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1. Introduction

Halfspace depth and floating body are the same concept. The first is extensively
studied in nonparametric statistics, the second is of great importance in convex
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geometry. Until recently, the convex geometry community has not been aware
of the work on data depth, and not too many researchers from the statistics
community were familiar with the work on floating bodies. Of course, the moti-
vation and the goals in both fields are different, and even their philosophies are
not the same. Nonetheless, there is an abundance of results common to both
directions of research. We want to explore what is common to both fields, what
is known and what is not known — to build a bridge between the two disciplines
of mathematics, and link these two separate worlds.

In nonparametric statistics, data depth is a generalization of order statistics
and ranks to multivariate random variables. One of its aims is, for a multivariate
probability distribution, to devise a distribution-specific ranking of points in the
sample space. In particular, depth allows to distinguish points that fit the overall
pattern of the distribution, from measurement errors and other outliers. More
generally, depth is a tool that enables efficient description, visualization, and
nonparametric statistical inference for multivariate data.

In convex geometry, the concept of floating body was used, among other
things, to introduce the affine surface area to all convex bodies. The associated
affine isoperimetric inequality is much stronger than the classical isoperimetric
inequality. It provides solutions to many problems where ellipsoids are extrema.

2. Motivation and background

In classical statistics of univariate data it is well known that the ordering of data
points and the corresponding rank statistics constitute powerful statistical tools,
valid under very broad sets of assumptions. The median, for instance, is a rather
efficient, robust, affine equivariant location estimator. Quantiles are invaluable
in both visualization and inference. Rank tests provide versatile analogues to the
traditional testing procedures, and unlike many standard parametric statistical
tests, work under minimal assumptions imposed on the data.

In multivariate spaces, however, no natural ordering exists. For d > 1, we
are not able to rank points x and y in Rd according to their magnitude, or tell
whether x lies “to the left” of y. Though, for a given dataset, one can still ask
how well a point fits into the overall pattern of the observations. If the data
concentrate around a focal point, and follow a simple scatter structure, we can
say that a point x inside the data cloud is “deeper” inside the mass of the data,
than a point y that lies on the outskirts, or outside the data cloud. This notion
of multivariate center-outwards ranking is formalized by the idea of data depth.
In general, a depth D(x;P ) is a function that, given a probability distribution
P on Rd (or an empirical measure that corresponds to a random sample from
this distribution), quantifies the centrality (the depth) of a point x with respect
to (w.r.t.) the geometry of P . The more x is inside the main bulk of the mass
of P , the higher the depth D(x;P ). As such, the depth enables us to rank the
points of Rd according to their centrality w.r.t. P , and devise the corresponding
depth-rank statistics, or depth-based quantile regions.

Let us illustrate our point by giving two simple examples where the depth
plays an instrumental role. In the first one, our search for sensible data ordering
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Fig 1. The Hertzsprung-Russell diagram of the Star Cluster CYG OB1. The four giant stars
(red points) attract both the sample mean (red triangle), and the sample covariance (repre-
sented by the red ellipse). The halfspace depth-based median (brown star), and the depth-based
central region containing 25 % of the observations (brown polygon), provide a more appro-
priate representation of the location and the variability of the main data cloud.

is motivated by the problem to define a multivariate analogue of the median. In
the classification task presented afterwards, we stress the importance of general
global ranking procedures in data science.

Consider the dataset of 47 bivariate observations taken from [159], displayed
in Figure 1. The data correspond to the Hertzsprung-Russell diagram of the stars
in the Star Cluster CYG OB1 in the Cygnus constellation. In the scatterplot,
the logarithm of the effective temperature at the surface of the star (log.Te) is
plotted, against the logarithm of its light intensity (log.light). The majority
of the observations follows a common pattern — their data points concentrate in
the south-east part of the plot, and appear to be scattered rather regularly. Four
stars clearly do not follow that pattern, and could be considered as outliers (the
red points in Figure 1). Those are known to be stars of different characteristics
(so-called giant stars). Let us determine the location of the random sample. The
sample mean (red triangle) is attracted towards the outlying observations, and
does not represent the location of the majority of the data appropriately. That
is, of course, caused by the fact that the expectation is known to be affected
severely by erroneous data, and outliers, i.e., it is not robust. For univariate
data, one can opt for the median in such situations. But, what is a median of
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a multivariate dataset? Intuitively, the median should capture the location of
the majority of observations, and should be little affected by errors, or other
anomalies in the data. The median should be a point “deep” inside the data
cloud. With the notion of the halfspace depth (the precise definition is given
below), we consider the depth median being the point whose depth w.r.t. the
random sample is the highest (brown star in Figure 1). The depth median is
robust, i.e. it is much less affected by the four giant stars than the mean. It
captures the center of the main bulk of data much better then the sample mean.
Additionally, let us consider the Mahalanobis ellipse (for precise definition see
(6) below) that corresponds to the sample mean, and the sample covariance
of our dataset, and contains 25 % of the data points (red ellipse in Figure 1).
This ellipse is intended to represent the scatter pattern of the data. As seen
in Figure 1, it is also heavily biased towards the anomalous observations. On
the other hand, the halfspace depth region that contains (roughly) 25 % of the
deepest points (brown polygon), still represents the main modes of variation of
the data quite reliably. Thus, both the halfspace median and the inner halfspace
depth regions possess the property of robustness against measurement errors and
outliers. The idea of robustness is of great importance in statistical inference,
and a large body of literature on these topics exists; we mention monographs
[76, 83, 122] and the references therein.

Fig 2. Hemophilia data. The group of carriers of Hemophilia A (black points) is to be sepa-
rated from the group of non-carriers (red points). Left panel: halfspace depth contours of the
two groups; right panel: regions where one of the depths dominates the other — a new obser-
vation inside the light-gray polygon is classified into the black group, an observation inside the
light-red polygon into the red group. Observations outside the polygons remain unclassified.

For our second motivating example, the hemophilia data (available in [149])
are visualized in Figure 2. The dataset consists of bivariate measurements (AHF
activity and AHF antigen) taken from blood samples of 75 women, out of whom
45 are known to be hemophilia A carriers (black dots on Figure 2). Our task
here is classification — given a new datum with the two measured character-
istics, decide whether the new patient is a potential hemophilia A carrier. The
literature where problems of this type are studied in statistics is immense. One
approach to this problem is to make use of the depth, and the ranking of the
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observations. Firstly, compute the depth of the point w.r.t. both random sam-
ples, i.e. rank the new data point inside the group of carriers, and the group of
non-carriers, respectively. Then, assign the new datum to that group for which
it is more typical, reflected by its higher depth. Figure 2 shows the contours of
the halfspace depth functions for both random samples (left panel), and the re-
gions where one of the depths is larger than the other (the polygons on the right
hand side). A new observation within the light-gray polygon would be assigned
into the black cloud of points (carriers); a point inside the light-red polygon is
assessed to come from a non-carrier patient1. This approach, sometimes called
the maximum depth classification [62] and its other variants based on the depth
such as the depth-depth classifiers [100], turned out be particularly appealing
in the past years. Mainly due to their conceptual simplicity, versatility, and
good robustness properties, depth-based classification rules have gained great
importance over the past decade.

As we saw, data depth introduces ranking and ordering also for multivariate
datasets. Other applications of the depth include multivariate extensions of the
rank tests, L-statistics (linear combinations of order statistics), and many other
nonparametric and robust procedures.

Let us now provide a rigorous definition of the halfspace depth. For d ≥ 1, a
point x in d-dimensional Euclidean space Rd, and a probability distribution P
on Rd, the halfspace depth hD of x with respect to P is given by

hD(x;P ) = inf
{

P (H−) : H is a hyperplane with x ∈ H
}

,

where H− denotes any of the two closed halfspaces associated with its boundary
hyperplane H in Rd. In other words, the depth hD is given as the smallest
probability of a closed halfspace that contains x. Points outside the convex
hull of the support of P have zero depth. More generally, any point x with
hD(x;P ) < δ can be separated from the main mass of P by a hyperplane
cutting away both the point x, and a mass of probability at most δ. Points
with rather high depth values can be seen as those lying at the center of the
distribution, as no halfspace of small probability can separate them from the
rest of P . This way, the depth hD acts as a mapping that orders the sample
points in a center-outwards direction, with the ordering given subject to the
distribution P .

Note that for a random sample X1, . . . , Xn of n points in Rd, the halfspace
depth hD is usually computed with P the empirical measure of the observations,
that is w.r.t. the empirical measure Pn that places a point mass of probability
1/n to each observation Xi.

One plausible statistical application of the depth is the possibility to intro-
duce quantiles to multivariate data. Consider, for observations on the real line
R, the central quantile regions given as the intervals bounded by the α-, and

1Note that there are points that remain unclassified. For instance, points outside both
convex hulls of the sample points are not assigned to any of the clusters using our simple
classification rule. More advanced depth-based techniques dealing with these problems are
available in the literature; see, e.g., [97].
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(1−α)-quantiles of P , for α ∈ (0, 1/2]. A natural multivariate analogue of these
sets are the loci of points whose depth exceeds given thresholds. Such sets of
points are called the central regions of P in Rd (given by the depth hD). As
discussed in Section 3 below, the collection of all central regions of P consists
of affine equivariant closed convex sets, monotone in the sense of set inclusion,
see also the left panel of Figure 2, or Figure 3 below. For many distributions,
the smallest non-empty set in this collection is a singleton — the most central
point of Rd for P . This point is frequently recognized as a generalization of the
median to Rd-valued data.

The earliest contribution in statistics that deals with some form of the halfs-
pace depth is believed to be [86] from 1955. There, a sign test for bivariate data
is proposed and examined. Its test statistic takes the form of the depth hD at
a single, given point x.

The seminal paper that introduced the depth in the sample case (that is, for
datasets) is Tukey [186] from 1975. In that paper, the depth is proposed as a
tool that enables efficient visualization of random samples in R2. It is in [186],
where the word depth is used for the first time. The original formal definition
of the halfspace depth for multivariate data can be found in Donoho [44] and
Donoho and Gasko [45] (see also [177]).

Starting with the study of Donoho, much research has focused on data depth
and related concepts. The prominent, loosely related simplicial depth for multi-
variate data was defined by Liu [102, 103], building upon the ideas presented in
Oja [144]. The zonoid depth, based on the concept of the lift zonoid of a mea-
sure, was proposed in [93, 94]. Interestingly, just like floating bodies, also the
theory of lift zonoids stands at the border of convex geometry and multivariate
statistics; for an extensive study of lift zonoids and the associated depth see the
monograph of Mosler [136], and [165, Section 3.5]. The idea of depth was also
extended to data in non-linear spaces [177, 106], general metric spaces [35], ob-
servations on graphs [178], regression [157], or data taking values in functional
spaces [56], and Banach spaces [43].

The general concept of data depth in Rd was formalized by Zuo and Serfling
[196], Dyckerhoff [49], and Serfling [175], see also Mosler [137]. Nowadays, dozens
of depth functions and related methods for all types of data can be found in
the literature. It is, however, the halfspace depth hD, that is the single most
important depth that continues to reappear as the prime representative of this
idea.

Apart from statistics, halfspace depth gained considerable attention also in
discrete and computational geometry (see [105]). There, the combinatorial na-
ture of the sample version of hD provides a rich source of interesting problems,
especially in connection with its computational aspects. For instance, the halfs-
pace medians, i.e. points at which hD is maximized over Rd, are closely related
to the notion of centerpoints studied in discrete geometry (see [127, Section 1.4]).
For a recent overview of data depth and its links to computational geometry see
Rousseeuw and Hubert [158].

A notable article on the properties of the halfspace depth for general (proba-
bility) measures is Rousseeuw and Ruts [160]. Several interesting links between
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the halfspace depth, and some sources outside mathematical statistics are out-
lined. In [160, Section 8] it is noted that the halfspace depth relates with the
voting problem studied in Caplin and Nalebuff [33, 34] in the theory of social
choice. Further, it is also observed that some results concerning the maximal
depth of a point in Rd can be found already in Neumann [141], Rado [150],
and Grünbaum [70], in the literature concerned with geometric properties of
functions and sets.

In the present paper, we pursue this line of research, and point to the re-
markable similarity of the notion of halfspace depth, and some concepts used in
other fields of mathematics, especially in convex and affine geometry. For δ ≥ 0
given, the convex floating body of a (finite) Borel measure P on Rd is defined
as the intersection of all closed halfspaces whose defining hyperplanes cut off
sets of P -measure at most δ. Floating bodies are of great importance in convex
geometry. It turns out that under a mild assumption on the support of P , the
convex floating body of P is the same set as the halfspace depth central region
of P of points whose depth is at least δ. Many implications of this observation
will be explored in a considerable part of this article.

The paper is organized as follows. In Section 3 we introduce the notation, and
give a brief overview of some of the most important properties of the halfspace
depth. In Section 4 we follow the lead provided by Rousseeuw and Ruts [160],
and trace a little known early precursor of the halfspace depth to be the so-
called Winternitz measure of symmetry of convex bodies, a functional that dates
back at least to Blaschke [17]. In Sections 5 and 6 we examine relations of the
halfspace depth with the (convex) floating bodies. As demonstrated, the history
of the halfspace depth is much longer than assumed: the earliest predecessors of
the depth hD appear to be the floating bodies in Rd, studied already by Dupin
[47] in 1822. Later, floating bodies reappear in mathematics in 1923 in Blaschke
[17], in connection with an affine invariant, the affine surface area of convex
bodies, and other problems. As discussed in Section 5, the modern notion of the
floating body, the convex floating body, defined independently by Bárány and
Larman [12] and Schütt and Werner [170], plays a major role for the concept
of affine surface area studied in geometry. We present extensions of this notion
to log-concave measures and show its importance in questions of approximation
of convex bodies by polytopes. It is also discussed in Section 6 that the convex
floating body corresponds to the upper level sets of the halfspace depth as
indicated above. Using this identity, we provide in Section 7 a surprising bound
of the halfspace depth in terms of the Mahalanobis depth. Section 8 is devoted
to the distribution-by-depth characterization problem, concerned with finding
conditions under which no two probability measures can have the same depth
on Rd. It is shown that two important partial positive results to this problem
[78, 91] are both special cases of a more general theorem, conveniently stated in
terms of floating bodies of measures. As a corollary, we obtain some new classes
of distributions characterized by their depth. Finally, in Section 9 we discuss
some extensions of the depth to more exotic data. The survey is completed with
a series of open problems relevant to the topics of halfspace depth and floating
bodies.
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3. Data depth: Notation and essential properties

Let (Ω,F ,P) be the probability space on which all random variables are defined.
For a topological space M, denote by P (M) the space of all Borel probability
distributions on M, and write X ∼ P for a random variable X with distribution
P ∈ P (M). The support of P is denoted by Supp(P ) ⊆ M. For n ∈ N =
{1, 2, . . . } and a random sample X1, X2, . . . , Xn from P , let Pn ∈ P (M) be the
associated empirical measure, i.e. the uniform measure supported in the sample
points. For X ∼ P and φ : M → M measurable, write Pφ(X) ∈ P (M) for the
probability distribution of the transformed random variable φ(X). This way,
P ≡ PX .

The space Rd is equipped with the Euclidean norm ‖·‖ and the inner product
〈·, ·〉. For x ∈ Rd and r > 0,

Bd(x, r) =
{

y ∈ Rd : ‖y − x‖ ≤ r
}

is the closed Euclidean ball centered at x with radius r. Bd stands for the
unit ball Bd(0, 1) and Sd−1 = ∂Bd denotes the unit sphere. ∂K stands for the
topological boundary of K ⊂ Rd. The Lebesgue measure of a measurable set K
will be denoted also by vold (K).

A convex body is a convex, compact subset of Rd with non-empty interior.
For k ∈ N it is said to have a Ck boundary if its boundary, locally parametrized
as a function from Rd−1, is k-times continuously differentiable. We denote the
collection of all convex bodies in Rd by Kd. For an interior point x0 of a convex
body K define the polar body Kx0 of K w.r.t. x0 by

Kx0 =
{

y ∈ Rd : 〈y, x− x0〉 ≤ 1 for all x ∈ K
}

. (1)

If 0 ∈ Int(K), the interior of K, we write K◦ for the polar body (1) of K
w.r.t. 0. A star body K is a compact subset of Rd with the property that there
exists x ∈ K such that the open line segment from x to any point y ∈ K
is contained in the interior of K. The Minkowski addition of K,L ∈ Kd is
K + L = {x+ y : x ∈ K, y ∈ L}. Likewise, for λ ∈ R, λK = {λx : x ∈ K}.

We write

Hu,α =
{

z ∈ Rd : 〈z, u〉 = α
}

for u ∈ Rd \ {0}, α ∈ R,

for a hyperplane in Rd, and denote for H = Hu,α the two closed halfspaces
bounded by this hyperplane by H− = H−

u,α and H+ = H+
u,α, respectively. By H

we denote the set of all hyperplanes, and by H− the set of all closed halfspaces
in Rd.

We say that the halfspace H+ supports the set K ⊂ Rd if K ∩ H− �= ∅
and K ⊆ H+. A hyperplane H ∈ H is said to support K if either H− or H+

supports K. Recall that the boundary of a convex body K ∈ Kd is C1 if and
only if for any x ∈ ∂K there exists a unique hyperplane H ∈ H that supports
K with x ∈ H [165, Theorem 2.2.4]. For a convex set K ⊂ Rd, the support
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function of K is defined as

hK : Sd−1 → R : u �→ sup {〈x, u〉 : x ∈ K} . (2)

The centroid (or the barycenter) of a compact set K ⊂ Rd is the expectation of
a random variable distributed uniformly on K.

3.1. Statistical depth for multivariate data

The first formal definition of the halfspace depth in Rd for general probability
distributions can be found in Donoho [44].

Definition. Let P ∈ P
(

Rd
)

and x ∈ Rd. The halfspace depth (or Tukey depth)
of x w.r.t. P is defined as

hD (x;P ) = inf
{

P (H−) : H ∈ H, x ∈ H−} . (3)

In (3), the infimum can be equally well taken only over those H ∈ H with
x ∈ H [160, Proposition 3].

In the study of the theoretical properties of hD, two regularity conditions im-
posed on P ∈ P

(

Rd
)

frequently play an important role. The first, a smoothness
condition, appears in Dümbgen [46] and Mizera and Volauf [134], and reads

P (H) = 0 for all H ∈ H. (4)

It is trivially satisfied if, for instance, P has a density (w.r.t. the d-dimensional
Lebesgue measure) in Rd.

The second requirement concerns the support of P . We say that P ∈ P
(

Rd
)

has contiguous support [134, 91] if there are no two disjoint halfspacesH−
1 , H−

2 ∈
H− such that P (H−

1 ) > 0 and P (H−
2 ) > 0, but P (H−

1 ) + P (H−
2 ) = 1. In other

words, the support of P cannot be separated by a slab between two parallel
hyperplanes.

In Section 7 we demonstrate a surprising relation between the halfspace
depth, and another renown depth function that can be found in the literature:
the Mahalanobis depth. To this end, let us briefly recall its definition, and some
elementary properties.

For any symmetric positive definite matrix Σ ∈ Rd×d, the Mahalanobis dis-
tance [119] of two points x, y ∈ Rd is defined as

dΣ(x, y) =

√

(x− y)
T
Σ−1 (x− y). (5)

It is a metric on Rd. Based on this distance, Liu [104] proposed the following
depth function.

Definition. Let X ∼ P ∈ P
(

Rd
)

be such that EX = μ and VarX = Σ is
positive definite. The Mahalanobis depth of x w.r.t. P is defined as

MD(x;P ) = (1 + dΣ(x, μ))
−1

.
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The Mahalanobis depth w.r.t. P takes the maximal value 1 at the expectation
of P . Its upper level sets are concentric ellipsoids given, for δ ∈ (0, 1], by

{

x ∈ Rd : MD(x;P ) ≥ δ
}

=

{

x ∈ Rd :

√

(x− μ)
T
Σ−1 (x− μ) ≤ 1− δ

δ

}

. (6)

These ellipsoids are also called the Mahalanobis ellipsoids of the distribution P .
Note that unlike the halfspace depth hD, the Mahalanobis depth MD is not
defined for all P ∈ P

(

Rd
)

, but rather it is restricted to distributions with finite
second moments, and positive definite variance matrices.

3.2. Properties of the halfspace depth

In this section we collect some basic properties of the halfspace depth (3), and
of its upper level sets, that will prove to be useful in the sequel.

For any P ∈ P
(

Rd
)

, consider the upper level sets of hD

Pδ =
{

y ∈ Rd : hD(y;P ) ≥ δ
}

for δ ∈ [0, 1]. (7)

Immediately from the definition we see that the collection of sets Pδ, δ ∈ [0, 1]
is nested, that is decreasing in the sense of set inclusion, and P0 = Rd. The set
Pδ is also called the central region of P corresponding to δ ∈ [0, 1].

Example 1. Let X ∼ P ∈ P
(

Rd
)

be the uniform distribution on the unit ball
Bd. The marginal distribution function of the first coordinate of X is given by

F1(s) =

⎧

⎪

⎨

⎪

⎩

Γ((d+2)/2)
Γ((d+1)/2)

√
π

∫ s

−1

(

1− t2
)(d−1)/2

d t for s ∈ (−1, 1),

0 for s ≤ −1,

1 for s ≥ 1.

It is not difficult to see that

hD(x;P ) = F1 (−‖x‖) for all x ∈ Rd,

i.e. the central region Pδ of P is a ball with radius −F−1
1 (δ) for δ ∈ [0, 1/2] and

F−1
1 the quantile function corresponding to F1. For d = 2 we obtain

hD(x;P ) =

⎧

⎨

⎩

1
2 − 1

π

(

arcsin(‖x‖) + ‖x‖
√

1− ‖x‖2
)

if ‖x‖ ≤ 1,

0 otherwise,

which agrees with Rousseeuw and Ruts [160, Section 5.6]. Uniform distributions
on balls are a special case of spherically (and elliptically) symmetric distribu-
tions. Such distributions will be treated in Example 2 below.

For the uniform distribution P ∈ P
(

R2
)

on the unit square [0, 1]2, the half-
space depth and its central regions were computed by Rousseeuw and Ruts [160,
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Section 5.4]

hD(x;P ) =

{

2min {x1, 1− x1}min {x2, 1− x2} for x = (x1, x2) ∈ [0, 1]2,

0 otherwise.

The expression for the halfspace depth of P ∈ P
(

R2
)

distributed uniformly on
the equilateral triangle can be found in Rousseeuw and Ruts [160, Section 5.3].
Several central regions (7) of the halfspace depth for the latter two distributions
centered at their halfspace medians are displayed in Figure 3. Exact expressions
for the halfspace depth for the uniform distribution on a simplex, and a (hyper)-
cube in Rd are much more involved for d > 2 than for d = 2. They can be
obtained from [167, Lemma 1.3 and its proof].

Fig 3. Halfspace depth central regions (7) for δ ∈ {0.05, 0.15, 0.25, 0.35, 0.45} for the uniform
distribution on the unit square (left panel), and an equilateral triangle (right panel). The black
dots stand for the halfspace medians of these two distributions. Note that the central region
for δ = 0.45 is empty for P uniform on a triangle. In that case we have maximum depth
Π(P ) = 4/9 < 0.45.

Example 2. In accordance with Fang, Kotz and Ng [53] we say that the dis-
tribution of X ∼ P ∈ P

(

Rd
)

is α-symmetric, 0 < α ≤ 2, if for some continuous
function φ : R → R the characteristic function of the random vector X takes the
form

ψX(t) = E ei〈t,X〉 = φ (‖t‖α) for all t ∈ Rd,

where i is the imaginary unit, and for t = (t1, . . . , td) ∈ Rd we set ‖t‖α =
(

∑d
i=1 |ti|

α
)1/α

for 0 < α < ∞, and ‖t‖∞ = maxi=1,...,d |ti|. For α = 2 we

obtain the collection of all spherically symmetric distributions, i.e. distributions
invariant under all orthonormal rotations of the sample space [53, Chapter 2].
For instance, the uniform distribution on the unit ball Bd, the uniform distribu-
tion on the unit sphere Sd−1, or the standard multivariate Gaussian distribution
are all spherically symmetric. The multivariate probability distribution with in-
dependent Cauchy marginals is 1-symmetric. For φ(s) = e−sα with α ∈ (0, 2]
we obtain the multivariate symmetric stable laws.
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α-symmetric distributions have been studied by many authors [32, 53, 89].
They are distinguished by the special property that all univariate projections
of an α-symmetric measure X = (X1, . . . , Xd) ∼ P are multiples of the same
univariate distribution

〈u,X〉 d

= ‖u‖α X1 for all u ∈ Rd,

where
d

= stands for “is equal in distribution” [53, Theorem 7.1]. This makes it
possible to compute the depth hD (·;P ) exactly. For an α-symmetric P ∈ P

(

Rd
)

we have for all x ∈ Rd

hD (x;P ) = inf
u∈Rd\{0}

P (〈u,X〉 ≤ 〈u, x〉) = inf
u∈Rd\{0}

P (X1 ≤ 〈u, x〉 / ‖u‖α)

= F1 (−‖x‖α∗) ,
(8)

where F1 is the distribution function of X1, and

α∗ =

{

α/(α− 1) if α > 1,

∞ if α ∈ (0, 1],

is the conjugate exponent to α. The last equality in (8) is due to the (generalized)
Hölder inequality (see, e.g., [38, Lemma A.1]). All central regions Pδ of an α-
symmetric distribution are therefore the lower level sets of the norm ‖·‖α∗ . In
particular, for all spherically symmetric distributions the central regions are
centered balls, and for all α ≤ 1 the central regions are centered (hyper)-cubes
in Rd. Apart from simple uniform distributions on convex bodies such as those in
Example 1 and atomic distributions (see the left panel of Figure 2), α-symmetric
distributions (and their affine images) appear to be the only class of probability
distributions whose depth hD are we able to evaluate exactly. This was noticed
by Massé and Theodorescu [126, Example (C)] and Chen and Tyler [38]. See
also Figure 4.

Note that the α-symmetric distributions from Example 2 are for α �= 2 in
no direct relation with distributions whose densities take the form ψ (‖·‖α) for
some fixed function ψ. In relation to the halfspace depth, the latter collection of
probability measures was studied in [48], where it was shown that for α �= 2 and
ψ decreasing the central regions Pδ never coincide with the density level sets
of P . For α = 2 one obtains, using both approaches, collections of spherically
symmetric distributions.

3.2.1. Affine invariance

For a non-singular matrix A ∈ Rd×d and b ∈ Rd, consider the affine transfor-
mation T : Rd → Rd : x �→ Ax + b. The depth hD is invariant with respect
to T

hD (x;PX) = hD
(

T (x);PT (X)

)

for all x ∈ Rd, PX ∈ P
(

Rd
)

.
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This implies that central regions Pδ ≡ (PX)δ are affine equivariant under affine
transformations T of full rank, i.e. T ((PX)δ) = (PT (X))δ for any δ ∈ [0, 1].
Due to the affine invariance of hD and Example 2, the central regions Pδ of
elliptically symmetric distributions (i.e. invertible affine images of spherically
symmetric distributions, see [53, Chapter 2]) are concentric ellipsoids with the
same center and orientation as the density level sets of P (if the density exists).
In particular, this holds true for the central regions of any full-dimensional
multivariate Gaussian distribution (see Figure 4).

Fig 4. Left panel: several contours of the density of a bivariate centered Gaussian measure P
(thin black lines). For any x ∈ Rd\{0} (brown triangle) the unique hyperplane H ∋ x such that
P (H−) = hD(x;P ) is the hyperplane (solid brown line) that supports the contour ellipsoid
of the density of P passing through x. Thus, the depth central regions Pδ with δ ∈ (0, 1/2)
are all concentric ellipsoids of the same shapes as the density contours. Right panel: several
density contours (dashed lines) and the corresponding halfspace depth contours (solid lines)
of the bivariate distribution P with independent Cauchy marginals. Since P is 1-symmetric,
the central regions Pδ are all concentric squares.

3.2.2. Quasi-concavity

The sets Pδ are all convex, which means that the mapping hD is quasi-concave
in its first argument. Quasi-concavity of hD is essential for the construction of
estimators based on the depth, such as the depth-trimmed means.

3.2.3. Maximality at the center

Denote the maximal depth value of a distribution by

Π(P ) = sup
x∈Rd

hD(x;P ) for P ∈ P
(

Rd
)

. (9)

By Rousseeuw and Struyf [161, Lemma 1],

Π(P ) ≤
(

1 + sup
x∈Rd

P ({x})
)

/2,
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and Π(P ) ≤ 1/2 for P that satisfies (4). As shown by Rousseeuw and Ruts
[160, Proposition 7], for any P ∈ P

(

Rd
)

the maximal depth is attained in Rd.
Therefore, it makes sense to define the halfspace median (or depth median) of
P as any point xP ∈ Rd such that

hD(xP ;P ) = Π(P ).

The halfspace median is not necessarily unique — consider, for instance, the
uniform distribution P on the vertices of a simplex in Rd, where any point in that
simplex is a halfspace median of P . If M(P ) =

{

x ∈ Rd : hD (x;P ) = Π(P )
}

is not a singleton, some authors prefer to define the halfspace median as the
barycenter of the region M(P ). In this paper, we do not follow that convention,
and unless stated otherwise, we call all elements of the set M(P ) halfspace
medians of P .

In general, the set of all halfspace medians of P can be shown to be non-
empty, compact and convex. If (4) is true for P with contiguous support, then
by Mizera and Volauf [134, Proposition 7] the halfspace median of P is unique.
In any case, the central regions (7) are non-empty if and only if δ ∈ [0,Π(P )].

If the distribution P is (in some sense) symmetric around a point xP ∈ Rd,
it is natural to require that the center of symmetry xP is the unique halfspace
median of P , i.e. the only point such that Π(P ) = hD(xP ;P ).

Definition. The distribution P ≡ PX ∈ P
(

Rd
)

is said to be centrally symmet-
ric around xP ∈ Rd, if

PX−xP
= PxP−X .

P is centrally symmetric, if it is centrally symmetric around some xP ∈ Rd.

If P is centrally symmetric, the maximal depth value Π(P ) must be at least
1/2, and this depth is attained only at the center of symmetry xP . But centrally
symmetric distributions are not the only ones for which the maximal depth is at
least 1/2. This leads to the following definition, due to Zuo and Serfling [197].

Definition. P ∈ P
(

Rd
)

is halfspace symmetric around xP ∈ Rd, if

Π(P ) = hD(xP ;P ) ≥ 1/2.

P is said to be halfspace symmetric, if it is halfspace symmetric around some
xP ∈ Rd.

As discussed in Zuo and Serfling [197], the halfspace symmetry of measures
in Rd is more general than the rather restrictive central symmetry, in the sense
that any centrally symmetric distribution is also halfspace symmetric. To see
that the converse does not hold true, consider the following example.

Example 3. Let P ∈ P
(

R2
)

be the uniform distribution concentrated in the
vertices (±1,±1) of a centered square in R2. P is halfspace symmetric, and
centrally symmetric around xP = 0 ∈ R2. For any λ > 0, translate the point
mass from (1, 1) to (λ, λ). The resulting distribution P ′ is then still halfspace
symmetric around the origin. Yet, for λ �= 1, P ′ is not centrally symmetric.
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Any univariate distribution is halfspace symmetric around its (univariate)
median. For a comprehensive discussion on the subject of symmetry of multi-
variate probability distributions see Serfling [176].

3.2.4. Vanishing at infinity

Any random vector X ∼ P ∈ P
(

Rd
)

lives with large probability inside a closed
ball of finite diameter. Thus, it is reasonable to ask that also the depth associated
to P assigns high values of hD only to points inside (big) closed balls. This
property, often called the vanishing at infinity property of hD, can be expressed
as

lim
M→∞

sup {hD(x;P ) : ‖x‖ > M} = 0 for all P ∈ P
(

Rd
)

.

For the halfspace depth this condition is satisfied (see, for instance, [196, The-
orem 2.1]). The central regions (7) are therefore bounded for all δ > 0.

3.2.5. Continuity of the depth

As observed by Donoho and Gasko [45, Lemma 6.1], the halfspace depth is upper
semi-continuous in its first argument

lim supx→x0
hD(x;P ) ≤ hD(x0;P ) for all P ∈ P

(

Rd
)

, x0 ∈ Rd. (10)

By [134, Proposition 1] if (4) holds true for P , then hD is also continuous in
x. For the central regions (7) condition (10) means that each Pδ is a (convex)
closed set for δ ∈ [0,Π(P )], and compact for δ ∈ (0,Π(P )] for any P ∈ P

(

Rd
)

.

3.2.6. Continuity of the central regions

Consider now the set-valued mapping that for P ∈ P
(

Rd
)

given, to δ ∈
(0,Π(P )) assigns its central region (7). This mapping is essential for under-
standing the properties of the depth, as the level sets of hD are usually of
greater interest than individual depth values at fixed points in Rd. The map-
ping δ �→ Pδ takes values in the space Kd of convex bodies in Rd. That space
can be equipped with the Hausdorff distance (see, e.g., [165, Section 1.8])

dH(K,C) = inf {ε > 0: K ⊆ Cε and C ⊆ Kε} for K,C ∈ Kd, (11)

where Kε is the ε-neighborhood of K,

Kε = K +Bd(0, ε) =
⋃

x∈K

Bd(x, ε) for K ∈ Kd and ε > 0.

Continuity properties of the map δ �→ Pδ were investigated by several au-
thors. The following result was first stated by Massé and Theodorescu [126,
Remark 3.6], and later refined by Mizera and Volauf [134, Theorem 6 and
Proposition 7], and Dyckerhoff [50, Theorem 3.2 and Example 4.2]. In a slightly
different context, it was also considered by Kong and Mizera [90].
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Theorem 1. Let (4) be true for P ∈ P
(

Rd
)

with contiguous support. Then the
map δ �→ Pδ is continuous in the Hausdorff distance for δ ∈ (0,Π(P )).

3.2.7. Consistency, robustness and other statistical properties

In statistics, the true distribution P ∈ P
(

Rd
)

is seldom known. Instead, one
usually observes for n ∈ N only a random sample X1, . . . , Xn of independent
random variables with distribution P , and infers the properties of P from the
empirical distribution Pn of that sample. As n → ∞, the halfspace depth is
universally consistent, which means that for any P ∈ P

(

Rd
)

the depth hD based
on the empirical distribution Pn (the sample depth) almost surely approaches
the true depth evaluated w.r.t. P uniformly over Rd

sup
x∈Rd

|hD(x;Pn)− hD(x;P )| a.s.−−−−→
n→∞

0 for any P ∈ P
(

Rd
)

.

This result was first established in Donoho and Gasko [45, p. 1817]. Interestingly,
it does not require any properties of the distribution P . For P satisfying (4), it
can be strengthened to the form that for any sequence of measures {Pν}∞ν=1 ⊂
P
(

Rd
)

weakly convergent to P ,

sup
x∈Rd

|hD(x;Pν)− hD(x;P )| −−−−→
ν→∞

0.

This property follows by an argument of Dümbgen [46, Corollary 2] applied to
hD, see also [139, Theorem A.3], and is frequently called the uniform qualitative
robustness property of hD. Further robustness properties of hD were studied
by Romanazzi [155, 156], and Chen and Tyler [37, 38], among others.

Uniform consistency results hold true also for the depth level sets (7). In
its full generality, the following result, recently established by Dyckerhoff [50,
Theorem 4.5 and Example 4.2], unifies and completes the partial results from
[126, 80, 198].

Theorem 2. Let (4) be true for P ∈ P
(

Rd
)

with contiguous support. Then for
every compact interval A ⊂ (0,Π(P )]

sup
δ∈A

dH (Pδ, (Pn)δ)
a.s.−−−−→

n→∞
0.

In Theorem 2, (Pn)δ stands for the δ-central region (7) of the empirical mea-
sure Pn. Further valuable improvements of the statistical theory of the halfspace
depth include the derivation of the rates of convergence of the depth and its
central regions [87, 29, 28], and distributional asymptotics of these and related
quantities [8, 194, 195, 123, 124, 125].

4. Description at the center: The Winternitz measure of symmetry

4.1. Maximal depth of a point

Several results on the maximal depth mapping Π from (9) can be found in
literature much earlier than the definition of the halfspace depth (see [160,
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Sections 3 and 4]). From these references, it appears that the behavior of the
maximal depth relates to the degree of concavity of the measure P . Following
Borell [19], see also Bobkov [18], let us first provide a rigorous definition of
concave probability measures.

Definition. We say that P ∈ P
(

Rd
)

is an s-concave measure for −∞ ≤ s < ∞,
if

P (λA+ (1− λ)B) ≥

⎧

⎪

⎨

⎪

⎩

min {P (A), P (B)} for s = −∞,

P (A)λP (B)1−λ for s = 0,

(λP (A)s + (1− λ)P (B)s)
1/s

otherwise,

for all non-empty Borel sets A,B ⊆ Rd and λ ∈ [0, 1].

As noted by Bobkov [18], if P is not a Dirac measure, then s ≤ 1. Further, a
measure P ∈ P

(

Rd
)

is s-concave with s ≤ 1/d if and only if P has a density f
that is supported on an open convex subset U of Rd and that is sd = s/(1−ds)-
concave, i.e., for all x, y ∈ U , for all λ ∈ [0, 1],

f (λx+ (1− λ)y) ≥

⎧

⎪

⎨

⎪

⎩

min {f(x), f(y)} for s = −∞,

f(x)λf(y)1−λ for s = 0,

(λf(x)sd + (1− λ)f(y)sd)
1
sd otherwise.

For s = 0, s-concave measures are also called log-concave measures, and
represent a natural generalization of uniform measures on convex bodies. Indeed,
any uniform measure on a convex body is log-concave.

We are ready to state a result that summarizes what is known about the
maximal depth functional Π(P ) defined in (9).

Theorem 3. The following inequalities hold true:

(i) For any P ∈ P
(

Rd
)

(

1 + sup
x∈Rd

P ({x})
)

/2 ≥ Π(P ) ≥ 1

d+ 1
.

(ii) For P ∈ P
(

Rd
)

uniformly distributed on a convex body,

1/2 ≥ Π(P ) ≥
(

d

d+ 1

)d

> e−1 > 0.367.

(iii) For an s-concave measure P ∈ P
(

Rd
)

with −1 < s ≤ 1,

1/2 ≥ Π(P ) ≥

⎧

⎨

⎩

e−1 for s = 0,
(

1
s+1

)1/s

otherwise.
(12)
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As noted by Grünbaum [70, Section 4], the lower bounds in parts (i) and
(ii) are sharp. In part (i) it is enough to take the uniform distribution in the
vertices of a simplex in Rd. For part (ii) one takes the uniform distribution on
the simplex in Rd.

Problem 1. Are the lower bounds in part (iii) of Theorem 3 sharp? That is,
does there exist an s-concave probability measure P with equality on the right
hand side of (12)?

The lower bounds in parts (i) and (ii) of Theorem 3 were proved by Neu-
mann [141] for d = 2. In full generality, part (ii) was proved independently by
Grünbaum [70], and Hammer [75]. Part (iii) can be found in Caplin and Nale-
buff [34, Proposition 3], see also Bobkov [18, Theorem 5.2]. As discussed by
Bobkov [18], the condition s > −1 implies the existence of the expectation EX
of X ∼ P . Actually, in all three parts of Theorem 3 in the proofs it is shown
that hD(EX;P ) is never smaller than the given lower bounds.

Problem 2. Is there a non-trivial lower bound for Π(P ) for all s-concave mea-
sures with s ≤ −1?

4.2. Central and halfspace symmetry: Funk’s theorem

For part (ii) of Theorem 3, there exists a remarkable converse.

Theorem 4. Let P ∈ P
(

Rd
)

be uniformly distributed on a convex body K ∈ Kd.
Then P is halfspace symmetric around xP ∈ Rd if and only if it is centrally
symmetric around xP .

The proof of Theorem 4 was first obtained in 1915 for d = 2 and d = 3 by
Funk [59]. In its full generality the result was conjectured, among others, by
Grünbaum [72, p. 251], but completely solved only in 1970 in Schneider [163,
Satz 4.2] and Schneider [164, Theorem 1.5], see also Falconer [52]. For its modern
version, including an extension to star convex bodies K ⊂ Rd see Groemer [66,
Section 5.6].

By Theorem 4, the two notions of central and halfspace symmetry from Sec-
tion 3.2.3 coincide for uniform distributions on (star) convex bodies in Rd, see
also Example 3. This suggests the following problem.

Problem 3. Under which conditions can Theorem 4 be generalized to proba-
bility measures?

A partial answer to Problem 3 can be found if one considers the notion of
angular symmetry for random vectors, proposed by Liu [102, Section 2].

Definition. The distribution of a random vector X ∼ P ∈ P
(

Rd
)

is said
to be angularly symmetric around xP ∈ Rd, if the random variables (X −
xP )/ ‖X − xP ‖ and −(X − xP )/ ‖X − xP ‖ are identically distributed. P is an-
gularly symmetric, if it is angularly symmetric around some xP ∈ Rd.
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Angular symmetry can be shown to be an intermediate between the rather
strong concept of central symmetry, and the halfspace symmetry, considered in
Section 3.2.3. Any P that is centrally symmetric around xP is angularly sym-
metric around xP [197, Lemma 2.2], and any P angularly symmetric around xP

is also halfspace symmetric around xP [197, Lemma 2.4]. None of these implica-
tions can be reversed. Though, a partial reverse to the second one was asserted
in the statistical literature. For d = 2, Zuo and Serfling [197, Theorem 2.6] in
2000 and Dutta, Ghosh and Chaudhuri [48, Theorem 2] in 2011 independently
proved that if P is absolutely continuous besides a possible atom at xP ∈ Rd

and halfspace symmetric around xP , then P must be also angularly symmet-
ric around xP . Rousseeuw and Struyf [161, Theorems 1 and 2] in 2004 gave a
complete proof for general d ∈ N in the following form.

Theorem 5. The distribution P ∈ P
(

Rd
)

is angularly symmetric around xP ∈
Rd if and only if

hD(xP ;P ) = (1 + P ({xP })) /2.

In particular,

(i) any P halfspace symmetric around xP with P ({xP }) = 0 is angularly
symmetric around xP , and

(ii) for any P such that supx∈Rd P ({x}) = 0, halfspace symmetry and angular
symmetry are equivalent notions.

When P is the uniform distribution on a (centered) convex body K ∈ Kd,
Theorem 5 stands as a generalization of Funk’s theorem to probability measures.
Indeed, assume that P is halfspace symmetric around the origin xP = 0 ∈ Rd.
Since P is absolutely continuous, by Theorem 5 it is also angularly symmetric
around xP . Because P is uniform, angular symmetry of P implies that the
support function hK from (2) must be an even function on Sd−1, which in turn
gives that K must be centrally symmetric around xP .

Remarkably, Theorems 1 and 2 in Rousseeuw and Struyf [161] were discov-
ered independently of the results in geometry. The proof in [161] makes use of
the classical theorem of Cramér and Wold [40] from 1936, closely related to the
Fourier transforms of measures. The known proofs of Theorem 4 employ tech-
niques from spherical harmonics, or integral equations. Thus, all known proofs
of Theorems 4 and 5 are non-trivial, but have in common the use of harmonic
analysis.

4.3. Measures of symmetry

Characterization results like Theorem 4 for convex bodies stimulated much re-
search in convex geometry. Eventually, these efforts led to measures of symmetry
for convex sets, comprehensively covered by Grünbaum [72]. A measure of sym-
metry is a mapping S : Kd → [0, 1] such that

(i) S(K) = 1 if and only if K is (centrally) symmetric,
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(ii) S(K) = S(T (K)) for any non-singular affine transformation T : Rd → Rd,
and

(iii) S is continuous on Kd (equipped with a suitable topology2).

A variant of part (ii) in Theorem 3, that states that for any X ∼ P ∈ P
(

Rd
)

uniformly distributed on a convex body

hD (EX;P ) ≥
(

d

d+ 1

)d

,

is known since the 1910s as the Winternitz theorem (due to Artur Winternitz,
according to [17]). This result gave rise to the following measure of symmetry,
which is remarkably close to the halfspace depth.

Definition. Let P ∈ P
(

Rd
)

be the uniform distribution on K ∈ Kd. For x ∈ K
and H ∈ H with x ∈ H, let

wK(x;H−) =
P (H− ∩K)

1− P (H− ∩K)
,

and consider wK(x) = min {wK(x;H−) : H− ∈ H−, x ∈ H}. The Winternitz
measure of symmetry of K is then defined as

W (K) = max {wK(x) : x ∈ K} .

The measure of symmetry W (K) was considered by many authors. For a
historical account and the theoretical background on measures of symmetry see
the seminal paper of Grünbaum [72, Section 6.2]. For a modern treatment of
the topic see Toth [184].

Obviously, for K ∈ Kd, the Winternitz measure of symmetry is equivalent
with the maximal depth (9) attained w.r.t. the uniform measure P on K

Π(P ) =
W (K)

1 +W (K)
.

The function wK : K → [0,∞] used in the definition of W (K) links directly to
hD via

hD(x;P ) =
wK(x)

1 + wK(x)
.

For wK , it was noted already by Grünbaum [72] in 1963 that its upper level sets
are convex, and that its maximal value is always attained in K (cf. Sections 3.2.2
and 3.2.3 above).

Connections of the depth hD with results on partitions of convex bodies
(Theorem 3 above) have already been noted by Rousseeuw and Ruts [160].
Though, as far as we know, no links between the measures of symmetry for
convex bodies and the halfspace depth have yet been established in the statistical
literature.

2For details on possible choices of topology see Grünbaum [72].



Halfspace depth and floating body 73

In the other direction, some notions of depth can be found in the literature
on the geometry of convex bodies. For instance, in Bose et al. [24] the “depth”
for a convex body K is defined as the halfspace depth (3) of the associated
uniform distribution, in connection with a generalized version of the Winternitz
theorem. Nonetheless, precise links between the respective fields of mathematics
appear to be still lacking.

4.3.1. The ray basis theorem

For P ∈ P
(

Rd
)

and x ∈ Rd we say that a halfspace H− ∈ H− is minimal at x
if x ∈ H and P (H−) = hD(x;P ). H is then called a minimal hyperplane of x.
From the definition of the minimal halfspace it is easy to see that the following
holds.

Proposition 6. Let P ∈ P
(

Rd
)

have contiguous support and let H− ∈ H− be
minimal at x ∈ Rd with hD(x;P ) = δ. Then the halfspace H+ supports Pδ.

An interesting characterization of the halfspace median of a measure P ∈
P
(

Rd
)

in terms of minimal halfspaces was observed by Donoho and Gasko [45,
pp. 1818–1819] in 1992 and Rousseeuw and Ruts [160, Propositions 8 and 12] in
1999. For P absolutely continuous, x is a halfspace median of P if and only if
the union of the collection of minimal halfspaces at x is Rd. In Rousseeuw and
Ruts [160], this result is dubbed the ray basis theorem.

Theorem 7. Let P ∈ P
(

Rd
)

, and x ∈ Rd be such that the union of the collec-
tion of minimal halfspaces at x is Rd. Then x is a halfspace median of P .

Assume that P satisfies (4), and let x ∈ Rd be a halfspace median of P . Then
there exists a collection of minimal halfspaces at x of cardinality at most d+ 1
whose union is Rd.

The smoothness condition (4) is important in Theorem 7. As noted by Massé
[124, Example 4.3] it is possible to construct distributions P ∈ P

(

Rd
)

, that
violate (4), with a unique minimal halfspace at their halfspace median.

For P ∈ P
(

Rd
)

uniformly distributed on a convex body K ∈ Kd, a result
similar to Theorem 7 was stated in Grünbaum [72, p. 251] in 1963 for the
Winternitz measure of symmetry. There, it was asserted that it follows from a
version of Helly’s theorem that there must exist at least d+1 different minimal
halfspaces at the halfspace median xP of P . The assumptions of that result
appear, however, to be incomplete, as pointed out to us by M. Tancer [147].

Another interesting problem closely connected with the halfspace median
and Theorem 7, is a conjecture of Grünbaum [71, p. 41] from 1961 that asks
if for any convex body K ∈ Kd with d ≥ 2 there exists a point x ∈ K that
is a centroid of at least d + 1 sections of K by different hyperplanes passing
through x. For d = 2, the solution to this problem is straightforward, as noted
already in [71]. For d > 2, this problem appears to be still open (see [181], [72,
p. 251], and [41, Problem A8]). It is natural to conjecture that the halfspace
median is such a point. Indeed, combine Theorem 7 with a theorem of Dupin
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[47] (stated in part (ii) of Proposition 12 below) that says that for any K ∈ Kd

the point x ∈ K is the centroid of all minimal hyperplanes at x (w.r.t. the
uniform distribution P on K) to obtain that if the minimal hyperplanes at x
are in general position, then the halfspace median is a point as postulated in
the conjecture. Here, a set of hyperplanes is said to be in general position if
for all choices of at most d such distinct hyperplanes their normals are linearly
independent. A further open question is if the conjecture holds true with x being
the centroid of K.

Theorem 7 provides a useful characterization criterion for the depth-based
extension of the median. Apart from its theoretical appeal, it promises applica-
tions in the computation of the depth, and the depth median.

4.3.2. Minimality and stability

An important question regarding the measures of symmetry concerns their mini-
mality, i.e. characterization ofK ∈ Kd such thatS(K) = inf

{

S(K ′) : K ′ ∈ Kd
}

.
As remarked by Grünbaum [70, Section 4] in 1960, for the Winternitz measure
of symmetry

inf
{

W (K ′) : K ′ ∈ Kd
}

=
dd

(d+ 1)d − dd
,

and this value is attained if and only if K is a bounded cone in Rd. This value
corresponds to

inf
K′∈Kd

{Π(P ) : P is distributed uniformly on K ′} = (d/(d+ 1))
d
,

see also Theorem 3. In a related question, Grünbaum [70] also determined the
collection of measures P ∈ P

(

Rd
)

such that

Π(P ) = 1/(d+ 1) = inf
{

Π(P ′) : P ′ ∈ P
(

Rd
)}

,

by showing that this can happen if and only if P is a uniform distribution on the
vertices of a non-degenerate simplex in Rd. In statistics, this result was observed
independently by Donoho and Gasko [45, Lemma 6.3] in 1992 for hD.

In convex analysis, another desirable property of measures of symmetry is
their stability. A measure of symmetry S is said to have the stability property
if for any ε > 0 and K ∈ Kd with S(K) < inf

{

S(K ′) : K ′ ∈ Kd
}

+ ε there

exists a constant c > 0 and L ∈ Kd such that S(L) = inf
{

S(K ′) : K ′ ∈ Kd
}

,
and δ(K,L) ≤ c ε. Here, δ stands for some metric on Kd, and c may depend
on d, as well as on some characteristic of K such as its volume, or diameter.
An important stability theorem for the Winternitz measure of symmetry was
derived by Groemer [67, Theorem 2].

Theorem 8. Let K ∈ Kd and let P ∈ P
(

Rd
)

be uniformly distributed on
K. Let ε ≥ 0. There exists a constant λ > 0 depending only on d such that
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Π(P ) ≤ (d/(d+ 1))
d
+ ε implies that K contains a bounded cone C ∈ Kd with

dS(K,C) ≤ λ vold (K) ε1/2d
2

,

where,
dS(K,C) = vold (K ∪ C)− vold (K ∩ C) (13)

is the symmetric difference metric on Kd.

As far as we are aware, no results corresponding to stability theorems can be
found for probability measures and the halfspace depth.

Problem 4. Does a variant of a stability result such as Theorem 8 hold for
probability measures and depth medians?

4.4. Affine invariant points

Symmetry is a key structural property of convex bodies relevant in many prob-
lems. A systematic study of symmetry was initiated by Grünbaum in his semi-
nal paper [72] from 1963. A crucial notion in his work is that of affine invariant
point. It allows to analyze the symmetry situation. In a nutshell: the more affine
invariant points, the fewer symmetries.

Recall that the set Kd is equipped with the Hausdorff distance (11).

Definition. A map p : Kd → Rd is called an affine invariant point, if p is
continuous and if for every non-singular affine map T : Rd → Rd one has,

p(T (K)) = T (p(K)).

We denote by Pd the set of all affine invariant points on Rd.

Pd is an affine subspace of C(Kd,Rd), the space of continuous mappings from
Kd to Rd.

Examples of affine invariant points, already known to Grünbaum [72] are,
e.g., the centroid of a convex body K (i.e. the expectation of the uniform dis-
tribution on K), the Santaló point (the unique point s(K) in the interior of
K ∈ Kd for which the minimum of the functional vold

(

Ks(K)
)

is attained, see
also the important Blaschke-Santaló inequality in (19) below), and the center
of the ellipsoid of maximal volume inside a convex body. Grünbaum [72] asked
a number of questions about affine invariant points:

(i) Is there a convex body K such that Pd(K) = {p(K) : p ∈ Pd} = Rd?
(ii) Is the space Pd infinite-dimensional?
(iii) Let K be a convex body and let T : Rd → Rd be an affine map with

T (K) = K. We denote

Fd(K) =
{

x ∈ Rd : for all T such that T (K) = K we have Tx = x
}

.

Do we have Fd(K) = Pd(K)?
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One can argue that those convex bodies that have only one affine invariant point
are the most symmetric convex bodies. This would include the simplex in Rd

which is from another point of view the most non-symmetric convex body (see
Theorem 3).

A convex body has only one affine invariant point, if it has enough symme-
tries. We say that an affine map T : Rd → Rd is a symmetry of a convex body
K if T (K) = K. We say that a convex body has enough symmetries if the only
affine maps commuting with all symmetries of K are multiples of the identity.

For a convex body K with enough symmetries the halfspace median coincides
with the centroid of K.

The following theorems answer Grünbaum’s questions (i) and (ii). They can
be found in Meyer, Schütt and Werner [131].

Theorem 9. For every d ≥ 2 there is a body K ∈ Kd with

Pd(K) =
{

p(K) : p ∈ Pd
}

= Rd.

Such convex bodies are actually dense in Kd with respect to the Hausdorff metric.

Theorem 10. The space Pd is infinite-dimensional.

In the proofs of these theorems, new classes of affine invariant points were
introduced using convex floating bodies (see Section 5.2 below). We define
pδ : Kd → Rd to be the mapping that sends K to the centroid of Pδ from
(7) for P uniform on K.

Moreover, in Meyer, Schütt and Werner [131, Theorem 2] it was shown that
for convex bodies K with dim(Pd(K)) = d−1 a positive answer to Grünbaum’s
question (iii) above holds, i.e. Fd(K) = Pd(K). It was settled in all dimen-
sions by Mordhorst [135], based on work by Kučment [95] (see also [96]) where
question (iii) of Grünbaum was almost proved already in 1972, with only a
compactness argument missing.

Theorem 11. For any K ∈ Kd we have that Fd(K) = Pd(K).

5. Description at the boundary: Convex floating bodies

Data depth is intimately related to the concept of floating body which we now
introduce. We start with a brief discussion of differentiability properties of the
boundary of convex bodies, since this will be essential in what follows.

5.1. Curvature of convex bodies

We take as a measure on the boundary ∂K of a convex body K ∈ Kd the
restriction of the (d − 1)-dimensional Hausdorff measure to ∂K. We call this
measure the boundary measure, or the Lebesgue measure on ∂K, and denote it
by μ∂K . Let U be an open subset of Rd and f : U → R be a twice continuously
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differentiable function. Then the classical Gauss-Kronecker curvature at x0 ∈ U
is

κ(x0) =
det

(

∇2f(x0)
)

(1 + ‖∇f(x0)‖2)
d+2
2

,

where ∇f is the gradient of f and ∇2f the Hessian of f . The Gauss-Kronecker
curvature of the boundary of a convex body is the curvature of a function
parametrizing the boundary.

By a theorem of Rademacher (see, e.g., [23, Theorem 2.5.1]), a convex func-
tion on Rd, and in particular the boundary of a convex body, is almost ev-
erywhere differentiable. There are, however, examples of convex functions and
convex bodies that are not differentiable on a dense set of Rd and of the bound-
ary of the convex body, respectively. Those examples do not have a second
derivative at any point and thus the classical Gauss-Kronecker curvature κ does
not exist at any point.

Therefore we use the generalized Gauss-Kronecker curvature as introduced
by Busemann and Feller [30] in dimension d = 3 and Aleksandrov [2] in general.
We present here only a short explanation of the generalized Gauss-Kronecker
curvature and we refer to e.g., [173, Section 1.6] and [170] for a detailed account.

A cap of K ∈ Kd at x ∈ ∂K is the intersection of a halfspace H− with K
such that there is a supporting hyperplane to K at x that is parallel to H.
There may, of course, be points on the boundary of K having more than one
supporting hyperplane. But, those points are of measure 0 and shall be of less
importance in our discussion.

If K has a unique supporting hyperplane at x ∈ ∂K, we denote by Δ(x, δ)
the height of a cap with volume δ. The height of a cap is the distance of the
supporting hyperplane at x to the parallel hyperplane cutting off a set of volume
δ.

Definition. Let K ∈ Kd and x ∈ ∂K. Let cd = 2d+1
(

vold−1

(

Bd−1
)

/(d+ 1)
)2
.

Assume that K has at x a unique supporting hyperplane. We say that K has a
generalized Gauss-Kronecker curvature if the limit

lim
δ→0

cd
Δ(x, δ)d+1

δ2

exists. In this case we define

κ(x) = lim
δ→0

cd
Δ(x, δ)d+1

δ2
(14)

to be the generalized Gauss-Kronecker curvature at x.

If the Gauss-Kronecker curvature exists, then it is equal to the generalized
Gauss-Kronecker curvature. By a theorem of Busemann, Feller and Aleksandrov
[30, 2] the generalized Gauss-Kronecker curvature of a convex body exists almost
everywhere (in the sense of the boundary measure of K). Geometrically, the
existence of the generalized Gauss-Kronecker curvature at x means that ∂K
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can be “well” approximated by an ellipsoid, or ellipsoidal cylinder at x (see,
e.g., [173, Section 1.6]).

The following example clarifies the difference between Gauss-Kronecker cur-
vature and generalized Gauss-Kronecker curvature.

Example 4. Let f : [−1, 1] → R be defined by

f(x) =

{

x2 if |x| = 1/n and n ∈ N,
2n+1

n(n+1) |x| − 1
n(n+1) if 1

n+1 < |x| < 1/n and n ∈ N.

The function f is not differentiable at the points x = ±1/n and therefore f
is not twice differentiable at 0. Thus, the Gauss-Kronecker curvature of f does
not exist at 0. On the other hand, it is not difficult to compute that f has a
generalized Gauss-Kronecker curvature at 0 and this curvature is 2, see Figure 5.

Fig 5. The function f from Example 4 (black solid line) and the function x �→ x2 (red dashed
line) that approximates f around x = 0. Since f is not twice differentiable at x = 0, its
Gauss-Kronecker curvature does not exist at 0. Its generalized Gauss-Kronecker curvature at
0 exists and is equal to 2, the Gauss-Kronecker curvature of x �→ x2.

5.2. Floating body and convex floating body

Earliest records on floating bodies can be traced back to the early 19th century
work of Dupin [47] and are motivated by mechanics. By the Archimedean prin-
ciple, a solid convex body K ∈ K3 of constant (volumetric mass) density that
floats in water has always a set of the same volume above the water surface,
regardless of its position.

This leads to the definition of floating bodies for convex bodies in K ∈ Kd

according to Dupin.

Definition. A nonempty convex subset K[δ] of K ∈ Kd is a floating body of K
with index δ > 0 if each supporting hyperplane to K[δ] cuts off a set of volume
δ from K.
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Fig 6. Curves of barycenters of hyperplanes that cut off volume δ ∈ {0.05, 0.20, 0.35} from
convex bodies (thin black lines), and the boundaries of convex floating bodies for the same
values of δ (thick red lines), for the uniform distribution on a square (left panel) and a
triangle (right panel). For the square, all (Dupin’s) floating bodies exist, and coincide with
the convex floating bodies. For the triangle, the boundaries of all convex floating bodies are
proper sub-curves of the corresponding black curves (the difference is not visible in the plot
for δ = 0.05). The (Dupin’s) floating bodies do not exist.

Dupin observed that a support hyperplane H to K[δ] touches the boundary of
K[δ] in exactly one point, the barycenter of K ∩H. It implies that if K[δ] exists,
its boundary is given by the surface of all barycenters of H ∩K for hyperplanes
H that cut off volume δ from K.

The floating body cannot exist for δ > vold (K) /2. Suppose it does exist.
Then any two different parallel supporting hyperplanes of K[δ] cut off disjoint
sets of volume δ from K, and therefore K[δ] is the empty set. As shown in the
next example, the floating body K[δ] may not exist even for small δ > 0.

Example 5. Let K ∈ K2 be the equilateral triangle from Example 1. For
all δ > 0, the curve of barycenters of lines that cut off volume δ from K is
not the boundary of a convex set. Some of these curves for various values of δ
are displayed on the right panel of Figure 6. Therefore, in agreement with the
observation of Leichtweiß [98, pp. 433–434], no floating body of a triangle exists.
Compare this also to Example 1.

If K ∈ K2 is the unit square from Example 1, all floating bodies K[δ] exist for
δ ∈ (0, vold (K) /2], and they coincide with the halfspace depth central regions
(7).

If K ∈ Kd has a sufficiently smooth boundary, then K[δ] exists by Leichtweiß
[98, Satz 2], at least for small δ > 0. However, in many applications (e.g., in
Section 5.3 below), existence of floating bodies for all convex bodies is needed.
Therefore a modified definition has been proposed, independently by Bárány
and Larman [12] and Schütt and Werner [170], called the convex floating body.

Definition. Let K be a convex body in Rd and δ ≥ 0. The convex floating body
is the intersection of all halfspaces whose defining hyperplanes cut off a set of
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volume δ of K,

Kδ =
⋂

vold(K∩H−)=δ

H+,

where H ∈ H and H+ and H− are its associated halfspaces.

The convex floating body exists for all convex bodies since it is an intersec-
tion of halfspaces. For instance, the convex floating body of the triangle has
a boundary described by the red curve in Figure 6. Note also that K0 = K.
It is easy to see that whenever K[δ] exists, then K[δ] = Kδ [170]. Unlike the
floating body, the convex floating body is allowed to be an empty set. This way,
all convex floating bodies Kδ of K are well defined convex sets, but certainly
Kδ = ∅ if δ > vold (K) /2.

Properties of the convex floating body are stated in the next proposition.

Proposition 12. Let K ∈ Kd and δ > 0.

(i) Through every point of ∂Kδ there is at least one supporting hyperplane of
Kδ that cuts off a set of volume δ from K.

(ii) A supporting hyperplane H of Kδ that cuts off a set of volume δ touches
Kδ in exactly one point, the barycenter of K ∩H.

(iii) Kδ is strictly convex.
(iv) Let

δ0 = sup{δ : vold (Kδ) > 0}. (15)

Then Kδ0 consists of one point only, and for δ < δ0 we have that Kδ is a
convex body.

Most of Proposition 12 was proved in [172, Lemma 2]. Part (ii), in dimension
d = 3, is due to Dupin [47], see also [98, p. 435]. In general, it is not true
that all supporting hyperplanes to the convex floating body Kδ cut off a set of
exactly volume δ from K. An example is the simplex, as can be seen also from
Example 5. Not every point on the boundary of Kδ has a unique supporting
hyperplane. An example is the cube, see Example 5.

Meyer and Reisner [129] show that for centrally symmetric convex bodiesK[δ]

exists for any δ ∈ (0, vold (K) /2]. Moreover, in that case each K[δ] is also (cen-
trally) symmetric around the same center of symmetry as K. In an unpublished
work, K. Ball gave a different proof of the existence result, see [130, Section 4].

Proposition 13. Let K ∈ Kd be a convex body that is (centrally) symmetric
with respect to the origin 0, i.e. x ∈ K implies −x ∈ K. Then we have for any
δ ∈ (0, vold (K) /2)

(i) The floating body K[δ] of K exists, and is strictly convex.
(ii) If, in addition, K is strictly convex and has a C1 boundary, then the

floating body K[δ] has a C2 boundary.

The next two results can be found in Schütt and Werner [171, Theorem 5.3
and Proposition 5.1], and describe the behavior of the volume of K \Kδ.
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Proposition 14. Let K ∈ Kd, and let δ0 be as in (15). Then vold (K \Kδ) is
a differentiable function of δ on (0, δ0) and

d

d δ
vold (K \Kδ) =

∫

∂Kδ

1

vold−1 (K ∩H(x,N∂Kδ
(x)))

dμ∂Kδ
(x),

where H(x,N∂Kδ
(x)) is the hyperplane passing through x orthogonal to the nor-

mal of Kδ at x.

Proposition 15. Let K ∈ Kd be a (centrally) symmetric convex body in Rd.
Then we have for all δ ∈ (0, vold (K) /2)

d

d δ
vold (K \Kδ) ≤

d

δ
vold (K \Kδ) .

5.3. Affine surface area

An important affine invariant from affine convex geometry is the affine surface
area. Applications of the affine surface area are numerous. We only name some
in convex geometry [118, 61, 21, 109, 110, 73], in differential geometry [3, 4, 179,
85], approximation of convex bodies by polytopes (see Section 5.7), information
theory [117, 189, 7, 190], and partial differential equations [115, 185].

Let K be a convex body in Rd with a C2 boundary. Then for all x ∈ ∂K, the
Gauss-Kronecker curvature κ(x) exists and the (classical) affine surface area,
introduced by Blaschke [17] in 1923 in dimensions two and three, is defined as

as (K) =

∫

∂K

κ(x)
1

d+1 dμ∂K(x).

For a Euclidean ball with radius 1, the affine surface area equals its surface area.
It is 0 for all polytopes. Blaschke [17] observed that for convex bodies in R3 with
analytic boundary the following identity holds

lim
δ→0

vol3(K)− vol3(K[δ])

δ
1
2

=
1√
π

∫

∂K

κ(x)
1
4 dμ∂K(x). (16)

An important tool in the proof of this identity is the rolling theorem of Blaschke
[17]: The floating body exists if a sufficiently small Euclidean ball rolls freely
inside K, i.e., there is r > 0 such that for all x ∈ ∂K there is y ∈ K such that
‖x− y‖ = r and Bd(y, r) ⊂ K.

It is natural to ask if formula (16) can be extended to all dimensions and all
convex bodies using the convex floating body instead of the floating body. This
is indeed the case and was achieved in Schütt and Werner [170], where now the
function κ under the integral is the generalized Gauss-Kronecker curvature (14).

Theorem 16. Let K ∈ Kd. Then

lim
δ→0

vold (K)− vold (Kδ)

δ
2

d+1

=
1

2

(

d+ 1

vold−1 (Bd−1)

)
2

d+1
∫

∂K

κ(x)
1

d+1 dμ∂K(x).

(17)



82 S. Nagy et al.

The expressions in the above theorem can thus be used to define the affine
surface area for all convex bodies. Around the same time, different extensions
of the affine surface area to arbitrary convex bodies were given by Leichtweiß
[98] and Lutwak [112] and afterwards several more have been found, e.g., [82,
132, 187]. It has been shown that all those extensions coincide.

Expression (17) is called the affine surface area because of its similarity to
Minkowski’s definition of surface area

vold−1 (∂K) = lim
δ→0

1

δ

(

vold
(

K + δBd
)

− vold (K)
)

,

and because for all affine maps T : Rd → Rd, as (T (K)) = |det(T )|
d−1
d+1 as (K).

The latter equation follows easily from (17). Indeed,

(T (K))δ = T
(

K δ
|det(T )|

)

.

An important tool in the proof of Theorem 16 is a strengthening of Blaschke’s
rolling theorem. To achieve this, Schütt and Werner [170] introduce the rolling
function. For x ∈ ∂K, the rolling function r(x) is the supremum of all radii of
Euclidean balls that contain x and that are contained in K, i.e. r : ∂K → R is
defined by

r(x) = sup
{

‖x− z‖ : z ∈ K,Bd(z, ‖x− z‖) ⊆ K
}

.

If K does not have a unique normal at x then r(x) = 0. The following was
shown by Schütt and Werner [170, Lemmas 4 and 5].

Proposition 17. Let K ∈ Kd be such that Bd ⊂ K. Then we have for all t
with 0 ≤ t ≤ 1 that {x ∈ ∂K : r(x) ≥ t} is a closed set and

(1− t)d−1 vold−1 (∂K) ≤ vold−1 ({x ∈ ∂K : r(x) ≥ t}) .

The inequality is optimal. In particular, the function r−α : ∂K → R is Lebesgue
integrable for all α with 0 ≤ α < 1.

Note that by taking t = 0 in Proposition 17 it follows that the boundary of
a convex body is almost everywhere differentiable.

Affine invariance is a useful property as it lets us consider convex bodies
independent of their position in space. Another extremely important property
of the affine surface area is the affine isoperimetric inequality which says that
for all convex bodies K ∈ Kd,

as (K)

as (Bd)
≤

(

vold (K)

vold (Bd)

)

d−1
d+1

, (18)

with equality if and only if K is an ellipsoid (see, e.g., [165, Section 10.5]).
The affine isoperimetric inequality is stronger than the classical isoperimetric
inequality and provides solutions to many problems where ellipsoids are extrema
[113, 172, 180, 192].
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The affine isoperimetric inequality (18) is equivalent to another classical in-
equality from convex geometry, the Blaschke-Santaló inequality [17, 162]. For
an interior point x0 of a convex body K recall the definition of the polar body
Kx0 of K w.r.t. x0 from (1). The Blaschke-Santaló inequality states that for all
convex bodies K in Rd,

vold (K) vold

(

Ks(K)
)

≤ vold
(

Bd
)2

, (19)

where s(K) is the Santaló point of K, i.e. the unique point for which the mini-
mum is attained on the left hand side. This inequality and its counterpart, the
reverse Blaschke-Santaló inequality (proved by Bourgain and Milman [26] and
closely connected to the still-unsolved Mahler’s conjecture, see e.g. Giannopou-
los, Paouris and Vritsiou [63]), are helpful to estimate the volume of convex
bodies in situations, when it is easier to compute the volume of the polar Kx0

of a convex body. These inequalities have important applications in convex ge-
ometry, functional analysis, Banach space theory, quantum information theory,
operator theory and geometric number theory. For background including refer-
ences, see e.g. the books [5, 60, 63, 89, 165].

To conclude this section, note that for a polytope S ∈ Kd we have a different
behavior of the volume difference vold (S \ Sδ) than that from Theorem 16. To
describe it, we need the notion of flag. A flag of a polytope S is a d-tuple
(f0, . . . , fd−1) where fi is an i-dimensional face of S with fi ⊂ fi+1. fld(S)
denotes the number of flags of the polytope S.

Theorem 18. Let S be a convex polytope with nonempty interior in Rd. Then

lim
δ→0

vold (S)− vold (Sδ)

δ
(

log 1
δ

)d−1
=

fld(S)

d! dd−1
.

Theorem 18 was proved by Schütt [167, Theorem 1.2]. Recent extensions of
this theorem can be found in Besau, Schütt and Werner [13].

5.4. Lp-affine surface area

The concept of affine surface area for convex bodies has been generalized to Lp-
affine surface areas. Those are by now the cornerstones of the rapidly developing
Lp-Brunn-Minkowski theory, initiated in the groundbreaking paper of Lutwak
[114]. See also [165, Section 9.1] and, e.g., [146, 74, 116, 132]. The next definition
was given by Lutwak [114] for p > 1, and Schütt and Werner [174] for all other
p. See also Hug [84].

Definition. Let K be a convex body in Rd such that 0 is in the interior of K.
Let −∞ ≤ p ≤ ∞, p �= −d. The Lp-affine surface area of K is

asp (K) =

∫

∂K

κ(x)
p

d+p

〈x,NK(x)〉
d(p−1)
d+p

dμ∂K(x). (20)



84 S. Nagy et al.

Here, NK(x) is the outer unit normal at x ∈ ∂K, μ∂K is the usual surface area
measure on ∂K and κ is the generalized Gauss-Kronecker curvature at x.

For p = 0, as0 (K) = d vold (K). For p = ±∞, the Lp-affine surface area is
defined by the corresponding limit in (20)

as±∞ (K) =

∫

∂K

κ(x)

〈x,NK(x)〉d
dμ∂K(x),

which, for K sufficiently smooth, gives as±∞ (K) = d vold (K
◦), where K◦ is

the polar body (1) of K w.r.t. 0. For p = 1 we get the above mentioned affine
surface area of K,

as1 (K) = as (K) =

∫

∂K

κ(x)
1

d+1 dμ∂K(x).

Note that in general the Lp-affine surface area is not an affine invariant any-
more, only a linear invariant. There exist geometric identities, analogous to (17),
also for Lp-affine surface area. These use weighted floating bodies [188], Santaló
bodies [132] and surface bodies [174]. We refer to those references for the de-
tails. Moreover, the corresponding Lp-affine isoperimetric inequalities hold true
as well.

Theorem 19. Let K ∈ Kd with the origin in its interior.

(i) If p ≥ 0, then

asp (K)

asp (Bd)
≤

(

vold (K)

vold (Bd)

)

d−p
d+p

.

(ii) If −d < p < 0, then

asp (K)

asp (Bd)
≥

(

vold (K)

vold (Bd)

)

d−p
d+p

.

Equality holds in (i) and (ii) if and only if K is an ellipsoid.
(iii) If K in addition has C2 boundary with strictly positive Gauss-Kronecker

curvature everywhere and if p < −d, then

c
dp

d+p

(

vold (K)

vold (Bd)

)

d−p
d+p

≤ asp (K)

asp (Bd)
.

The constant c in (iii) is the constant from the reverse Blaschke-Santaló
inequality due to Bourgain and Milman [26, Theorem 1].

Theorem 19 was proved by Lutwak [114] for p > 1 and by Werner and Ye
[191, Theorem 4.2] for all other p.
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5.5. Floating measures

Much effort has been devoted to extend the theory of convex bodies to a func-
tional setting (e.g., [9, 6, 54]). Natural analogs of convex bodies in the realm of
functions are log-concave functions, i.e. densities of log-concave measures. For
such measures we present a notion of floating measure. Another approach will
be shown in Section 6.

Let ψ : Rd → R be a convex function such that

0 <

∫

Rd

e−ψ(x) dx < ∞. (21)

In the general case, when ψ is neither smooth nor strictly convex, the gradient
of ψ, denoted by ∇ψ, exists almost everywhere by Rademacher’s theorem [23,
Theorem 2.5.1]. A theorem of Busemann and Feller [30] and Aleksandrov [2]
guarantees the existence of the (generalized) Hessian, denoted by ∇2ψ, almost
everywhere in Rd (for details see, e.g., [173, Section 1.6]). The Hessian is a
quadratic form on Rd, and if ψ is a convex function, for almost every x ∈ Rd

one has, when y → 0, that

ψ(x+ y) = ψ(x) + 〈∇ψ(x), y〉+ 1

2
〈∇2ψ(x)(y), y〉+ o(‖y‖2).

Let μ be a log-concave measure on Rd, i.e. a measure with density e−ψ, where
ψ : Rd → R is a convex function. Note that we do not necessarily require that
μ is a probability measure. Let

epi(ψ) = {(x, y) ∈ Rd × R : y ≥ ψ(x)}
be the epigraph of ψ. Then epi(ψ) is a closed convex set in Rd+1 and for suffi-
ciently small δ we can define its floating set epi(ψ)δ as

epi(ψ)δ =
⋂

{H∈H : vold(H−∩ epi(ψ))≤δ}
H+.

This was done in [101], where also the definition of a floating set was introduced
for convex, not necessarily bounded subsets of Rd.

It is easy to see that there exists a unique convex function ψδ : R
d → R such

that (epi(ψ))δ = epi(ψδ). Consequently, Li, Schütt and Werner [101] define the
floating function of a convex function ψ and the floating measure of the (not
necessarily probability) measure μ as follows.

Definition. Let ψ : Rd → R be a convex function. Let δ > 0.

(i) The floating function of ψ is defined to be the function ψδ such that

(epi(ψ))δ = epi (ψδ) .

(ii) Let μ be a measure with density f(x) = e−ψ(x). The floating measure of
μ is the measure with density fδ where

fδ(x) = e−ψδ(x) for x ∈ Rd.

Note that when ψ is affine, ψδ = ψ and, for f = e−ψ, fδ = f .
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5.6. Affine surface areas for log-concave measures

As far as we know, at present there are two approaches for a definition of
affine surface area for log-concave measures. The first one is similar to the one
discussed in Section 5.3 and uses the floating measure of Section 5.5 instead of
the floating bodies Kδ. It was proposed in [101] and is inspired by the formula of
Theorem 16. As in Section 5.5, we do not require that the log-concave measure
μ with density e−ψ is a probability measure.

Theorem 20. Let ψ : Rd → R be a convex function such that (21) holds true.
Then

lim
δ→0

∫

Rd e
−ψ(x) dx−

∫

Rd e
−ψδ(x) dx

δ2/(d+2)

=
1

2

(

d+ 2

vold (Bd)

)
2

d+2
∫

Rd

(

det
(

∇2ψ(x)
))

1
d+2 e−ψ(x) dx.

This theorem was proved in [101, Theorem 1]. Its comparison with convex
bodies (see Theorem 16) led Li, Schütt and Werner [101] to call the right hand
side integral of Theorem 20 the affine surface area of the measure μ.

Definition. For a log-concave measure μ on Rd with density e−ψ such that
(21) holds true, the affine surface area of the measure μ is given by

as (μ) =

∫

Rd

(

det
(

∇2ψ(x)
))

1
d+2 e−ψ(x) dx. (22)

This definition is further justified as the expression shares many properties
of the affine surface area for convex bodies. For instance, it is invariant under
affine transformations with determinant 1. For the standard Gaussian measure
P we have that as (P ) = 1.

Another definition of affine surface area for log-concave measures was put
forward in Caglar et al. [31]. Actually, an even more general approach was
proposed, again for convex functions ψ such that (21) holds true. We put Ωψ to
be the set of vectors in Rd at which ∇2ψ exists and is invertible.

Definition. For a log-concave measure μ on Rd with density e−ψ such that
(21) holds true and λ ∈ R, the λ-affine surface areas are

Asλ (μ) =

∫

Ωψ

eλ(2ψ(x)−〈x,∇ψ(x)〉) (det ∇2ψ(x)
)λ

e−ψ(x) dx. (23)

We can replace Ωψ by Rd for λ > 0.

Differentiating with respect to α at α = 1, we get in the case of 2-homogeneous
convex functions ψ, that is ψ(αx) = α2ψ(x), for any α > 0 and x ∈ Rd, that

〈x,∇ψ(x)〉 = 2ψ(x).
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Thus, for 2-homogeneous functions ψ, formula (23) simplifies to

Asλ (ψ) =

∫

Ωψ

(

det ∇2ψ(x)
)λ

e−ψ(x) dx,

and definitions (22) and (23) agree for λ = 1
d+2 .

To understand why it is justified to name the quantities (23) affine surface
areas, we recall the definition of the Lp-affine surface areas (20) for convex bodies
K. It was noted in Caglar et al. [31] that the definition of λ-affine surface area
for a log-concave density agrees with the definition of Lp-affine surface area for
convex bodies if the function is the gauge function ‖ · ‖K of a convex body K
with 0 in its interior,

‖x‖K = min{α ≥ 0: x ∈ αK}.

The next theorem is from Caglar et al. [31, Theorem 3].

Theorem 21. Let K be a convex body in Rd that contains the origin in its
interior. For any p ≥ 0, let λ = p

d+p . Then

Asλ

(‖ · ‖2K
2

)

=
(2π)

d
2

d vold (Bd)
asp (K) .

Moreover, if the set of points of ∂K where the generalized Gauss-Kronecker
curvature is strictly positive has full measure in ∂K, then the same relation
holds true for every p �= −d.

The Lp-affine isoperimetric inequalities for convex bodies of Theorem 19 have
analogs for the λ-affine surface areas for log-concave measures. We only mention
the case λ ∈ [0, 1] and refer to Caglar et al. [31] for the other cases.

Proposition 22. Let ψ : Rd → R ∪ {+∞} be a convex function such that (21)
holds true and such that

∫

Rd xe
−ψ(x) dx = 0. Then we have for all λ ∈ [0, 1],

Asλ (μ)

Asλ

(

‖·‖2

2

) ≤
(
∫

Ωψ
e−ψ(x) dx

∫

Rd e
− ‖x‖2

2 dx

)1−2λ

.

In particular, if ψ is in addition 2-homogeneous, then

as (μ)

as
(

‖·‖2

2

) ≤
(
∫

Ωψ
e−ψ(x) dx

∫

Rd e
− ‖x‖2

2 dx

)

d
d+2

.

Equality holds in the inequalities if and only if there are a ∈ R and a positive
definite matrix A such that for all x ∈ Rd

ψ(x) = 〈Ax, x〉+ a.

A main ingredient in the proof of this proposition is a functional version of
the Blaschke-Santaló inequality. We refer to [9, 6, 54] for the details.
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5.7. Applications of affine surface area: Approximation of convex
bodies by polytopes

Approximation by polytopes is a central topic in convex geometry with numer-
ous applications. There is a huge amount of literature on the subject. A (very
incomplete) list is [20, 69, 152, 168, 68, 81, 111]. We present only one aspect
of the subject, approximation by polytopes with a fixed number of vertices and
refer to the literature for others.

5.7.1. Best and random approximation

Ideally, in approximation problems, one seeks a best approximating polytope in
a given metric. One such result is given in the next theorem, where we consider
all polytopes with at most N vertices that are contained in a convex body K.
By compactness, there is a polytope PN in this class with maximal volume. This
means that the symmetric difference metric dS(K,PN ) from (13) is minimal.
Such a polytope is called best approximating with respect to the symmetric
difference metric.

Theorem 23. Let K be a convex body in Rd with C2-boundary ∂K and every-
where strictly positive Gauss-Kronecker curvature κ. For every N ∈ N let PN

be a best approximating polytope of K with at most N vertices. Then

lim
N→∞

dS(K,PN )
(

1
N

)
2

d−1

=
1

2
deld−1

(
∫

∂K

κ(x)
1

d+1 dμ∂K(x)

)

d+1
d−1

, (24)

where deld−1 is a constant depending only on the dimension d.

This theorem was proved by McClure and Vitale [128] in dimension 2 and
by Gruber [69] for general dimension. It was shown by Mankiewicz and Schütt
[120] that deld−1 is of the order of dimension, or more precisely,

d− 1

d+ 1
vold−1

(

Bd−1
)− 2

d−1 ≤ deld−1

≤ d− 1

d+ 1
vold−1

(

Bd−1
)− 2

d−1

Γ
(

d+ 1 + 2
d−1

)

d!
.

(25)

Note that
Γ(d+1+ 2

d−1 )
d! ≤ 1 + c log d

d , where c is an absolute constant.
On the right hand side of equation (24) we find the affine surface area of K

from Section 5.3. It is natural that such a term should appear in approximation
questions: Intuitively, we expect that more vertices of the approximating poly-
tope should be put where the boundary of K is very curved, and fewer points
where the boundary is flat, to get a good approximation in the dS-metric.

However it is only in rare cases that a best approximating polytope can be
singled out. Consequently, a common practice is to randomize: Choose N points
at random in K with respect to a probability measure P on K. The convex hull
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of these randomly chosen points is a random polytope. The expected volume of
a random polytope of N points is

E(K,N) =

∫

K

· · ·
∫

K

vold ([x1, . . . , xN ]) dP (x1) . . . dP (xN ),

where [x1, . . . , xN ] is the convex hull of the points x1, . . . , xN . Thus the expres-
sion vold (K)−E(K,N) measures how close a random polytope and the convex
body are in the symmetric difference metric.

We now compare best approximation with random approximation. The ana-
log to Theorem 23 in the random case is the following theorem. There, the
probability measure is the normalized Lebesgue measure on K.

Theorem 24. Let K be a convex body in Rd. Then

lim
N→∞

vold (K)− E(K,N)
(

vold(K)
N

)
2

d+1

= c(d)

∫

∂K

κ(x)
1

d+1 dμ∂K(x),

where c(d) is a constant that depends only on d.

This theorem was proved by Rényi and Sulanke [153, 154] in dimension 2.
Wieacker [193] settled the case of the Euclidean ball in dimension d. Bárány
[11] proved the result for convex bodies with C3-boundary and everywhere pos-
itive Gauss-Kronecker curvature. Finally, the general result for arbitrary convex
bodies was proved by Schütt [168] and Böröczky, Fodor and Hug [22].

Notice that Theorem 24 does not give the optimal dependence on N for best
approximation. One reason is that not all the points chosen at random from K
appear as vertices of the approximating random polytope. Thus we now choose
the points randomly from the boundary of K according to a measure with a
density with respect to μ∂K . We denote by E(K, f,N) the expected volume of
the corresponding random polytope. Which density is optimal? It turns out that
it is, up to normalization, the (d + 1)-root of the generalized Gauss-Kronecker
curvature. The integral of this function is the affine surface area. The next
theorem was shown by Schütt and Werner [173, Theorem 1.1], see also Reitzner
[151].

Theorem 25. Let K be a convex body in Rd such that there are 0 < r ≤ R < ∞
so that we have for all x ∈ ∂K

Bd(x− rNK(x), r) ⊆ K ⊆ Bd(x−RNK(x), R),

for NK(x) an outer unit normal of K at x, and let f : ∂K → (0,∞) be contin-
uous with

∫

∂K
f(x) dμ∂K(x) = 1. Then

lim
N→∞

vold (K)− E(K, f,N)
(

1
N

)
2

d−1

= c(d)

∫

∂K

κ(x)
1

d−1

f(x)
2

d−1

dμ∂K(x) (26)
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where

c(d) =
(d− 1)

d+1
d−1Γ

(

d+ 1 + 2
d−1

)

2(d+ 1)!(vold−2 (∂Bd−1))
2

d−1

.

The minimum at the right-hand side of (26) is attained for the normalized affine
surface area measure with density

fas(x) =
κ(x)

1
d+1

∫

∂K
κ(x)

1
d+1 dμ∂K(x)

for x ∈ ∂K.

Best approximation of Theorem 23 differs from random approximation of
Theorem 25 only in the dimensional constants deld−1 and c(d). Comparing
those, using also (25), an amazing fact follows: with the density fas random
approximation is almost as good as best approximation,

lim
N→∞

dS(K,PN )
(

1
N

)
2

d−1

≤ lim
N→∞

vold (K)− E(K, fas, N)
(

1
N

)
2

d−1

≤
(

1 + c
log d

d

)

lim
N→∞

dS(K,PN )
(

1
N

)
2

d−1

,

where c is an absolute constant.

5.7.2. The floating body algorithm

Bárány and Larman [12, Theorem 1] established a relation between floating
bodies and random polytopes for the uniform measure on the convex body:
With high probability the volume of a random polytope is close to the volume
of an appropriate floating body.

Theorem 26. Let K be a convex body in Rd. Then there is N0 ∈ N such that
for all N ≥ N0

c1

(

vold (K)− vold

(

K 1
N

vold(K)

))

≤ vold (K)− E(K,N)

≤ c2

(

vold (K)− vold

(

K 1
N

vold(K)

))

,

where c1 and c2 are constants that depend on d only.

Even more can be said about the connection between floating bodies and
random polytopes. There is an algorithm, the floating body algorithm, where,
for a given convex bodyK in Rd, one uses floating bodies to construct a polytope
PN with as few vertices N as possible such that for a suitable δ, Kδ ⊆ PN ⊆ K
and such that PN approximates the convex body K very well in the symmetric
difference metric. It should be noted that we make no assumption on K.
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We describe this algorithm: We are choosing the vertices x1, . . . , xN ∈ ∂K of
the polytope PN . Point x1 is chosen arbitrarily. Having chosen x1, . . . , xk−1 we
choose xk such that

{x1, . . . , xk−1} ∩ Int
(

K ∩H−(xk −ΔkNK(xk), NK(xk))
)

= ∅

where NK(xk) denotes a (not necessarily unique) outer normal to ∂K at x0,
Int(C) is the interior of a set C ⊂ Rd, and Δk is determined by

vold
(

K ∩H− (xk −ΔkNK(xk), NK(xk))
)

= δ.

The next theorem can be found in Schütt [169].

Theorem 27. Let K be a convex body in Rd. Then, for all δ with 0 < δ ≤
1

4e4 vold (K) there exists N ∈ N with

vold (K \Kδ) ≤ N
( c

4e4

)d

vold
(

Bd
)

4e3δ

where c is a universal constant, and there exists a polytope PN that has at most
N vertices and such that

Kδ ⊆ PN ⊆ K.

How well does this polytope approximate K? It follows from Theorem 27
that

lim sup
N→∞

dS(K,PN )
(

1
N

)
2

d−1

≤ c d2
(
∫

∂K

κ(x)
1

d+1 dμ∂K(x)

)

d+1
d−1

.

This should be compared to (24). Since deld−1 is of the order of d, both expres-
sions differ only by a factor of the order of dimension d.

6. Floating bodies of measures

The definition of the (convex) floating body of a convex body K ∈ Kd discussed
in Section 5 extends naturally also to general probability measures, in a manner
different from that in Section 5.5. It is closely related to the halfspace depth.
Analogously to the approach of Dupin [47], consider the following definition.

Definition. Let P ∈ P
(

Rd
)

and δ > 0. We say that the nonempty convex set
P[δ] is the floating body of P with index δ if for each supporting halfspace H+

of P[δ] we have P (H−) = δ.

For P distributed uniformly on a convex body K ∈ Kd of unit volume,
P[δ] = K[δ]. Therefore, the floating body P[δ] does not exist for δ > 1/2, and
it may happen that it does not exist for any δ > 0, see the example of (the
uniform distribution on) a triangle from Example 5. Unlike in the situation
with the floating body of K ∈ Kd, even if the floating body P[δ] of P ∈ P

(

Rd
)

exists, it may not be uniquely defined. Take, for instance, a distribution P on R

whose support is not contiguous, such as that displayed in Figure 7. For δ = 1/4,
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and q2 the (1− δ)-quantile of P , each interval [q1, q2] for q1 ∈ [0, 1] is a floating
body of P . Note that if P has contiguous support and P[δ] exists, then it is
unique.

To avoid these problems, let us consider, as in the case of convex bodies, the
convex floating body of P , given by an intersection of halfspaces.

Definition. Let P ∈ P
(

Rd
)

. For δ ≥ 0, the convex floating body of P with
index δ is defined as the intersection of all closed halfspaces whose defining
hyperplanes cut off a set of probability content at most δ from P , i.e.

PFB
δ =

⋂

P (H−)≤δ

H+, (27)

where H ∈ H and H+ and H− are its associated closed halfspaces.

Note that with the convention that the intersection of an empty collection of
subsets of Rd is Rd, convex floating bodies of a measure are always well defined,
unique, convex subsets of Rd. It can happen that PFB

δ = ∅, especially for larger
values of δ. It is easy to see that for P ∈ P

(

Rd
)

distributed uniformly on
K ∈ Kd with vold (K) = 1, PFB

δ = Kδ for any δ ≥ 0, and the convex floating
bodies of measures generalize the convex floating bodies discussed throughout
Section 5.

(Convex) floating bodies for general measures have already been considered
in the literature, mainly due to the association of convex bodies and log-concave
measures established by Ball [10]. The previous definitions were considered by
Werner [188], Bobkov [18], Fresen [57, 58], and Brunel [28], among others. In
connection with the halfspace depth, the floating bodies (27) were considered
in Nolan [143], and Massé and Theodorescu [126]. In the latter paper, those
regions are called the δ-trimmed regions of P .

The convex floating body of a measure P is very closely related to the depth
central region Pδ, defined in (7) as the upper level set of the depth hD (·;P ).
Indeed, recall the characterization of Rousseeuw and Ruts [160, Proposition 6],
who showed that for any P ∈ P

(

Rd
)

and δ > 0

Pδ =
⋂

P (H+)>1−δ

H+.

On the other hand, it is not difficult to see that the convex floating body (27)
can be written also in the form

PFB
δ =

⋂

P (H+)≥1−δ

H+. (28)

Now it is obvious that for all δ ≥ 0 we have that

PFB
δ ⊆ Pδ,

and under the assumption of the contiguity of the support of P ,

Pδ = PFB
δ .



Halfspace depth and floating body 93

These results were noted by Kong and Mizera [90, Theorem 2] and Brunel [28,
Lemma 1]. For general measures P it may happen that the convex floating body
is a proper subset of the depth central region, see Figure 7.

It is interesting to investigate which results for convex bodies described in
Section 5 carry over to measures.

Fig 7. For distributions whose support is not contiguous, the convex floating body (27) and
the halfspace depth central region (7) may differ. In this example, the density of P ∈ P

(

R1
)

,
supported on disjoint intervals [−2, 0] and [1, 5], is displayed (orange line), along with its
halfspace depth function (dashed brown line). For δ = 1/4, the left endpoint of the interval
Pδ is 0. But the complement of the halfline [1,∞) (black arrow) has probability 1/4, and the
left endpoint of the convex 1/4-floating body of P is 1. Points in the interval (0, 1) are not
boundaries of any convex floating body of P .

Let us first relate the floating body P[δ] with the the convex floating body
PFB
δ and the central region Pδ. If a unique floating body P[δ] of a measure

P ∈ P
(

Rd
)

exists, then the corresponding convex floating body PFB
δ must be

equal to P[δ]. For the sake of completeness, let us provide an elementary proof
of this result.

Proposition 28. Let P ∈ P
(

Rd
)

have contiguous support. Then PFB
δ = Pδ

for any δ > 0. If, in addition, also P[δ] exists, then PFB
δ = Pδ = P[δ].

Proof. Recall that if P[δ] exists, then it is unique as P has contiguous support.
For P with contiguous support, the proof of PFB

δ = Pδ can be found in [28,
Lemma 1].

We show now that P[δ] = Pδ. We show first that Pδ ⊆ P[δ]. Let x /∈ P[δ].
By the Hahn-Banach separation theorem there is a support hyperplane H0 to
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P[δ] that strictly separates x and P[δ], i.e., x ∈ Int(H−
0 ), P[δ] ⊂ H+

0 and P[δ] ∩
H0 �= ∅. Since H0 is a supporting hyperplane to P[δ], P (H−

0 ) = δ. Then, as
Pδ =

⋂

P (H−)≤δ H
+, x /∈ Pδ.

Now we show that P[δ] ⊆ Pδ. Suppose not. Then there exists x ∈ P[δ] such

that, by (28), x /∈ H+
1 for some H1 with P (H+

1 ) ≥ 1 − δ. In that case there
must exist a hyperplane H2 with x ∈ H−

2 � H−
1 . Because H−

2 lies completely
in the open halfspace complementary to H+

1 , by the contiguity of P we know
that P (H−

2 ) < δ. This contradicts x ∈ P[δ], as for P contiguous the boundary
hyperplane of any closed halfspace with probability δ must support P[δ].

Now we explore whether analogues of Propositions 12–15 stated for convex
bodies in Section 5 hold true also for measures.

6.0.1. Proposition 12 for measures

A result analogous to part (i) of Proposition 12 would require that the infimum
in the definition of the halfspace depth (3) can be replaced by a minimum, i.e.
that a minimal halfspace of hD exists at each x ∈ Rd for any P ∈ P

(

Rd
)

.
For measures that that do not satisfy (4) this is not true, as noted already by
Rousseeuw and Ruts [160, Remark 1]. There, the following example is given.

Example 6. Let P ∈ P
(

R2
)

be a mixture of the standard bivariate Gaussian
distribution and the Dirac measure at the point (1, 1), with equal mixing pro-
portions. Then, at x = (0, 1), we have hD (x;P ) = Φ(−1)/2, where Φ is the
distribution function of the standard univariate Gaussian distribution, see also
Example 2. Yet, no minimal halfspace at x exists.

For a different example of the same phenomenon, see Massé [124, Section 2].
For distributions that satisfy (4), a minimal halfspace always exists for all x ∈
Rd. That was shown, e.g., by Massé [124, Proposition 4.5 (i)].

An extension of Dupin’s theorem (part (ii) of Proposition 12) to probability
distributions was stated in Hassairi and Regaieg [78, Theorem 3.1]. Here we
provide a version of that result with a slightly modified set of assumptions.
The proof of the proposition follows very closely the original proof from [78,
Theorem 3.1], and is omitted.

Proposition 29. Let X ∼ P ∈ P
(

Rd
)

be absolutely continuous with contiguous
support Supp(P ) and let x ∈ Rd be such that hD(x;P ) > 0. Denote by fu the
density of the random variable given by 〈X − x, u〉 with u ∈ Sd−1. Suppose that
fu(y) is continuous as a function of u ∈ Sd−1 and y in a neighborhood of 0 ∈ R.
Let H− ∈ H− be a minimal halfspace at x, i.e. x ∈ H and P (H−) = hD(x;P ).
Then

x =

∫

H
yf(y) d y

∫

H
f(y) d y

,

i.e. x is the conditional expectation of P given H. The integrals in the formula
above are taken with respect to the (d− 1)-dimensional Lebesgue measure on H.
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One has to be careful with the statement of Proposition 29. Without the re-
quired continuity properties of the marginal densities fu, the conditional expec-
tation of P given a hyperplane H, may not even be well defined. To illustrate our
point, we give an example that was brought to our attention by M. Tancer [183].

Example 7. Let P ∈ P
(

R2
)

be distributed uniformly on the union of two
squares with vertices (1, 0), (1, 2), (−1, 2), (−1, 0), and (2, 0), (2,−4), (−2,−4),
(−2, 0), respectively, see the left panel of Figure 8. Consider x = (ε, 0) for
−1/2 ≤ ε ≤ 1/2. A simple computation shows that hD(x;P ) = 1/5, and the
unique minimal halfspace at all such points x is the halfspace H+ that cuts off
the smaller square from P . A direct analogue of Dupin’s theorem would now
assert that the conditional expectation of H = ∂H+ is not unique — any x
on the line segment L that joins (−1/2, 0) and (1/2, 0) would be a candidate
for the barycenter of P given H. The problem here, of course, is due to the
discontinuity of the marginal density of P at H. For this particular H, the
conditional expectation of P given H is not properly defined.

Problem 5. Does a version of Dupin’s theorem (i.e. a variant of Proposition 29)
hold true also under weaker conditions on measures P ∈ P

(

Rd
)

?

Fig 8. Left panel: polygon where the measure P is supported in Example 7, line segment L
(thick solid line), and the unique minimal hyperplane at x = (ε, 0) for |ε| ≤ 1/2 (dashed
line). Right panel: central region Pδ of P for δ = 0.2. This region is not strictly convex, as it
contains the line segment L between the points (−1/2, 0) and (1/2, 0).

To see that the strict convexity of the central regions (part (iii) of Propo-
sition 12) does not hold true for all measures, it is enough to return to Ex-
ample 7. Indeed, due to the considerations made there, the line segment L lies
on the boundary of the central region Pδ = PFB

δ for δ = 1/5, and P1/5 is
not strictly convex, see also the right panel of Figure 8. For another example
where the strict convexity of Pδ is violated, recall the collection of α-symmetric
distributions from Example 2 for α ≤ 1, and the right panel of Figure 4. In
Example 7, the problem appears to stem from discontinuity of the density of
P at the boundary of a minimal halfspace. For α-symmetric distributions the
problem is that the expectation of P is not defined.
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Problem 6. Under which conditions are the central regions Pδ and the convex
floating bodies PFB

δ strictly convex?

An extension of part (iv) of Proposition 12 was given by Mizera and Volauf
[134, Proposition 7], who stated that if (4) is true for P with contiguous support,
then the halfspace median of P is a unique point.

6.0.2. Proposition 13 for measures

The (Dupin’s) floating body P[δ] of a general measure P may not exist. Sufficient
conditions for the existence of floating bodies of probability measures appear to
be a challenging problem of great importance in mathematical statistics, and
the theory of data depth (see, e.g., [28, Open question 1], or [124, 125]). Many
theoretical results on the behavior of the depth and its central regions hold true
only under the assumption of existence of floating bodies of P , see also the
discussion in Section 8 below. Brunel [28, Open question 2] asks a question that
can be rephrased as follows:

Is it true that for any log-concave measure P ∈ P
(

Rd
)

all floating bodies P[δ] for δ > 0
small enough exist?

From the example of the uniform distribution on a triangle (Example 5),
we see that the answer to the above question is negative. Though, under the
additional assumption of central symmetry of P , similar properties have been
investigated by Meyer and Reisner [129] for convex bodies (see Proposition 13
above), and extended to certain probability measures by Bobkov [18, Section 6].
In the latter paper, it is shown that all P[δ] exist for centrally symmetric s-
concave measures with s ≥ −1. As far as we are aware, the following theorem
from [18, Theorem 6.1] is, up to date, the most general result on the existence
of floating bodies of measures P ∈ P

(

Rd
)

.

Theorem 30. Let P ∈ P
(

Rd
)

be a centrally symmetric s-concave measure with
s ≥ −1 such that Supp(P ) is a d-dimensional subset of Rd. Then P[δ] exists for
all δ ∈ (0, 1/2].

As remarked by Bobkov [18], it is not known whether the restriction s ≥ −1
can be dropped.

Problem 7. Do the floating bodies of all centrally symmetric s-concave mea-
sures with full-dimensional support exist?

Problem 8. Let P ∈ P
(

Rd
)

be centrally symmetric with a sufficiently smooth
density f that is positive on Rd. Suppose that all the upper level sets of the
density {x ∈ Rd : f(x) ≥ t} are (strictly) convex. Does this imply that the
floating bodies of P exist for δ ∈ (0, 1/2]?

As shown in the following theorem, there exists a close connection between
the question of existence of floating bodies, and the problem of smoothness of
the boundaries of the central regions Pδ.
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Proposition 31. Let P ∈ P
(

Rd
)

satisfy (4), δ ∈ (0, 1/2), and let Pδ be a
convex body whose boundary is C1. Then Pδ is a floating body.

Proof. Let x ∈ ∂Pδ. Since, under (4), the depth hD (·;P ) is continuous on
Rd ([134, Proposition 1], or Section 3.2.5 above), hD(x;P ) = δ. Using [124,
Proposition 4.5 (i)] there exists a minimal halfspace H− ∈ H− at x, and H+

then must support Pδ at x by Proposition 6. Because of the smoothness of the
boundary of Pδ, there is only a single supporting halfspace of Pδ at each x ∈ ∂Pδ.
Thus, we have shown that for any supporting halfspace H+ of Pδ, P (H−) = δ,
and Pδ is a floating body of P .

Smoothness of boundaries of Pδ was recognized to be crucial in establishing
theoretical properties of hD already by Nolan [143], and Massé and Theodorescu
[126]. Many theoretical results stated for the halfspace depth in statistics rely
on that condition. For instance, as shown by Massé [124, Theorem 2.1], the
asymptotic distribution of the sample halfspace depth at x is Gaussian if the
boundary of Pδ passing through x has a unique minimal halfspace. For another
application of the smoothness of boundaries of floating bodies see Section 8
below.

Despite being of critical importance, so far the only examples of distribu-
tions with smooth contours of hD are the (full-dimensional affine images of) α-
symmetric distributions with α > 1, see Example 2. As discussed in [64], apart
from those distributions, no other multivariate measure with smooth depth con-
tours is known in statistics. In that paper, it is also shown that simple distribu-
tions such as mixtures of multivariate Gaussian distributions, and distributions
with smooth centrally symmetric, or smooth strictly quasi-concave densities,
may have points at which the boundary of Pδ is not smooth. It is therefore re-
markable that Meyer and Reisner [129, Theorem 3] (part (ii) of Proposition 13
above) showed that for certain (centrally) symmetric convex bodies, the bound-
aries of Kδ exhibit a high degree of smoothness. We are not aware of any result
giving sufficient conditions for higher order differentiability of the boundary of
the depth central regions, or convex floating bodies of measures, in statistics.

Problem 9. Under which conditions have the central regions Pδ and the convex
floating bodies PFB

δ boundaries of type C1 or C2?

6.0.3. Propositions 14 and 15 for measures

Problem 10. Are there analogues of Proposition 14 and Proposition 15 for
measures?

6.1. Application: Multivariate extremes and depth

The intimate connections of floating bodies with the approximation problems
described in Section 5.7 have analogues for probability measures. If X1, . . . , Xn

is a random sample from distribution P ∈ P
(

Rd
)

, one can ask how fast does the
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random polytope given by the convex hull of these random points grow to the
convex hull of the support of P . In conjunction with the advances for uniform
measures on convex bodies outlined in Section 5.7, it is not surprising that the
halfspace depth and floating bodies of measures play a prominent role in these
problems.

The following theorem, called the multivariate Gnedenko law of large num-
bers, can be found in Fresen [58, Theorem 2].

Theorem 32. Let q > 0 and p > 1, and let P ∈ P
(

Rd
)

be a probability measure

with a density of the form f(x) = ce−g(x)p where g : Rd → [0,∞) is a convex
function and c > 0. Then there exist constants c1, c2 > 0 such that for a random
sample X1, . . . , Xn of any size n ∈ N with n ≥ d+ 2 from P , it holds true that

P

(

dH
(

[X1, . . . , Xn] , P1/n

)

≤ c1
log logn

(logn)
1−1/p

)

≥ 1− c2 (logn)
−q

, (29)

where [X1, . . . , Xn] is the closed convex hull of the points X1, . . . , Xn, and P1/n

is the depth central region Pδ with δ = 1/n.

Distributions P from Theorem 32 are sometimes called p-log-concave mea-
sures. For usual log-concave measures, an inequality only slightly weaker than
(29) is given in Fresen [58, Theorem 1].

Theorem 32 asserts that, with large probability, convex hulls of large random
samples from P behave as the halfspace depth central regions Pδ for very small
values of δ. This observation opens a whole new field of applications of the
depth in multivariate extreme value theory. Indeed, by now, data depth has
been used in statistics predominantly as a robust tool that identifies the central
parts of the probability mass of distributions, and little attention was paid
to its behavior near the tails. Theorem 32 gives a probabilistic interpretation
also to the boundaries of those depth regions that correspond to the extreme
depth-quantiles. It is also interesting to compare Theorem 32 with the recent
advances of Einmahl, Li and Liu [51] and He and Einmahl [79]. There, the
authors employ extreme value theory in order to estimate Pδ for low values of
δ reliably from the data. It will be interesting to see what can be obtained by
a proper combination of the estimation techniques from the latter papers, and
the asymptotic representations of Fresen [58].

In a further analogue with the exposition from Section 5, one may study the
limit behavior of the quantity

P (P0)− P (Pδ) = 1− P (Pδ) (30)

as δ → 0 from the right. More specifically, assume that the difference (30) is
scaled properly, so that the resulting limit is a finite, non-negative number Ω(P ).
The characteristic Ω(P ), together with the sequence of its scaling constants, is
then an affine invariant on P

(

Rd
)

. Ω(P ) is not a generalized notion of the affine
surface area such as the functional from Section 5.6, but it is interesting in its
own right. From the viewpoint of statistics, Ω(P ) may serve as an index of
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heavy-tailedness of the distribution P , where not only the size of the tails is
evaluated, but also “the complexity of the boundary” of Supp(P ) is taken into
account.

7. Mahalanobis ellipsoids and the halfspace depth

Let X ∼ P ∈ P
(

Rd
)

be distributed uniformly on K ∈ Kd. The body K is
said to be isotropic, or in the isotropic position, if vold (K) = 1, EX = 0, and
VarX = L2

KId where LK > 0 is a constant and Id the d × d identity matrix.
Geometrically, this means that the barycenter of K is at the origin and that the
ellipsoid of inertia of K, or equivalently, all Mahalanobis ellipsoids of P from
(6), are Euclidean balls. The constant

LK =
1

d

(
∫

K

‖x‖2 dx
)

1
2

is called the isotropic constant of K.
The isotropic constant plays an important role in the analysis of convex

bodies. We refer to e.g. Milman and Pajor [133] and the book of Brazitikos et al.
[27, Chapter 3]. The conjecture that for all K ∈ Kd the constant LK is bounded
from above by an absolute constant independent of the dimension d is one of the
major open problems in geometric analysis. The best known upper estimate so
far, due to Klartag [88], is that LK ≤ c d

1
4 for an absolute constant c, improving

an earlier estimate by Bourgain [25] by a logarithmic factor. The conjecture is
equivalent to the hyperplane conjecture, first formulated by Bourgain, which
asks whether every centered convex body of volume 1 has a hyperplane section
through the origin whose (d−1)-dimensional volume is greater than an absolute
positive constant, independent of dimension d. We refer to e.g. [27, Section 3.1]
for details.

For anyK there exists an affine transformation T such that T (K) is isotropic,
and the isotropic position is uniquely determined up to orthogonal transforma-
tions. The isotropic constant of a general body K ∈ Kd is then defined as the
isotropic constant of the corresponding isotropic body T (K).

Similarly, we can define the isotropic constant for probability measures P
with log-concave density f . A measure that corresponds to X ∼ P is isotropic
if it is centered, i.e. EX = 0, and if for all u ∈ Sd−1,

∫

Rd

〈x, u〉2f(x) dx = 1,

or, equivalently, VarX = Id. Then

LP =

(

sup
x∈Rd

f(x)

)
1
d

is the isotropic constant of P . The isotropic constant of a general probability
measure P with log-concave density is, again, given as the isotropic constant
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of an affine image of P that is isotropic [27, Chapter 2]. Note that a convex
body K ∈ Kd of volume 1 is isotropic, if and only if the density of the uni-
form distribution on the convex body K/LK is an isotropic log-concave den-
sity.

For bodies and log-concave measures in isotropic position, many important
geometrical results are known. In this section we state one that relates to the
subjects of data depth and floating bodies.

Proposition 33. The following holds true:

(i) For any isotropic convex body K ∈ Kd and any δ ∈
(

0, 1
e

)

(

1

e
− δ

)

LK Bd ⊆ Kδ ⊆ 17 log

(

1

δ

)

LK Bd.

(ii) For any isotropic measure P ∈ P
(

Rd
)

with a log-concave density

(

1

e
− δ

)

LP Bd ⊆ Pδ ⊆ 17 log

(

1

δ

)

LP Bd.

This proposition was proved by Milman and Pajor [133, Proposition in the
Appendix], and re-stated by Fresen [57] who also gave the formulation in part
(ii) for isotropic log-concave measures. Its further extension to centrally sym-
metric s-concave measures with s > −∞ can be found in Bobkov [18, Theo-
rem 5.1]. Part (i) of this proposition is a special case of more general relations
between floating bodies and p-centroid bodies which can be found in [146, The-
orem 2.2].

Proposition 33 has important implications for the theory of halfspace depth.
By affine equivariance of the halfspace depth central regions Pδ, for any log-
concave measure P ∈ P

(

Rd
)

with expectation μ ∈ Rd and a positive definite
variance matrix Σ ∈ Rd×d,

{

x ∈ Rd : dΣ(x, μ) ≤
(

1

e
− δ

)

LP

}

⊆ Pδ

⊆
{

x ∈ Rd : dΣ(x, μ) ≤ 17 log

(

1

δ

)

LP

}

where dΣ is the Mahalanobis distance from (5). Therefore, all central regions of
the halfspace depth for δ < 1/e of log-concave measures are, up to a constant
that depends only on δ and LP , isomorphic to the Mahalanobis ellipsoids given
by the covariance structure of P . This corroborates the findings from statistics,
where it has been long observed that the depth central regions Pδ tend to take
more “ellipsoidal” shapes than the level sets of the densities, see also Figures 3
and 4 above. Results in this section provide quantitative statements that support
those claims.

Problem 11. Is it possible to state an analogue of Proposition 33 also for more
general probability measures?
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8. Characterization of distributions

One of the most important open questions connected with the halfspace depth is
the halfspace depth characterization problem. It has been conjectured (e.g. [42,
p. 2306] and [90, p. 1598]) that for each distribution P ∈ P

(

Rd
)

there exists a

unique depth surface
{

hD(x;P ) : x ∈ Rd
}

, i.e., that all probability distributions
are determined by their halfspace depth. Such a result would be invaluable
in statistics, as it would assert that just as the distribution function or the
characteristic function of a random vector, also the halfspace depth could be
used as a complete representative of any probability distribution.

Recently, the depth characterization conjecture was disproved in [138], where
an example of two different probability distributions with the same depth at
all points in Rd, d ≥ 2, was given. The example employs collections of different
α-symmetric distributions with α ≤ 1 whose projections coincide along some
directions.

Even though the general characterization conjecture turned out to be false,
important partial positive results to the characterization problem can be found
in the literature. Thanks to the results of Struyf and Rousseeuw [182], Koshevoy
[92], and Hassairi and Regaieg [77] we know that if P,Q ∈ P

(

Rd
)

are distribu-
tions whose supports are finite subsets of Rd, then hD(x;P ) = hD(x;Q) for all
x ∈ Rd implies P = Q. For non-atomic distributions, two results can be found
in the literature in the papers of Hassairi and Regaieg [78], and Kong and Zuo
[91]. In this section we show that the last two theorems are special cases of the
following theorem.

Theorem 34. Let P ∈ P
(

Rd
)

have contiguous support, and let xP ∈ Rd be the
halfspace median of P . Then the following are equivalent:

(FB1) For each δ ∈ (0, 1/2) the floating body P[δ] of P exists.
(FB2) (4) holds true, and

P (H−) =

{

supx∈H hD(x;P ) for any H ∈ H with xP /∈ H−,

1− supx∈H hD(x;P ) for any H ∈ H with xP ∈ H−.

(31)

Consequently, if (FB1) is true, there is no other probability distribution that
satisfies (FB1) with the same depth at all points in Rd.

Proof. Assume first that (FB1) is true. We show first that (4) holds. Suppose it
does not hold. Then there exists a hyperplane H such that P (H) > 0. Without
loss of generality we can assume that P (H−) ≤ P (H+). We put δ = P (H−)−
3
4P (H). Then 0 < δ < 1/2. We claim that the floating body P[δ] does not exist,
for if it does exist, then there is a supporting hyperplane H1 to P[δ] parallel

to H such that P (H−
1 ) = δ. Note that P (H−) = δ + 3

4P (H) > δ, and it

must be that H−
1 � H−. But, in that case, P (H−

1 ) ≤ P (H−) − P (H) < δ,
a contradiction.
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Take now any hyperplane H ∈ H, and define ψ(H−) = supx∈H hD(x;P ).
For any x ∈ H we have

hD(x;P ) = inf
{

P (G−) : G− ∈ H−, x ∈ G
}

≤ P (H−) (32)

since the halfspace H− ∈ H− belongs to the collection over which the infimum
is taken. Because (32) is valid for any x ∈ H, ψ(H−) ≤ P (H−).

To prove the other inequality, assume that δ = P (H−) > 0. Otherwise,
trivially ψ(H−) ≥ P (H−) = 0. Further, it is possible to assume that δ ≤ 1/2.
If this is not the case, take H+ ∈ H−, the closed halfspace complementary to
H−, and proceed with H+ (note that in the latter case, we know by (4) that
P (H+) ≤ 1/2 and P (H+) + P (H−) = 1). We first treat the case δ < 1/2.
Because all floating bodies of P are assumed to exist and because P (H−) = δ,
the hyperplane H supports the floating body P[δ] of P . That is, there must exist

a point xH ∈ H ∩ P[δ]. As xH ∈ P[δ] = Pδ = {y ∈ Rd : hD(y;P ) ≥ δ},

P (H−) = δ ≤ hD(xH ;P ) ≤ sup
x∈H

hD(x;P ) = ψ(H−).

Thus (31) holds for δ < 1/2. By continuity, it also holds for δ = 1/2. Hence
(FB1) implies that the probability of halfspaces is characterized by their depth
as in (31).

For the opposite implication, assume that (FB2) is true and let δ ∈ (0, 1/2).
Consider the depth level set Pδ. This is a convex compact set. From (31) with
H− such that P (H−) = 1/2 and the continuity of the depth hD(·;P ) guaranteed
by (4), we see that Pδ must be non-empty for all δ ∈ (0, 1/2). Take any H ∈ H
such that P (H−) = δ, and consider the family G ⊂ H of all hyperplanes parallel
to H. Then Pδ must be supported by some G ∈ G with G− ⊆ H− or G− ⊇ H−.
If P (G−) = δ′ > δ, (FB2) cannot be true as Pδ′ ⊂ Pδ by the nestedness and
convexity of the central regions, and the continuity of hD. Indeed, because G
supports Pδ, for all x ∈ G either x ∈ ∂Pδ or x /∈ Pδ. In both cases hD(x;P ) ≤ δ,
since, using the continuity of hD again, hD(x;P ) = δ for any x ∈ ∂Pδ. By (31)
this means that we have δ′ = P (G−) = supx∈G hD(x;P ) ≤ δ, a contradiction. If
δ′ ≤ δ, then there must exist x0 ∈ G∩ Pδ. But then δ ≤ hD(x0;P ) ≤ P (G−) =
δ′ ≤ δ, and necessarily P (G−) = δ′ = δ. Because P has contiguous support, this
means that G = H, and Pδ is supported by H. As this is true for any H ∈ H
such that P (H−) = δ, Pδ = P[δ], and (FB2) =⇒ (FB1).

The characterization of P follows from (FB2) by a theorem of Cramér and
Wold [40], see also [16, p. 383].

Note that a further minor extension of Theorem 34 can be obtained if P is
allowed to have a single atom at its halfspace median xP , with obvious modifi-
cations to the statement and the proof of this theorem.

By Theorem 34 and Proposition 31 we obtain that all α-symmetric distribu-
tions with α > 1, and their full-dimensional affine images, satisfy (FB1). This
array of examples complements the known examples of s-concave centrally sym-
metric measures with s ≥ −1 from Theorem 30, for which (FB1) is true. As far
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as we know, there are no further examples of measures satisfying (FB1) known
at this time.

To see that there exist distributions P ∈ P
(

Rd
)

that satisfy (FB1), but

not the assumptions of Proposition 31, take P ∈ P
(

R2
)

to be the uniform
distribution on a square in R2 from Example 5. For P it is known [98, pp. 433–
434] that (FB1) is true, yet each floating body P[δ] for δ ∈ (0, 1/2) contains four
non-smooth points at its boundary, see also the left panel of Figure 3.

Condition (FB1) is, however, still rather strict. Not only does it impose (4) on
P , but also it means that P must be halfspace symmetric. For (uniform measures
on) convex bodies, this was noted by Meyer and Reisner [129, Lemma 4]. The
next proposition extends that result to probability measures. Its proof follows
closely the arguments of Meyer and Reisner [129, Lemma 4], and is omitted.

Proposition 35. Let P ∈ P
(

Rd
)

have contiguous support. If (FB1) is true for
P , then P must be halfspace symmetric.

Problem 12. Describe the collection of all probability measures P ∈ P
(

Rd
)

whose halfspace depth is unique, i.e. there is no Q �= P with hD(x;P ) =
hD(x;Q) for all x ∈ Rd. Is the existence of the expectation EX for X ∼ P
sufficient for the halfspace depth of P to be unique? Is the uniform distribution
on a simplex in Rd characterized by its halfspace depth?

Problem 13. If condition (FB1) is not satisfied, how can one reconstruct the
probability content of all halfspaces P (H−) from the depth hD(x;P ) for all
x ∈ Rd only?

8.1. Characterization theorem of Kong and Zuo (2010)

In [91, Theorem 3.2] it is shown that if, for P ∈ P
(

Rd
)

with contiguous support,

for all δ ∈ (0, 1/2) the boundary of the central region Pδ is C1, (33)

and (4) holds, then (31) is true, and P is characterized by its halfspace depth. In
Theorem 34 we provide a generalization of this result. Indeed, by Proposition 31
above, if (33) and (4) are true, then the floating body P[δ] of P exists for all
δ ∈ (0, 1/2), and Theorem 34 can be used.

8.2. Characterization theorem of Hassairi and Regaieg (2008)

Let us state a characterization result for the halfspace depth for absolutely
continuous distributions that can be found in [78, Theorem 3.2]. For this, we
define for any x ∈ Rd the halfspace function

φx : S
d−1 → [0, 1] : u �→ P

(

H−
u,〈x,u〉

)

,

where H−
u,〈x,u〉 ∈ H− is the closed halfspace in Rd whose outer normal is parallel

to u, and x ∈ Hu,〈x,u〉.
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Theorem 36. Let P ∈ P
(

Rd
)

be as in Proposition 29, and suppose that

for all x ∈ Rd, if φx has a local minimum at u = u(x) ∈ Sd−1,

then φx(u) = hD(x;P ).
(34)

Then (31) holds true, and P is characterized by its halfspace depth.

In [78, Theorem 3.2], condition (34) is formulated in a slightly different man-
ner in terms of derivatives of functions related to φx. It is easy to see that for
P that satisfies the conditions from Proposition 29, (34) and the corresponding
condition from [78] are equivalent.

If P satisfies (4), then for any x ∈ Rd the function φx is continuous on Sd−1

[124, Proposition 4.5]. Thus, it must attain a global minimum over its domain.
Condition (34) therefore means that there cannot exist any local minimum of
φx that is not global.

Suppose for a moment that (4) is valid for P . By Theorem 36, (34) im-
plies the characterization result (31) which is, by Theorem 34, equivalent with
(FB1). Therefore, given that (4) is true, Condition (34) implies (FB1), and the
characterization of Hassairi and Regaieg [78] is a special case of Theorem 34
above3.

8.3. Homothety conjecture

In convex geometry, the following open question, similar in nature to the depth
characterization conjecture, was posed in [172]:

Let a convex body K ∈ Kd and one of its convex floating bodies Kδ be homothetic, i.e.
Kδ = λK + x for some λ > 0 and x ∈ Rd. Is then K necessarily an ellipsoid?

Schütt and Werner [172] showed that if K is homothetic to a sequence of its
floating bodies Kδn with δn → 0, then K must be an ellipsoid. Stancu [180]
demonstrated that for K with a sufficiently smooth boundary, K is homothetic
to Kδ for a single small δ also implies that K is an ellipsoid. The latter result
was later refined in [192].

Problem 14. Does the homothety conjecture hold true? More generally, which
convex bodies are characterized by any of their convex floating bodies?

9. Conclusions and further perspectives

In this survey, we discussed little known relations of the concept of halfspace
depth, studied extensively in statistics, and paradigms well known in functional

3Nonetheless, it must be noted that smoothness of the density of P is not sufficient for
(34) to hold true (cf. [78, p. 2312]). To see this, consider the uniform distribution P on a
triangle from Example 1. This distribution has a smooth density in the interior of Supp(P ),
yet Π(P ) = 4/9, and supx∈H hD(x;P ) ≤ 4/9 < 1/2 for any H ∈ H. Thus, the probability of
halfspaces cannot be recovered as in (31), at least not for H ∈ H with 1/2 ≥ P (H−) > 4/9.
It is easy to see that (34) is violated for P , too.
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analysis and geometry. In Section 4 we saw that the depth of the halfspace
median is a particular example of a more general concept of measures of sym-
metry. In Sections 5 and 6 we focused on the floating body and its possible
generalizations towards (probability) measures. These little explored junctions
of mathematical statistics and geometry are, however, hardly limited only to
the halfspace depth hD defined in finite-dimensional linear spaces Rd. In this
concluding section of our paper our intention is to outline, and properly refer
to, a few further links between the statistics of depth functions, and current
research in pure mathematics.

9.1. Depth in non-linear spaces

By directional data one understands data that live on the unit sphere Sd−1

of Rd [121]. Each observation can be interpreted as a direction of a non-zero
vector in Rd. Such data appear quite naturally, and it is of great interest to find
depth functions suitable also for this kind of observations. Several definitions
of depth have been proposed for directional data [177, 106, 1, 99, 145]. The
following depth, proposed by Small [177], is an analogue of the halfspace depth
for directional data.

Definition. Let P ∈ P
(

Sd−1
)

and x ∈ Sd−1. The angular halfspace depth (or
angular Tukey depth) of x w.r.t. P is defined as

AhD (x;P ) = inf
{

P (H−) : H ∈ H0, x ∈ H
}

,

where H0 denotes the set of hyperplanes H ∈ H in Rd such that 0 ∈ H.

It is natural to consider the collection H0 in the definition of AhD, as
H0 ∩ Sd−1 is the collection of all closed hemispheres of Sd−1. Therefore, it is
not surprising that also for spherical convex bodies, concepts similar to float-
ing bodies have been investigated. Recall that for K ⊂ Sd−1, K is said to be
spherically convex if the radial extension of K, given by

radK = {λx : x ∈ K,λ ≥ 0} ,

is a convex set in Rd. A closed spherically convex subset of Sd−1 such that
the interior of radK is nonempty is called a spherical convex body. Analogues
of floating bodies and convex floating bodies for spherical convex bodies were
studied by Besau and Werner [14].

Definition. For a spherical convex bodyK ⊂ Sd−1 and P ∈ P
(

Sd−1
)

uniformly
distributed on K take δ ≥ 0. The spherical convex floating body of K is defined
as

⋂

H∈H0 : P (H−)≤δ

H+.

Just as in Section 6 it is possible to define floating bodies, and convex floating
bodies also for general probability measures on Sd−1, and it is easy to see that
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the spherical convex floating body coincides with the central regions of the
angular halfspace depth for uniform distributions on spherical convex bodies.
Some results in the spirit of those discussed in Section 5 can be obtained also
for spherical convex floating bodies [14]. In another paper, Besau and Werner
[15] provide extensions of those results also to certain Riemannian manifolds.
Research in this direction in the statistics of data depth is still only in its
beginnings [55].

9.2. Depth for infinite-dimensional data

In statistics, since the work of Liu and Singh [107] and Fraiman and Muniz [56],
considerable attention has focused also on devising depth functions applicable
to data from high-dimensional, and infinite-dimensional (functional) spaces. Di-
rect applications of the halfspace depth are known to be inadequate [48], but
many other depth functions that are suited for functional data can be found in
the literature [43, 108, 137, 39, 36, 140, 142, 65]. In geometry, some advances
that appear to be related are the floating functions [101] considered in Sec-
tion 5.5 above. Solid connections between these two areas of research appear to
be uncharted.

9.3. Centroid body and simplicial volume depth

Apart from the halfspace depth, the simplical depth, and the Mahalanobis depth
mentioned above, there exists an abundance of other depth functions defined in
Rd in statistics. A comprehensive survey on some of those is [196], where, based
on the ideas of Oja [144], also the following depth function can be found. Recall
that by [x1, . . . , xd+1] we mean the closed convex hull of x1, . . . , xd+1 ∈ Rd.

Definition. Let X ∼ P ∈ P
(

Rd
)

be such that VarX = Σ is a positive definite
matrix and x ∈ Rd. The simplicial volume depth (or Oja depth) of x w.r.t. P is
defined as

svD(x;P ) =

(

1 + E
vold ([x,X1, . . . , Xd])√

detΣ

)−1

, (35)

where X1, . . . , Xd ∼ P are independent.

The factor
√
detΣ ensures the affine invariance of svD. Similarly as the Ma-

halanobis depth MD, also svD is not defined for all P ∈ P
(

Rd
)

, but only for
distributions with finite second moments, and positive definite variance matri-
ces.

For (a uniform distribution on) a compact (possibly non-convex) set K ⊂ Rd

with vold (K) > 0, a concept closely related to x �→ vold ([x,X1, . . . , Xd]), that
is central in (35), is that of the centroid body of K. The centroid body of K is
a convex body Z ∈ Kd defined via its support function (2)

hZ(u) =
1

vold (K)

∫

K

|〈x, u〉| dx.
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If K is (centrally) symmetric around around the origin, ∂Z is the locus of
centroids of all intersections of halfspaces H− ∈ H− such that 0 ∈ H with K.
As discussed in [60, Section 9.1], this body was defined by Petty [148], but its
earlier predecessors can be traced back to the work of Dupin [47]. The volume
of the centroid body Z of K determines the simplicial volume depth svD of
0 ∈ Rd with respect to the the uniform distribution on K. The next theorem
can be found in Gardner [60, Theorem 9.1.5]. Extensions not listed here can be
found in [148, 166]. For star bodies K ⊂ Rd a version of this theorem is given
in [165, Section 10.8].

Theorem 37. Let X ∼ P ∈ P
(

Rd
)

be uniformly distributed on a compact set
K ⊂ Rd with vold (K) > 0. Denote VarX = Σ. Let Zx be the centroid body of
K − x. Then

svD(x;P ) =

(

1 +
2d

vold (K)
d

vold (Zx)√
detΣ

)−1

.

Centroid bodies have been the subject of numerous studies in geometry and
functional analysis. We only refer here to [165, Section 10.8] and [27, Section 5.1]
and the references therein for a comprehensive account of results that can be
found in the literature on centroid bodies and their extensions.

Problem 15. Is it possible to extend Theorem 37 also to more general proba-
bility measures?
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Santaló point of a function, and a functional form of the Santaló inequality.
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issue. MR1758052

[68] Grote, J. andWerner, E. M. (2018). Approximation of smooth convex
bodies by random polytopes. Electron. J. Probab. 23, Paper No. 9, 21 pp.
MR3771746

[69] Gruber, P. M. (1993). Aspects of approximation of convex bodies. In
Handbook of convex geometry, Vol. A, B 319–345. North-Holland, Ams-
terdam. MR1242984
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[96] Kučment, P. A. (2016). On a problem concerning affine-invariant points
of convex sets. arXiv preprint arXiv:1602.04377.

[97] Lange, T., Mosler, K. and Mozharovskyi, P. (2014). Fast non-
parametric classification based on data depth. Statist. Papers 55 49–69.
MR3152767

[98] Leichtweiß, K. (1986). Zur Affinoberfläche konvexer Körper.
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[174] Schütt, C. and Werner, E. M. (2004). Surface bodies and p-affine
surface area. Adv. Math. 187 98–145. MR2074173

[175] Serfling, R. (2006a). Depth functions in nonparametric multivariate
inference. In Data depth: robust multivariate analysis, computational ge-
ometry and applications. DIMACS Ser. Discrete Math. Theoret. Comput.
Sci. 72 1–16. Amer. Math. Soc., Providence, RI. MR2343109

[176] Serfling, R. (2006b). Multivariate symmetry and asymmetry. Encyclo-
pedia of Statistical Sciences, Second Edition 8 5338-5345.

[177] Small, C. G. (1987). Measures of centrality for multivariate and direc-
tional distributions. Canad. J. Statist. 15 31–39. MR887986

[178] Small, C. G. (1997). Multidimensional medians arising from geodesics
on graphs. Ann. Statist. 25 478–494. MR1439310

[179] Stancu, A. (2003). On the number of solutions to the discrete
two-dimensional L0-Minkowski problem. Adv. Math. 180 290–323.
MR2019226

[180] Stancu, A. (2006). The floating body problem. Bull. London Math. Soc.
38 839–846. MR2268369

[181] Steinhaus, H. (1955). Quelques applications des principes topologiques
à la géométrie des corps convexes. Fund. Math. 41 284–290. MR0068234

[182] Struyf, A. and Rousseeuw, P. J. (1999). Halfspace depth and regres-
sion depth characterize the empirical distribution. J. Multivariate Anal.
69 135–153. MR1701410

[183] Tancer, M. (2018). Private communication.
[184] Toth, G. (2015). Measures of symmetry for convex sets and stability.

Universitext. Springer, Cham. MR3410930
[185] Trudinger, N. S. and Wang, X.-J. (2005). The affine Plateau problem.

J. Amer. Math. Soc. 18 253–289. MR2137978
[186] Tukey, J. W. (1975). Mathematics and the picturing of data. In Pro-

ceedings of the International Congress of Mathematicians (Vancouver,
B. C., 1974), Vol. 2 523–531. Canad. Math. Congress, Montreal, Que.
MR0426989

[187] Werner, E. M. (1996). The illumination bodies of a simplex. Discrete
Comput. Geom. 15 297–306. MR1380396

[188] Werner, E. M. (2002). The p-affine surface area and geometric inter-
pretations. Rend. Circ. Mat. Palermo (2) Suppl. 70, part II 367–382. IV
International Conference in “Stochastic Geometry, Convex Bodies, Em-
pirical Measures & Applications to Engineering Science”, Vol. II (Tropea,
2001). MR1962608
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