ,

and from the data functions , , and

, respectively. The matrix size of the reconstructed im-

ages was 128 128 pixels. Details describing the application

of the EM algorithm in reflectivity tomography can be found in

[11].

Empirical Determination of Image Statistics: If the

second-order statistics of the data are known, one

can attempt to calculate [18], [19] the second-order statistics

that are required for determination of the optimal combination

in (16) for a given family of estimators (i.e., a given

and ). In this work, we conducted Monte Carlo studies for

determination of empirical estimates of these statistical proper-

ties. Using the noise models given in (23) and (24),

noisy realizations of the data functions , ,

and were generated. From these ensembles of data

functions, corresponding sets of noisy images ,

, and were reconstructed by use of the EM

algorithm. Because an ad-hoc stopping rule was not employed

with the EM algorithm, we saved the reconstructed images at

various stages of convergence for analysis. The sets of recon-

structed images were used to determine empirical estimates

[20] of , , and . Empir-

ical estimates of the covariances and

were determined also. These statistical

quantities were used in (16) to determine estimates of and

.

Subsequent to the determination of the optimal combination

coefficients, we conducted simulation studies to investigate the

statistical properties of the estimators in (13). From the sets

of noisy images , , and described

above, sets of noisy images , and were gen-

erated from (13) as

(25)

and

(26)

respectively. The sets of reconstructed images and

were used to determine empirical estimates of

, and .

B. Mitigation of Artifacts From Acoustic Heterogeneities

We performed numerical studies to demonstrate that a half-

time reconstruction approach that utilizes can mit-

igate artifacts that arise from heterogeneities in the acoustic

properties of the object. Simulated 2-D measurement data were

generated according to (the 2-D version of) (20). The object

was the same as utilized in Section V-A (see Fig. 4, left

panel) and the heterogeneous acoustic speed distribution

was the same as described in Section IV-B (see Fig. 3). The

data function was determined at equally

spaced values of on the circular scanning aperture over the

interval and at equally spaced values of over

the interval . The computation of

involved the following three steps. First, for a given value of

, sets of evenly sampled points that reside on the curves

were determined analytically. Second, bilinear

interpolation was utilized to determine the values of at the

locations . Finally, the values of were weighted by the

factor and the 2-D version of (20) was ap-

proximated by use of trapezoidal integration. Variations in the

definition of the acoustic speed distribution were consid-

ered and multiple data sets were generated.
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Fig. 5. Reconstructed images corresponding to the noise model in (24) with a = 3. Images in (a)–(c) were reconstructed from noisy realizations of the data
functions ggg [� ; �t ], ggg [� ; �t ], and ggg[� ; �t ], respectively, by use of the EM algorithm with 40 iterations. Panels (d)–(f) contain the corresponding images
reconstructed by use of 80 iterations of the EM algorithm.

Half-time data functions were defined in analogy

with (21). The EM algorithm was employed for reconstruc-

tion of the images and from the data functions

and , respectively. The matrix size of the re-

constructed images was 256 256 pixels.

C. Experimental Data

We also reconstructed images from two sets of experimental

TAT measurement data that were acquired previously in the Op-

tical Imaging Laboratory at Texas A&M University.2 The first

data set corresponded to a physical phantom that is described in

[3]. The data were acquired using a microwave source and a 2-D

measurement geometry that had a scanning radius

[3]. Measurements were taken at 160 equally spaced positions

on the scanning aperture and for each measurement the received

pressure signal was sampled at 2000 points at a sampling fre-

quency of 50 MHz. The second data set corresponded to a mouse

brain that was imaged by use of a TAT animal scanner [21]. The

data were acquired using an optical source and a 2-D measure-

ment geometry that had a scanning radius

[21]. Measurements were taken at 240 equally spaced positions

on the scanning aperture and for each measurement the received

pressure signal was sampled at 5000 points at a rate of 100 sam-

ples/microsecond. Full- and half-time data reflectivity tomog-

raphy data functions were calculated from the recorded pres-

sure signals by use of (5) and corresponding images were re-

constructed via the EM algorithm with 100 iterations.

VI. NUMERICAL RESULTS

A. Statistical Properties of Half-Time-Based Methods

Fig. 4 contains images reconstructed from the noiseless data

functions (center panel) and (right panel).

Both of these images appear virtually identical to the true

2Professor Lihong V. Wang, Optical Imaging Laboratory, Department of
Biomedical Engineering, Texas A&M University, College Station, TX.

Fig. 6. Vertical profiles through the centers of the empirical variance maps
VarfAAA (~r)g (solid line) and VarfAAA (~r)g (dashed line) for the noise model
in (24) with a = 3. Panels (a) and (b) correspond to images obtained by use of
the EM algorithm with 40 and 80 iterations, respectively.

phantom that is shown in the left panel of the same figure. This

is consistent with our assertion that accurate TAT images can

be reconstructed from the half-time data function .

These images were reconstructed using 200 iterations of the

EM algorithm.

Noise Model: : Figs. (5)–(8) contain

results that correspond to the noise model in (24) with .
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Fig. 7. (a) ! (x; y) computed for the noise model in (24) with a = 3. (b) A

vertical profile through the center of ! (x; y). (c) An image AAA (~r) formed

by use of (26) from noisy realizations of AAA (~r) and AAA(~r).

Fig. 8. Vertical profiles through the centers of the empirical variance maps
VarfAAA (~r)g (solid line) and VarfAAA(~r)g (dashed line) for the noise model
in (24) with a = 3.

The images in Fig. 5(a)–(c) were reconstructed from noisy

realizations of the data functions , , and

, respectively, by use of the EM algorithm with 40

iterations. Fig. 5(d)–(f) shows the corresponding images recon-

structed by use of 80 iterations of the EM algorithm. It appears

that the images reconstructed from the data function

[Fig. 5(a) and (d)] contain significantly reduced noise levels

as compared to the corresponding images reconstructed from

the data function [(Fig. 5(b) and (e)]. These obser-

vations are confirmed quantitatively by the variance plots in

Fig. 6. Fig. 6(a) contains vertical profiles through the centers

of the empirical variance maps (solid line) and

(dashed line) computed from the ensemble of

images obtained by use of the EM algorithm with 40 iterations.

The results corresponding to images reconstructed by use of the

EM algorithm with 80 iterations are shown in Fig. 6(b). In both

cases it is clear that , which is

consistent with the discussions in Sections III-A and III-B.

It also appears that the images reconstructed from the data

function [Fig. 5(a) and (d)] contain significantly re-

duced noise levels in regions away from the image center as

compared to the corresponding images reconstructed from the

full-time data function [Fig. 5(c) and (f)]. This is con-

firmed by comparison of the variance plots in Figs. 6 and 8. The

dashed curve in Fig. 8 represents a vertical profile through the

center of the empirical variance map computed from

the ensemble of images obtained by use of the EM algorithm

with 40 iterations. (The solid line in Fig. 8 will be discussed

below.) Figs. 6 and 8 indicate that near the center of image space

, but

in the outer regions of image space. These results hold true also

for images obtained by use of the EM algorithm with 80 itera-

tions.

The observations above suggest that it is highly desirable to

form the image defined in (26). This is because the be-

havior of is complementary to that of

and this can be exploited by use of the combination coefficient

. For and computed by use of the EM algo-

rithm with 40 iterations, and a vertical profile through

the center of are shown in Fig. 7(a) and (b), respec-

tively. The combination coefficient decreases from a

value near 1 at the edge of image space down to a value near 0 at

the center of image space. This reflects that is weighted

to contribute more to away from the center of image

space where . Near the center of

image space, and therefore

is weighted to contribute more to . Fig. 7(c) contains an

image formed by use of (26) from noisy realizations of

and . The solid curve in Fig. 8 represents a ver-

tical profile through the center of the empirical variance map

. This curve is lower in most places (and nowhere

higher) than the dashed curve that represents a profile through

. Therefore, the magnitude of the noise in images

will be smaller, on average, than in images . More-

over, as expected, everywhere.

Qualitatively similar results were obtained for images recon-

structed by the EM algorithm with 80 iterations.

Because, as shown in Fig. 6, both and

are large near the center of image space, the

image can be expected to have enhanced noise levels
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Fig. 9. Reconstructed images corresponding to the noise model in (24) with a = 0. Images in figures (a)–(c) were reconstructed from noisy realizations of
the data functions ggg [� ; �t ], ggg [� ; �t ], and ggg[� ; �t ], respectively, by use of the EM algorithm with 40 iterations. Figures (d)–(f) contain the corresponding
images reconstructed by use of 80 iterations of the EM algorithm.

Fig. 10. Vertical profiles through the centers of the empirical variance maps
VarfAAA (~r)g (solid line) andVarfAAA (~r)g (dashed line) for the noise model
in (24) with a = 0. Panels (a) and (b) correspond to images obtained by use of
the EM algorithm with 40 and 80 iterations, respectively.

in that region. Although not shown, this prediction was verified

in our numerical simulations.

Noise Model: : Figs. (9)–(12) contain results

that correspond to the noise model in (24) with . The

images in Fig. 9(a)–(c) were reconstructed from noisy realiza-

tions of the data functions , , and ,

respectively, by use of the EM algorithm with 40 iterations.

Fig. 9(d)–(f) are the corresponding images reconstructed by use

of 80 iterations of the EM algorithm. As expected, The images

reconstructed from the data function [Fig. 9(a) and

(d)] appear to contain significantly reduced noise levels as com-

pared to the corresponding images reconstructed from the data

function [Fig. 9(b) and (e)]. These observations are

confirmed quantitatively by the variance plots in Fig. 10.

The images reconstructed from the data function

[Fig. 9(a) and (d)] appear to contain slightly reduced noise levels

in regions away from the image center as compared to the corre-

sponding images reconstructed from the full-time data function

[Fig. 9(c) and (f)], but the effect is not as pronounced as

was observed for the noise model with discussed above.

As before, we can form the estimate . For and

computed by use of the EM algorithm with 40 iterations,

and a vertical profile through the center of

are shown in Fig. 11(a) and (b), respectively. Fig. 11(c) contains

an image formed by use of (26) from noisy realiza-

tions of and . The solid curve in Fig. 12 represents

a vertical profile through the center of the empirical variance

map . This curve is lower in most places than the

dashed curve that represents a profile through . The

fact that the difference between the variance curves is not large

in most places indicates that the EM algorithm, when applied

to the (full-scan) data function with the noise

model, is implicitly utilizing a combination coefficient that is

“close” to . Qualitatively similar results were obtained for

images reconstructed by the EM algorithm with 80 iterations.

Noise Model: : The results that corre-

spond to the noise model in (24) with can be under-

stood as intermediate cases of the results for the and

noise models. As before, the images reconstructed from

the data function appear to contain significantly re-

duced noise levels as compared to the corresponding images re-

constructed from the data function . The differences
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Fig. 11. (a) ! (x; y) computed for the noise model in (24) with a = 0.

(b) A vertical profile through the center of ! (x; y). (c) An image AAA (~r)
formed by use of (26) from noisy realizations of AAA (~r) and AAA(~r).

Fig. 12. Vertical profiles through the centers of the empirical variance maps
VarfAAA (~r)g (solid line) and VarfAAA(~r)g (dashed line) for the noise model
in (24) with a = 0.

between and are larger than obtained

for the noise model case but smaller than obtained for the

noise model case. This indicates that the ability to con-

trol the variance properties of via (26) [or equivalently

Fig. 13. Images reconstructed from simulated TAT measurement data
containing the effects of acoustic heterogeneities. The images in subfigures (a),
(b), and (c) were reconstructed from data corresponding to acoustic velocity
map discussed in Section IV-B with c =c = 0:9, 1.07, and 1.12, respectively.
The images in the left and right panels of each subfigure were reconstructed
from half- and full-time data functions, respectively.

(13)] is particularly important for noise models corresponding

to large values .

B. Mitigation of Artifacts Due to Acoustic Heterogeneities

Fig. 13 contains images reconstructed from simulated TAT

measurement data containing the effects of acoustic hetero-

geneities. The images in subfigures (a), (b), and (c) were

reconstructed from data corresponding to acoustic velocity map

discussed in Section IV-B with , 1.07, and 1.12,

respectively. In each case, and (arbitrary

units). The images in the left and right panels of each subfigure

were reconstructed from and , respectively.

In all cases, the conspicuity of the artifacts and distortions in

the images reconstructed from the half-time data is

much less than in the images reconstructed from the full-time

data . This corroborates our assertion in Section IV-B
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Fig. 14. Images reconstructed from the experimental TAT data sets that correspond to the (a) physical phantom and (b) mouse brain. The images in the left and
right panels were reconstructed from half- and full-time data functions, respectively.

that half-time reconstruction methods can produce images with

reduced artifact and distortion levels than contained in images

reconstructed from full-time data.

C. Experimental Results

Fig. 14 contains the images that were reconstructed from

the experimental TAT data sets that correspond to the physical

phantom [Fig. 14(a)] and mouse brain [Fig. 14(b)]. The images

in the left and right panels were reconstructed from half- and

full-time data functions, respectively. Although these particular

objects do not possess highly heterogeneous acoustic proper-

ties, variations in their acoustic properties produce acoustic

reverberations that degrade the fidelity of the measurement

data. In both cases, the contrast and resolution of the images

reconstructed from half-time data appears to be superior to that

of the images reconstructed from the full-time data.

VII. SUMMARY

Thermoacoustic tomography is an important emerging

imaging technique with potential for a wide range of biomed-

ical imaging applications. Although prototype TAT scanners

have been built and investigated recently, there remains a great

need for the development of accurate and robust tomographic

reconstruction algorithms. In this paper, we proposed and

investigated reconstruction methods for TAT that were based

on the half-time reflectivity tomography paradigm. These re-

construction methods permit for accurate image reconstruction

from knowledge of only half of the detected pressure signal

at each location on the receiving aperture. This is possible

because a complete set of TAT measurement data contains

twice as much information as is required theoretically for stable

image reconstruction. In essence, the half-time reconstruction

problem of reflectivity tomography is analogous to the half-de-

tector problem of X-ray tomography with a parallel-beam

tomography. To our knowledge, this is the first work to exploit

explicitly such data redundancies in TAT.

We identified and investigated two potential advantages

of half-time-based reconstruction methods for TAT. First, we

demonstrated that half-time reconstruction methods facilitate

the explicit control of statistically complementary information

in the TAT measurement data. From a full-time (i.e., complete)

set of TAT measurement data, three images can be recon-

structed: one from each of the (two) half-time data sets and one

from the full-time data set. When the measurement data are

noisy, we demonstrated that each of these images will be dis-

tinct in general and possess different statistical properties. We

proposed and investigated classes of estimation methods that

can exploit statistically complementary information contained

in these images to form a final image that has an optimally

reduced variance.
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Second, we revealed that half-time reconstruction methods

can mitigate image artifacts due to heterogeneous acoustic prop-

erties of an object. Reconstruction algorithms that are in current

use assume that the object is acoustically homogeneous. How-

ever, in many applications of TAT, including imaging of the fe-

male breast [4], the object of interest may not possess a con-

stant acoustic speed. In these cases, the TAT measurement data

will be inconsistent with respect to the imaging model, which

can result in image artifacts and distortions. We demonstrated

heuristically as well as numerically that a half-time reconstruc-

tion method that utilizes the first-half data function

can reconstruct images with significantly reduced artifact and

distortion levels as compared to images reconstructed by use of

the second-half or full-time data functions. This results because

the temporal components of the pressure wavefields that con-

tribute to the data function are often less perturbed

by the acoustic heterogeneity than are the components that con-

tribute to the second-half data function . This is be-

cause they are required to propagate through the acoustic het-

erogeneity over shorter optical path-lengths in general.

Although the EM algorithm was employed for image re-

construction, the perspectives and insights promulgated in

this paper are independent of the reconstruction algorithm

employed. The investigation of alternative algorithms for

reconstruction of TAT images from half-time data functions

remains a topic for future studies. Other topics for future studies

include the determination of appropriate data noise models

for specific experimental TAT scanners and the assessment of

how noise propagation characteristics of TAT reconstruction

algorithms affect various detections tasks.
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