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Abstract. Given a fixed set S of n points in E 3 and a query plane ~r, the 
halfspace range search problem asks for the retrieval of all points of S on a 
chosen side of ~r. We prove that with O(n(logn)8(loglogn) 4) storage it is 
possible to solve this problem in O(k + log n) time, where k is the number of 
points to be reported. This result rests crucially on a new combinatorial 
derivation. We show that the total number of j-sets ( j  = 1 . . . . .  k)  realized by 
a set of n points in E 3 is O(nkS); a k-set is any subset of S of size k which 
can be separated from the rest of S by a plane. 

1. Introduction 

Given a fixed set S of n points in E 3 and a query plane ~r, the halfspace range 
search problem asks for the retrieval of all points of S on a chosen side of ~r. This 
problem is solved trivially in O(n) time; we assume, however, that the problem is 
to be solved in the repetitive mode (i.e., the number of queries is arbitrarily large). 
This allows us to preprocess the data so as to achieve sublinear query time while 
minimizing the storage required. Specifically, our objective is a query time of the 
form O(f(n)+ k), where k is the size of the retrieved set; if the storage is S(n), 
then we speak of an (S(n),f(n)) algorithm. Great  attention has been given 
recently to the complexity class PLOG. This class includes the retrieval problems 
which admit of (ng(n), f(n)) algorithms, in which both f and g are polylogarith- 
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mic functions of n [3]. Determining whether halfspace range search is in PLOG 
has been an open problem [5]; indeed, the best known solutions to date are an 
( n ,  n 0"899) algorithm [13], and an (n4,1ogn) algorithm [7]. Note that [13] gives a 
method for counting as well as reporting points and can also be used for 
polyhedral range queries. The main contribution of this paper is to establish that 
halfspace range search indeed belongs to PLOG. Specifically, we give an 
(n(log n)S(loglog n) 4, log n) algorithm for this problem. 

Our solution relies on a new combinatorial result concerning the maximum 
number of k-sets in E 3. Given a set S of n points in E d, a k-set is a subset of 
size k of the form h N S, for some open halfspace h. It has been shown that the 
maximum number of distinct k-sets formed by n points in the Euclidean plane is 
~(n  logk)  and O(nv~) [8,10]. In E 3, expectedly, the situation is not nearly as 
good. What is known is a lower bound of ~2(nk log k) [8] and an upper bound of 
O(n2k) on the total number of j-sets ( j  =1,2 . . . . .  k) [6]. This paper complements 
these results by proving that the total number of j-sets ( j  = 1,2 . . . . .  k) which can 
be formed by n points in E 3 is O(nkS). This shows in particular that for any k 
(1 _< k _< n) and any constant e > 0, there exists an integer i ~ [(1 - e)k, k] such 
that the number of/-sets is O(nk4). 

The remainder of this paper is organized in three parts. In the next section we 
describe our algorithm for halfspace range search; in Section 3 we prove our 
result on k-sets, and finally give a few closing remarks in Section 4. 

2. The Haifspace Range Search Algorithm 

The crux of our solution is the recourse to duality and to the locus approach; 
additional sophisticated details are invoked to achieve efficiency. Specifically, we 
dualize the points of S into an arrangement of n planes in E 3. These n planes 
determine a partition of E 3 into convex cells, each cell corresponding to a unique 
subset of S. Similarly, the query plane ~r is dualized into a point q. Halfspace 
range search is then transformed into a three-dimensional point location problem; 
the task consists of retrieving the subset associated with the cell of the partition 
that contains q. We first establish the correctness of the approach; subsequently 
we shall concern ourselves with the details of the three-dimensional point loca- 
tion. 

Although our arguments are developed in E 3, for ease of presentation, all 
figures will represent two-dimensional analogs. We shall use the classical duality 
transformation between points and planes known as a polarity. This transforma- 
tion, denoted 8, is defined with respect to the elliptical paraboloid P of equation 

X 2 + y2 + 2z = O. 

This paraboloid is also described as a quadratic form 

[ x , y , z , 1 ] A [ x , y , z , l ]  T = O, 
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with 

1 0 0 0 
0 1 0 0 A =  
0 0 0 1 
0 0 1 0 

The matrix A is referred to as the polarity matrix [12]. We define the associated 
transformation in three-dimensional projective space. Given a point Po with 
homogeneous coordinates (x 0, Yo, z0, w0), the polar 8(po) ofpo is the plane ~r o 
whose equation is [x0, Yo, zo, wo]A[x, Y, z, w] T = 0, and similarly, given a plane rr 
of equation ax + by + cz + dw = 0, the pole 6(~r) of ~r is the point whose 
(homogeneous) coordinates are [a, b, c, d]A. 

Given a plane ~r, we wish to characterize its halfspace which contains the 
origin. We must assume that 7r does not pass through the origin. Then we say that 
P0 belongs to the positive halfspace of ~r (denoted Po ~ phs(~r)) if 

[a ,b ,c ,a][xo,  Yo, Zo,Wo]T/aWo > O. (1) 

The term dw o is a normalizing factor which ensures that (1) depends only on rr 
and P0 and not on the particular coordinates chosen to represent them. Notice 
that phs(~r) is the halfspace determined by ~r that contains the origin. We define 
nhs(~r) in a similar fashion by reversing the inequality in (1). 

We now consider the smallest isothetic (i.e., with sides parallel to the axes) 
rectangular range R enclosing S. If we consider eight distinct problem formula- 
tions, each corresponding to choosing the origin as a specified vertex of R (along 
with a proper choice of axes), given a plane ~r: ax + by + cz + dw = 0, whose 
retrieved set is nonempty, there is at last one formulation where the halfspace 
range coincides with phs(rr) and ~r intersects the z-axis above the origin (i.e., 
c / d  <0) ,  so without loss of generality, the range is always phs(Tr), and we 
assume that all points of S are contained in the positive orthant of E 3 (i.e., for 
each Po = (xo, Yo, zo, Wo) in S we have Zo/W o > 0). We choose eight problem 
formulations, and not fewer, to deal conveniently with singularities. This sets the 
conditions of the following lemma, which establishes a correspondence result. 

Lemma 1. Let po=(xo ,  Yo, Zo, Wo) and ~r: ax + b y + c z + d w = O ,  and assume 
that c / d  < 0 < z o / w  o. Then we have po ~ phs(~r) if and only if  S(~r) E nhsO$(po)). 

Proof. The condition c / d  < 0 and Zo/W o > 0 ensure that phs(~r) and nhs(8(po) ) 
are well-defined. By definition, 8(~r)= [a,b,c, d]A and 8(p0 ) is the plane of 
equation [x o, Yo, Zo, Wo]A[x, Y, z,w] T=  0. By (1) 8(~r) ~ nhs(8(po) ) means 
([Xo, Yo, Zo, wo]A)([a, b, c, d]A)X/Zo c < 0, i.e., 

[Xo, yo, Zo,wolAAT[a, b,c, a]T/zoC 

= [xo, Yo, Zo,Wo][a,b,C,a]T/zo c < O, 

since AA r = I. The lemma follows from (1) by commutativity of the inner product 
and the fact that ZoC and dw o are of opposite sign. [] 
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For each p ~ S, we construct its dual plane 6(p) .  The set {6(p) :  p ~ S )  is 
an arrangement of n planes in E 3 (see Fig. 1 for a two-dimensional analog). This 
arrangement determines a partition C of E 3 into convex cells, classified according 
to their dimensionality as regions, facets, edges, and vertices. Each of these 
convex cells is relatively open, except for the regions, which are open. Let C be 
the set of regions; we have I f  I < 1 + n + (~) + (33 = O(n 3) [8]. With each cell c is 
associated a subset S(c) of S, defined as follows: 

S(c)  = { p ~ S l c c _ n h s ( 6 ( p ) ) } .  

The correctness of the method is based on the following result: 

Lemma 2. Let c be a cell of C and rr be a plane in E 3 intersecting the z-axis above 
the origin; 6(~r) ~ c if  and only if S(c) = S n phs(Tr). 

It is now convenient to organize the arrangement of planes as a collection of 
polyhedral surfaces ol, 02 . . . . .  o,, called sheets, and defined as follows (see Fig. 2): 
o k is the boundary be tween  Uis(c)l=k_lC and Uls(c)l=kC. Because of our choice of 
the paraboloid P and the placement of the set S, we have: 

Lemma 3. Each member of { ol , . . . ,  o, } has a unique intersection with a line 
parallel to the z-axis. 

Proof. Let L be a vertical line and p a point of S. Since the z-coordinate of p is 
positive, the intersection of L and 8 (p )  partitions L into two rays, of which the 
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upper one belongs to phs(8(p)). Since this holds for any p ~ S, the value of 
I S(c) l ,  for each c intersected by L, is increasing for decreasing values of z. This 
shows the uniqueness of the intersection of L with o k, for k = 1 . . . .  , n. [] 

Lemma 3 implies that the sheets ol , . . . ,  o, are vertically ordered. We now 
turn our attention to the implementation of the point location of 8(~r) in C, 
where ~r is the query plane. If 8(7r) = (x*, y*, z*), let L(~r) be the line x = x*, 
y = y*. An approach, which is brutal but embodies the essential ideas, consists of 
marching on L(~r) from z = + oo until we reach the cell containing 8(~r) (each 
sheet o k being traversed by locating (x*, y*)  on the projection of o k on the 
(x, y)-plane). This approach is unfortunately too expensive to be considered; 
instead we use the methodology of filtering search [1, 2], adapting to our purposes 
the recursive technique of [4]. 

Specifically, we have a primary search structure represented by a binary tree 
T. With each node v of T is associated a set U(v) c_ S as well as a dichotomy of 
U(v) into U(lson[v]) and U(rson[v]). If we let U(root) = S then each level of T 
describes a partition of S. To each node v corresponds an integer k(v), called the 
scope at node v. The idea is to form the sheet ok(o) of the plane arrangement 
defined by the dual of U(v). Let G(v) denote the projection of og(v) on the 
xy-plane. The search will proceed as follows: 

Step 1. Locate (x*, y*)  in G(v) and obtain a region of G(v). This region is 
associated with a plane p. 
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Step 2. Let z 0 be the z-value of the intersection of L(~r) with p; if z * >  z 0 
complete processing; otherwise recurse on the offsprings of v. 

Step 3. To complete processing when z* > z o, we must use an auxiliary data 
structure associated with node v. Let 1 be the smallest integer such that 21 tlog n ] 
> k(v) ;  we preprocess the projection of 02, l~og,l (0 < i < l) for efficient planar 
point location, and as in [4], we endow each region of these subdivisions with 
appropriate pointers so that their associated subset can be retrieved in optimal 
time. The idea is now to search for (x*, y*)  in 02, tlog,l for i = 0,1 . . . . .  stopping 
the iteration as soon as a retrieved point does not lie in phs(~r). This technique, 
borrowed from [1], ensures optimal retrieval time. 

This procedure strictly conforms with the groping search strategy of [4] (to 
which the reader is at this point referred for details on the ensuing complexity 
analysis). If the number of vertices of o k is O(nk ~) for any set of n points, then 
we obtain an (n(logn)2a+l, logn) algorithm, by setting k (v )  = [log2n] for every 
node v ~ T. If we now set k(v)  = 2 h(v) [log n log log n l, where h (v) is the number 
of trailing zeros in the binary search representation of the level of v (the root is at 
level 1), we achieve the following result (provided that fl > 1). 

Theorem 1. There exists an (n(logn)2¢(loglogn)a, logn) algorithm to perform 
halfspace range search on a set of n points in E 3. 

We do not elaborate on the construction of the data structure. The inner loop 
of this procedure will be the computation of the sheets oi; this is done most 
simply by computing the underlying plane arrangement, which takes O(n 3) time 
[91. 

We will show in Lemma 13 (Section 3) that for any k (1 < k < n) and any 
constant e > 0, there exists an integer i ~ [(1 - e)k, k] such that o~ is O(nk4). The 
algorithm sketched earlier certainly allows us the leeway necessary to pick only 
such values of the scope, i.e., a little perturbation in the setting of the scope will 
not change the validity of the method. This leads to the following result. 

Theorem 2. There exists an (n(logn)8(loglogn)4,1ogn) algorithm to perform 
halfspace range search on a set of n points in E 3. 

In Lemma 5, we will also show that if the points of S are extreme (each is a 
vertex of the convex hull), then we have fl = 1; this gives us a new result (which 
we can almost identify with the findings of [4] on circular range search). 

Theorem 3. Given a convex polyhedron P with n vertices, there exists an (n(logn 
loglog n)2, log n) algorithm for reporting which vertices of P lie on a chosen side of a 
query plane. 

3. An Upper Bound on the Maximum Number of k-Sets 

Our goal in this section is twofold: on the one hand we must establish the result 
of  Lemma 13 necessary for Theorem 2; on the other hand we wish to provide a 
result of independent interest concerning the maximum number of k-sets realized 
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by a set of n points in E 3. Recall that a k-set is any subset of S of the form 
h n S, with k = Ih n SI and h an open halfspace of E 3. Let Nk(S ) be the 
maximum number of k-sets; a simple observation shows that Nk(S ) is at most 
eight times the number of facets of a k (denoted Ok(S ) from now on). This crude 
estimation comes from the correspondence between the regions c such that 
I S(c)l  = k and the k-sets whose associated halfspaces contain the origin and are 
delimited by planes crossing the z-axis above the origin. The number of such 
regions is certainly dominated by the number of facets in ok(S); on the other 
hand, as seen in the previous section, eight distinct placements of the origin 
suffice to cover all cases. Let Vk(S) be the number of vertices in ok(S ). Because 
of the planarity of the underlying graph we have Nk(S ) = O(vk(S)) , whence 

Lemma 4. For any k (1 < k < [SI), we have 

l<j<_k 1_ _ k  

Let A 1, A 2 . . . .  be the convex lower layers of S. These are obtained by 
iterating on this process: Take the convex hull of S and remove each vertex 
adjacent to a face of the hull whose normal directed outside has a negative 
z-value. We assume that A~ is the first layer thus obtained. It has been noted by 
Edelsbrunner [8] that the analysis of Lee [11] for higher-order Voronoi diagrams 
can be directly applied to bound the complexity of the sheets in the case where 
S = A1. This implies the following result 

Lemma 5. I f  S = A l then the value of vk(S ) is O(k(n - k)). 
We next prove a sequence of lemmas establishing an upper bound on the 

quantity Y'-I _< j ~ kvy(S) in terms of n and k. From now on, we will assume that the 
points of S are in general position. A perturbation argument can be used to show 
that the quantiiies defined above take on their maximum values when the points 
are in general position. For consistency, we also wish to assume that each layer 
has at least three vertices. If the last one does not, we add one or two points 
arbitrarily close to the point(s) of the layer. This will not affect the bounds we are 
concerned with. For  any V ___ S, we define Tk(V ) as the set of triangles formed by 
any three points of V whose supporting plane ~r intersects the z-axis above the 
origin and has at most k -  1 points of V strictly on the side that contains the 
origin, i.e., [phs(rr)O V I < k. We also introduce the auxiliary set Lk(V),  consist- 
ing of the edges of the triangles of Tk ( V ) ; L k ( V ) = {(a, b) ~ V 213c ~ V; ( a, b, c) 

T k (V)}. We prove two technical results concerning the cardinality of these sets. 

Lemma 6. 

E 
l<_j<_k 

For any k (1 _< k _< n), we have 

pj(S)  _< 31Tk(S)l. 

Proof. Each vertex of a sheet oj(S) (1 ~ j _< k) corresponds to a distinct element 
of Tk(S ). With the points of S in general position, it is easily seen that the same 
vertex appears in three consecutive sheets. [] 
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L e m m a  7. 31Tk(S)t<_2klL~(S)l. 

Proof. Let U k be the set of  triangles t defined by three points of  S with at most  
k -  1 points  of  S strictly on one side. To  obta in  a bound  on I UkJ, consider an 
a rb i t ra ry  edge e ~ Lk(S ) and project  S on a p lane  orthogonal  to e: S is projected 
in to  S '  ( ignoring the endpoints  of  e)  and e into a point  q (note that  i S ' {  = n - 2 ) .  

Thus  we are reduced to a two-dimensional  problem,  where we must  evaluate the 
n u m b e r  of  lines passing through q, with at most  k -  1 points  on one side. 
Cons ider  a polar  coordinate system with pole at q such that no point  of  S '  has 
po la r  angle zero. With any point  p ~ S '  with polar  angle 0 we associate the 
m o d u l a r  interval  (0, 0 + ~r). Note  that  this interval appears  in [0, 2~r] either as a 
single interval  (if 0 < ~r) or as two intervals [0, 0 - ~r) and (0,2~r] (if 0 > 7r). Let 
F(O) be  the n u m b e r  of  intervals containing the value 0 and let s = F(~r) (see Fig. 
3). We  restrict the domain  of F to [0, rr], so each interval is now anchored either 
at  0 or  at ~r. As a result F ( 0 ) =  n -  2 - s  and  F is a staircase function. Our  
interest  in this function lies in the fact that  F(O) is precisely the number  of  points  
to  the right of  the oriented line with polar  angle 0. Consider  the graph of  F(O) as 
a funct ion of  0: We are interested in the por t ions  of  the graph of  F(O) that  lie, 
respectively,  be low and above the lines y = k and y = n - 2 -  k. The determina-  
t ion of  the n u m b e r  v of  unit steps of  F ( 0 )  in these port ions is our objective. 
Clearly,  F ( 0 )  has s positive steps and n - 2 - s  negative steps. Because of 
s y m m e t r y  we m a y  restrict ourselves to the case where ½n - 1 < s < n - 2 .  Let s o, 
Sl, and  s 2 be  the numbers  of  positive steps below y = k, between y = k and 
y = n - 2 - k ,  and  above y = n - 2 - k ,  respectively; let to, q ,  and t 2 be  the 
cor responding  values of  the negative steps. No te  that s o + s 1 + s 2 = s, t o + t 1 + t 2 
= n - 2 - s ,  and v=(So+to)+(s2+t2)=n-2-( t l+&).  We must  now esti- 
m a t e  the quant i ty  (t 1 + sl). If  So = to = s2 = t2 = 0, then v = 0. Otherwise, we 
dist inguish a m o n g  three cases: 

1. s o + t  o >  0 and s 2 + t  2 > 0. In  this case the graph of F ( 0 )  spans the 
y- interval  [k, n - 2 -  k], and  since s >_ ½n - 1, we have s 1 _> n - 2 - 2k.  I t  
follows that  t 1 + s 1 >_ n - 2 - 2 k ,  whence v < n - 2 - ( n  - 2 - 2 k )  = 2k.  
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2. s o + t o > 0 and s 2 = t 2 = 0. This implies that n - 2 -  s _> k. Moreover, 
t l > n - 2 - s - k > _ O ,  and since F(O) goes from y = k  to y = s ,  we also 
have s x >__ s - k. This shows that s 1 + t x > n - 2 - 2k, whence 

= n - 2 -  ( s  1 + t l )  < 2k. 
3. s o = t o = 0 and s 2 + t 2 > 0. Analogous to case 2. 
This shows that every edge of Lk(S  ) is adjacent to at most 2k triangles of 

U k. Since [ Tk(S)I < [Ukl, the proof is now complete. [] 
To upper  bound ILk(S)I ,  we refer to the detailed structure of the convex 

layers Ax, A 2 . . . . .  Let Tij be the set of all triangles t in Tk(A ~ U Aj) with two 
vertices on A~ and one vertex in Aj. We also define L u to be the set of edges of 
the triangles in TU, with one endpoint in A~ and the other in Aj. Notice that each 
member  of Tk(S ) with two vertices in A~ and one in Aj  belongs to T, j, but the 
converse is not true. Indeed, any t ~ T,j has at most k - 1 points of A~ U Aj on 
the origin's side, but it may have additional ones in S - ( A ~  U A j). 

Lemma 8. ILk(S)I<_E~,jlLul. 

Proof. Let e be an edge of Lk(S  ) and let A~ and Aj be the two layers to which 
its endpoints belong (with possibly i = j ) .  By defimtion there exists a plane p 
that contains e and has at most k - 1  points in S on the side of the origin. Let's 
conceptually remove all points not in A i U A j, and let's rotate p around e until it 
hits a third point (no rotation is needed if p contains more than two points of 
A, u Aj at the start). Since each layer has at least three points, the direction of 
rotation can always be chosen so as to make sure that p does not cross the origin. 
If the third point belongs to A i (resp. A j) then e is a member of L u (resp. Lj~). [] 

Lemma 9. For any i -4= j,  we have I Lij[ < 21 Tij I. 

Proof. Each t ~ Tq (i 4= j )  contributes precisely two edges to L u (but one edge 
might be adjacent to several triangles). [] 

Lemma 10. For any i ~ j ,  we have ITul ~ 2 k l L ,  I. 

Proof. Recall that each triangle t ~ Tq has two vertices in A ~. These two vertices 
form an edge e, which by the argument given in Lemma 8, is easily shown to be 
in L , .  As in Lemma 7, we now project A~ U Aj on a plane perpendicular to e, 
and apply the same reasoning to complete the proof. [] 

Lemma 11. EilLii I =O(nk2).  

Proof. L ,  is the set of pairs p, q ~ A~ such that there exists a plane ~r passing 
through p and q with [A~ c3 phs(~r)l < k. Partitioning L ,  into groups for which 
IA~Nphs(rr)]=O,1 . . . . .  k - l ,  we find from Lemma 5 that each group has 
O(k([Ail  - k)) elements, which adds up to O(k21Ail). [] 

Note that all layers A~ for i > k can be removed from S and all the previous 
analysis will still be valid. Indeed, no point in these layers can be of any 
significance in the determination of Tk(S ). This observation, along with Lemmas 
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9, 10, and 11, enables us to bound the quantity Ei, j lLij t as follows: 

~ l t , j l  = ~ tZ ,  l + ]~ IZ~jl 
i , j  l <_i<_k l <_i4~j<_k 

< E tL ,  l + 4 k ( k - l )  E IL,  t, 
l<_i<_k l<_i<_k 

hence E,.jlLijl < (2k - 1)2E1 < i ___ ktL,I = O(nk4). 

Lemma 12. Y'a<_j_<~vj(S) = O(nkS). 

Proof. A direct consequence of Lemmas 6, 7, 8, and the previous result. [] 
We conclude with the two main results of this section. Lemma 13 is used in 

the proof of Theorem 2 (Section 2), and Theorem 4 is of independent interest. 

Lemma 13. For any k (1 <_ k <_ n) and any constant e > O, there exists an integer 
i ~ [(1 - e)k, k] such that v~(S) = O(nk4). 

Proof. Using a probabilistic argument, it suffices to show that the average value 
of vj(S)  over the interval [(1 - e)k, k] is O(nk4). But this is obvious from Lemma 
12 since this value is dominated by (1/~k)F a _< j _< kvj(S). [] 

Theorem 4. The total number of j-sets ( j  =1,2 . . . . .  k )  which can be formed by n 
points in E 3 is O(nkS). 

Proof. Direct from Lemmas 4 and 12. [] 

4. Conclusions 

The main contribution of this paper is a proof that halfspace range search is in 
PLOG. The tools required to achieve this result are both algorithmic and 
combinatorial; in this regard this work illustrates the current trend towards closer 
interaction between computational geometry and discrete geometry. As has been 
shown in the past [e.g., 5] the notion of convex layers is a powerful tool in 
algorithm design. In this work we have shown that it can also be useful for 
combinatorial purposes. Whether our approach for counting k-sets can be refined 
using the same tools remains to be seen. Adding to it some of the techniques 
described in [10] might give a promising line of attack, however. 

On the algorithmic side of the halfspace range search problem, it seems that a 
novel technique for batching together repeated calls on planar point location will 
have to be discovered if further progress is to be made; at least within the 
restricted framework of groping search. An obvious weakness of our method is 
not  to exploit the fact that sheets at separate levels in the tree originate from the 
same point set. 

Once a retrieval problem has been shown to be in PLOG the next question is 
to determine whether it can be solved optimally, i.e., in (n, log n). Note that this is 



Halfspace Range Search 93 

the case for halfspace range search in two dimensions [5]. Whether this remains 
true in three dimensions is an interesting open question. 
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