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Abstract- We compare approaches for generating binary 

control signals for variable acuity superpixel imager (VASI™) 
cameras.  We foveate a set of images using control signals 
generated by various halftoning approaches and then measure 
their performance via figures of merit (FOMs).  We find that two 
novel approaches provide superior FOM values but inferior 
bandwidth control, making them unsuitable for use with VASI™ 
cameras. Floyd-Steinberg error diffusion gives the best 
combination of FOM values and bandwidth control.  Our 
contributions include a comparison of approaches, a lookup table 
method to improve bandwidth control, and two novel methods 
for binarizing VASI™ control signals. 

I. INTRODUCTION 
Our objective is to compare how different halftoning-

inspired approaches perform at generating the binary control 
signals used by Variable Acuity Superpixel Imager (VASI™) 
foveating cameras, in the context of an automatic target 
acquisition and recognition (ATA/ATR) application.  To 
accomplish this, we measure five objective figures of merit 
(FOMs) after foveating a small set of test images with a 
variety of halftoning-inspired approaches. 

VASI™ cameras have a number of characteristics that are 
attractive for the ATR application, but to use them the user 
must specify a binary control signal that defines the camera’s 
pixel-by-pixel behavior.  The translation from a continuous-
valued desired resolution signal to a binary VASI™ control 
signal can be based on halftoning.  It must be efficient to 
avoid lowering the camera’s effective frame rate.  It must also 
accurately achieve the target resolution – or equivalently a 
target bandwidth reduction, which we express as percentage of 
original bandwidth (PBW) – because this drives the frame rate 
achieved by the VASI™ camera.  

II. BACKGROUND 
VASI™ cameras generate foveated imagery by varying the 

camera’s spatial acuity [1].  They do this by sharing charges 
between pixels directly on the focal plane array (FPA).  Figure 
1 illustrates this process.  The sharing or non-sharing behavior 
at each pixel is specified as a binary vector supplied for each 
pixel in each frame.  Thus multiple foveae can be maintained, 
and  they  can  be  created,  repositioned,  or removed at frame 
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Figure 1: VASI™ camera foveation.  Image from [1]. 

rate.  VASI™ cameras use two bits per image pixel to control 
sharing with the pixel above and sharing with the pixel to the 
left.  In this study we made the significant constraint that the 
“share up” and “share left” controls are identical for each 
pixel.  Foveating directly on the FPA reduces the bandwidth 
needed to transfer pixel data off the FPA, thereby allowing 
frame rates of over 1000 Hz.  The combination of wide fields 
of view, high resolution on targets, low bandwidth, and high 
frame rates make VASI™ cameras attractive sensors for ATR 
applications [2].   

Digital halftoning attempts to preserve the visual 
information in an image while reducing the word size used to 
represent each sample.  This often (but not always) involves 
approximating continuous-valued images using only binary 
intensity levels [3].  Halftoning is well represented in the 
available literature and finds applications in grayscale and 
color printing, and display on low-cost displays (e.g., liquid 
crystal displays) [5].  A comprehensive survey of approaches 
is beyond the scope of this paper – other surveys already exist, 
including [3] and [4].  Three of the most common and popular 
methods are classical screening, error diffusion, and dithering 
with blue noise [5].   

The choice of halftoning approach is often a tradeoff 
between visual quality and computational complexity.  
Classical screening is an efficient point operation that 
thresholds intensity values against a periodic dithering matrix 
[6].  It can be broadly divided into clustered dot and dispersed 
dot screening.  It is one of the earliest methods and generally 
produces results that are inferior to other approaches.  Error 
diffusion is a neighborhood operation that spreads the 
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quantization error introduced at each pixel among neighboring 
pixels [7].  More importantly, error diffusion shapes the 
quantization error into higher frequencies where the human 
visual system is less sensitive.  For human observers, this 
results in more visually pleasing halftoned images.  Serpentine 
scans are also sometimes used with error diffusion to further 
reduce visual artifacts by trading reduced horizontal and 
vertical artifacts for increased artifacts along diagonal 
directions.  This can result in more pleasing images because 
the human visual system is less sensitive to high frequencies 
along diagonals than along horizontal and vertical directions.  
Error diffusion produces better visual results than classical 
screening (at an increased computational cost).  Dithering with 
blue noise can yield even higher visual quality than error 
diffusion.  Dithering with blue noise extends error diffusion 
by randomly perturbing the diffusion weights and/or 
directions.  This again shapes the quantization noise into 
higher frequencies where the human visual system is less 
sensitive.  It also makes the noise more isotropic (direction-
independent), which can improve subjective visual quality [8].  
Blue noise introduces minimal computational cost beyond 
basic error diffusion.   

Image quality assessment can be more accurately called 
“image fidelity assessment” because the goal is to determine 
how well a distorted image reflects an original.  We are 
interested in peak signal to noise ratio (PSNR), weighted 
signal to noise ratio (WSNR) [9], linear distortion measure 
(LDM) [9], and universal quality index (UQI) [10] for 
measuring the fidelity of our foveated images to the originals.  
Implementations of these metrics are widely available. 

While VASI™ camera characteristics, halftoning, and 
image quality assessment are all relevant, relatively little prior 
work has been done with the specific goal of engineering the 
VASI™ control signal.  To our knowledge, only the 
developers of the VASI™ camera and their associates have 
addressed this problem at all, and based on [1], [2], and [11], 
their strategy appears to support only three resolution choices 
– 1x1 pixels, 2x2 superpixels, and 4x4 superpixels.  This 
would seem to grant only limited control over bandwidth 
reduction and VASI™ camera frame rate, and the lowest 
PBW it could achieve (with no foveae at all) would be 6.25%. 

III. APPROACH 
We selected a set of test images and manually defined the 

desired resolution functions and foveae.  We then performed a 
transformation on the desired resolution signal and used a 
variety of standard and specialized halftoning approaches to 
convert the desired resolution to the VASI™ control signal.  
The VASI™ charge-sharing behavior was simulated in 
software and the fidelity of the resulting images was evaluated 
based on the FOMs mentioned in Section II.  Our five test 
images (converted from color to grayscale where necessary) 
were board.tif (“board”), westconcordorthophoto.png 
(“concord”), and eight.tif (“eight”) from Matlab’s Image 
Processing Toolbox, lena.tif (“lena”) from [12], and an image 
of an intersection (“traffic”) from [13].  Implementations for 
the standard halftoning approaches and all FOMs were taken 
from [12].  Other implementation was done in Matlab. 

Not all FOMs are created equal.  WSNR, LDM, and UQI 
were designed to predict subjective human perceptions of 
image quality.  PSNR, in contrast, has been shown to be 
uncorrelated with subjective image quality.  PSNR can, 
however, help predict the performance of some computer 
vision algorithms such as ATR.  For WSNR and UQI, higher 
values indicate better visual quality.  For LDM, lower values 
indicate better visual quality.  For PSNR, higher values imply 
better performance for some algorithms, but they do not 
necessarily indicate better subjective visual quality.   

Our desired resolution functions were defined to have one 
or two foveae superimposed over an image-wide minimum 
resolution.  Each fovea is represented as a 2D Gaussian peak 
(with mean vector µ and covariance matrix Σ) normalized to a 
maximum value of 1.0.  The generation parameters are given 
in Table 1, along with the resulting average desired resolution 
(which was used as the target PBW in our tests). 

The halftoning approaches we used were block error 
diffusion (“bed”), dithering with blue noise (“bnoise”), Floyd-
Steinberg error diffusion with raster (“floyd”) and serpentine 
(“floydSerp”) scans, clustered dot (“screen9c”) and dispersed 
dot (“screen9u”) classical screening with 9 gray levels, two 
specialized approaches of our own design (“vasiHalftone” and 
“vasiHalftone2” – see Section III.B), and white noise 
dithering (“wNoise”). 

A. Inverse Function to Compensate for Sharing Geometry 
Halftoning the desired resolution signals directly yields 

very poor results.  The halftoning algorithms all generally 
translate a desired resolution of X% into a control signal with 
X% of the pixels set to 1.0, but the PBW of the foveated 
image is significantly affected by the geometry of exactly 
which pixels share charges.   

Consider the variety of the control signals that we might 
choose.  If we use a ‘checkerboard’ pattern (the control signal 
is one for those pixels whose row and column index sum to an 
even number), 50% of the pixels are one and the resulting 
PBW is nearly 0%.  It is possible to engineer a tessellating 
control signal with 46% of the pixels set to one and a resulting 
PBW of 15%.  In this signal, a lower percentage of the pixels 
are nonzero but the resulting PBW is significantly higher.  At 
the extreme, if we set the control signal to one in the top half 
of the image and zero in the bottom half, 50% of the pixels are 
set to one and the resulting PBW is nearly 50%.   

The effects of the particular geometries are illustrated in 
Figure 2 and Figure 3, which show the percentage of charge-
sharing pixels and the achieved PBW as functions of desired 
resolution for a few of the approaches.  To counteract the 
approach-specific effects of geometry, we perform a function 
inverse via a lookup table (LUT) to recover the desired 
resolution value that will cause a given halftoning approach to 
generate a given target PBW.  Larger lookup tables improve 
our ability to achieve the target PBW, but they also cause 
significant increases in the runtime of the translation.  Any 
discontinuous jumps in the relationship between desired 
resolution and realized PBW limits our ability to achieve the 
target PBW, which is reflected in our results below. 



TABLE 1 
DESIRED RESOLUTION FUNCTION GENERATION PARAMETERS 

Image Min. Res. Fovea µ Fovea Σ Target 
PBW 

board 0.05 [220 180] [1200 0; 0 1200] 0.0956 
  [440 160] [600 0; 0 600]  

concord 0.05 [140 270] [900 0; 0 900] 0.1164 
  [220 210] [900 0; 0 900]  

eight 0.05 [145 60] [1200 0; 0 1200] 0.2086 
  [75 250] [1200 0; 0 1200]  

lena 0.05 [128 128] [900 0; 0 900] 0.1190 
traffic 0.02 [150 200] [2500 0; 0 3600] 0.0584 
 

 
Figure 2: Percent of sharing pixels vs. desired resolution function. 

 
Figure 3: Realized PBW vs. desired resolution function 

B. Specialized vasiHalftone and vasiHalftone2 Approaches 
We also developed two specialized approaches, 

vasiHalftone and vasiHalftone2.  These are not intended to be 
general halftoning algorithms, although we believe it might be 
possible to formulate one or both as variations on classical 

 

 

   
Figure 4: (top center) Desired resolution, (bottom left) Binary vasiHalftone 

control signal, (bottom right) B ry vasiHalftone2 control signal. 
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uperpixels in the foveated image, where the size of the
ngle is inversely related to the desired resolution.  

desired resolution is first scaled and quantized to take integer 
values in the range q(r,c)∈[0,K-1], and q(r,c) is then used to 
compute a modulus m(r,c) at each pixel.  The control signal is 
set to “no sharing” for pi els whose row orx  column index is 
divisible by their modulus.  In vasiHalftone, the modulus is 
m(r,c)=2q(r,c).  For vasiHalftone2, we use m(r,c)=q(r,c)+1 
(typically with a larger choice for K than in vasiHalftone), 
which gives much more flexibility on superpixel sizes.  Figure 
4 shows how nontrivial superpixel shapes and sizes can occur 
if non-sharing pixels do not align to form a continuous 
boundary. 

The vasiHalftone and vasiHalftone2 approaches are both 
point processes, meaning the control signal can be computed 
at

To simulate VASI™ foveation of the image i(r,c) in 
he sharing 

be

 each pixel independently or in parallel.  Under our 
assumption that the vertical and horizontal control signals are 
equal, computing the binary control signals requires as few as 
one table lookup plus 5 operations per pixel.  The two 
modulus comparisons can be accomplished by simple bit 
masking for vasiHalftone (but not vasiHalftone2). 

C. Simulating VASI™ Charge Sharing Behavior 

software, we construct a binary image to represent t
havior.  The sharing behavior image s(r’,c’) contains one 

white pixel surrounded by eight black neighbors for each 
pixel in i(r,c).  Thus pixel s(2r,2c) corresponds to pixel i(r,c), screening.    They   are   designed   to    generate     rectangular  



and if image i(r,c) has size [R,C], then s(r’,c’) has size 
[2R+1,2C+1].  For each pixel in i(r,c), we switch s(2r-1,2c) 
to white if its VASI™ “share up” signal is set, and we switch 
s(2r,2c-1) to white if its “share left” signal is set.  As a result, 
the pixels s(2r1,2c1) and s(2r2,2c2) will be in a connected 
region if and only if the pixels i(r1,c1) and i(r2,c2) are part of 
the same superpixel.  We use binary region labeling on s(r’,c’) 
to build a many-to-one map from i(r,c) to superpixels and 
average the i(r,c) values for each superpixel to determine the 
superpixel value.  While this approach lets us simulate 
VASI™ still images without a VASI™ camera (and it can be 
extended to simulate VASI™ video sequences), it consumes 
the majority of the processing time in the study. 

IV. RESULTS 
We normalize all FOM values on a given image by the 

maximum achieved by a t image, and then 
av

p

Floyd- erg error diffusio sing a raster scan provides 
the best resu lftone2 
ap

he inverse function 
through a closed-form approximation to the inverse mappings 

of

ny approach on tha
erage the normalized FOM performance for a given 

approach over all test images.  This let us combine our results 
when FOM values varied between test images (e.g., the 
maximum PSNR value on lena was 25.2 dB, but the 
maximum on board was only 13.3 dB).  Results are shown in 
Table 2.  The last column in the table gives the “PBW 
Inflation Factor”, which is the actual bandwidth divided by the 
target PBW (averaged over all test images).  It measures the 
approach’s ability to achieve a target PBW.  We also 
computed the FOM values on two disjoint subregions of each 
image – the foveae and non-fovea regions.  Good performance 
in foveae is important for accurate ATR, and good 
performance in non-fovea regions is important for effective 
ATA.  Results on foveal and non-foveal regions are given in 
Table 3 and Table 4, respectively.  Figure 5 shows an example 
binary control signal and VASI™ image for the floyd method.  
Figure 6 shows similar examples for the vasiHalftone method. 

Our results show that Floyd-Steinberg error diffusion on a 
raster scan (floyd) offers the best FOM values while retaining 

recise bandwidth control (PBW inflation ≅ 1.0).  The floyd 
approach achieves good results in both fovea and non-fovea 
regions, implying that it will perform well for both ATR and 
ATA.  While not the fastest halftoning approach, the floyd 
approach still has a low enough complexity to make it viable.  
The vasiHalftone and vasiHalftone2 approaches give 
consistently better FOM performance, but they also 
consistently overshoot the desired PBW.  Their lack of 
bandwidth control is undesirable because it artificially inflates 
FOM scores and will not allow adequate control of the 
VASI™ camera frame rate.  All the other approaches have 
inferior FOM values, worse bandwidth control, or both. 

V. CONCLUSIONS AND FUTURE DIRECTIONS 
Steinb n u

lts overall.  The vasiHalftone and vasiHa
proaches give good FOM values but have poor bandwidth 

control.  The other methods are inferior approaches for 
constructing the VASI™ control signal.   

There are a number of interesting directions for future work.  
The elimination of the lookup table in t

 Section III.A would speed up control signal generation and 
reduce PBW inflation in some cases.  Our assumption that the 
“share up” and “share left” control signals were equal is not a 
requirement in general, and may lower FOM performance or 
increase PBW inflation.  Classical screening algorithms with 
more gray levels might give better PBW control than the 9-
level approaches we tried.  We would also like to explore 
ways to improve the PBW control on the vasiHalftone and 
vasiHalftone2 approaches.  Mixed strategies that follow one 
halftoning approach in foveal regions and another in non-
foveae are also possible.  Finally, we would prefer to measure 
the performance of ATR applications directly, instead of 
inferring their performance from our figures of merit. 

TABLE 2 
SUMMARIZED RESULTS FOR FULL IMAGES 

  Figure of Merit   PBW  
Approach PSNR WSNR LDM UQI Inflation 
bed 0. 1.01 69 0.48 1.00 0.25 
bnoise 1.00 0.0.72 0.51 34 1.02 
floyd 0.85 0.71 1.00 0.51 1.06 
floydSerp 0.83 0.67 1.00 0.46 1.06 
screen9c 0.75 0.56 1.00 0.53 1.87 
screen9u 0.83 0.73 1.00 0.81 3.01 
vasiHT 1.00 1.00 1.00 0.91 1.79 
vasiHT2 0.93 0.84 1.00 0.68 1.30 
wNoise 0.69 0.48 1.00 0.29 1.03 

TABLE
ARIZE EAL R S 

 3 
SUMM D RESULTS FOR FOV EGION

  Figure of Merit   PBW  
Approach PSNR WSNR LDM UQI Inflation 
bed 1.01 0.72 0.44 1.00 0.95 
bnoise 1.00 0.0.82 0.64 98 1.02 
floyd 0.86 0.78 1.00 0.98 1.06 
floydSerp 0.80 0.72 1.00 0.98 1.06 
screen9c 0.90 0.87 1.00 0.99 1.87 
screen9u 0.84 0.64 1.00 0.99 3.01 
vasiHT 1.00 1.00 1.00 1.00 1.79 
vasiHT2 0.98 0.94 1.00 0.99 1.30 
wNoise 0.79 0.55 1.00 0.97 1.03 

TABLE
SU IZED R S FOR OVEA ONS 

 4 
MMAR ESULT NON-F L REGI

  Figure of Merit   PBW  
Approach PSNR WSNR LDM UQI Inflation 
bed 1.01 0.69 0.47 1.00 0.38 
bnoise 1.00 0.0.72 0.50 41 1.02 
floyd 0.85 0.70 1.00 0.56 1.06 
floydSerp 0.83 0.66 1.00 0.52 1.06 
screen9c 0.75 0.54 1.00 0.56 1.87 
screen9u 0.84 0.72 1.00 0.85 3.01 
vasiHT 1.00 1.00 1.00 0.91 1.79 
vasiHT2 0.93 0.84 1.00 0.70 1.30 
wNoise 0.69 0.47 1.00 0.37 1.03 



  
 

 

  
 

 

Figure 5: Floyd method:  
(top) Binary control signal, (bottom) Resulting foveated image 

Figure 6: VasiHalftone method:  
(top) Binary control signal, (bottom) Resulting foveated image 
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