HALIDES OF o-SUBSTITUTED ARYL-ALUMINUM COMPOUNDS WITH COORDINATION NUMBERS FOUR AND FIVE

Christian Böker, Mathias Noltemeyer, Heinz Gornitzka, Boris O. Kneisel, Markus Teichert, Regine Herbst-Irmer and Anton Meiler*
Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany

Abstract

The THF adduct of dichloro(2,4,6-triisopropylphenyl)aluminum (1) was prepared. Dehalogenation of 1 with Na / K alloy gave a tricyclic compound with a dioxonia-dialuminata central unit (2). The reaction of 2,6 -bis $\left\{\left[\right.\right.$ (dimethylamino) methyl]phenyl\}ithium with $\mathrm{AIX}_{3}(\mathrm{X}=$ $\mathrm{Cl}, \mathrm{Br}, \mathrm{I}), \mathrm{EtAICl}_{2}$ or $\mathrm{Et}_{2} \mathrm{AlCl}$ (in 1:1 ratio) yielded compounds B and 3 - 6 containing pentacoordinated aluminum atoms. From 2-[(dimethylamino)methyl]phenyllithium and AICl_{3}, $\mathrm{AlBr}_{3}, \mathrm{EtAlCl}_{2}$ or $\mathrm{Et}_{2} \mathrm{AICl}(1: 1)$ the tetracoordinated Al-species 7, 8, C and D were obtained while with the same reactants in $2: 1$ ratio the pentacoordinated species 9,10 and E are formed. The reaction of 3 equivalents of 2 -[(dimethylamino)methyl]phenyllithium with AICl_{3} gave 11 (coordination number five, fluxional behaviour in solution). From 8(dimethylamino)naphthyllithium, $\mathrm{AICl}_{3}, \mathrm{AlBr}_{3}$ and EtAICl 2 the tetracoordinated species 12-14 were synthesized. By treating the dibromo species 6 and C with lithiated 2,6 -dimethyl- N (trimethylsilyl)aniline the correspondingly substituted monobromo species 15 and 16 were obtained. The compounds are characterized by NMR (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{29} \mathrm{Si}$) and mass spectrometry, most of them also by ${ }^{27} \mathrm{Al}$ NMR and elemental analyses. X-ray structure analyses are provided for 2, 4, 6, 7, 11 and 16.

INTRODUCTION

It is generally known that the coordination of metal atoms can be governed as well by the steric requirement of the substituents as by inter- and specially intramolecular donor stabilization. Aryl substituted aluminum atoms did not find much interest in the past, compared to their alkyl substituted analogs. Research activity, however, did increase considerably within the last years. Stimulated by the isolation of the first monomeric aluminum dihalide with coordination number three, $\mathrm{Mes}^{*} \mathrm{AlBr}_{2}\left(\mathrm{Mes}^{*}=2,4,6-t-\mathrm{Bu}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)^{1}$ and our own results about supermesityl substituted halides of gallium and indium ${ }^{2-4}$, we wanted to extend our research to halides of aluminum stabilized either by inter- or by intramolecular coordination. The aim was primarily to compare the influence of different substituents on NMR and structural data. With o-substituted aromatic groups, $\mathrm{Mes}^{*} \mathrm{AlCl}_{2}{ }^{6}$ with the coordination number three as well as MesAICl $2 \cdot \mathrm{THF}^{5}$ (Mes $=$ mesityl), Mes* $\mathrm{AICl}_{2} \cdot \mathrm{THF}^{6}$, and TripAIBr ${ }_{2} \cdot \mathrm{OEt}_{2}{ }^{1}$ (Trip $=2,4,6$-triisopropylphenyl) with the coordination number four are already known. Furthermore arylaluminumhalides stabilized by intramolecular coordination with the coordination numbers four and five should be included. The 2-[(dimethylaminomethyl)-phenyl]-, (\mathbf{Q}), the 2,6 -bis[(dimethylaminomethyl)phenyl)-, (\mathbf{R}), and the 8 -[(dimethylamino-methyl)naphthylj-ligand, (\mathbf{X}), were applied.

So far the following halides of aluminum with the ligands (\mathbf{Q} and R) have been described: $\mathrm{QAlCl}_{2}^{7}, \mathrm{QAlBr}_{2}^{8,9}, \mathrm{QAl}(\mathrm{Me}) \mathrm{Cl}^{7}, \mathrm{QAl}(\mathrm{t}-\mathrm{Bu}) \mathrm{Cl}^{9}, \mathrm{QAl}^{9}\left(\mathrm{CSiMe}_{3}\right)_{3} \mathrm{Cl}^{7}$ and $\mathrm{RAICl}_{2}{ }^{8 \cdot 10}$. Ligand (\mathbf{X}) was not used before.

RESULTS AND DISCUSSION

Bis(2,4,6-triisopropylphenyl)magnesium . 2 THF (A) ${ }^{11}$ was prepared by a Grignard reaction from the corresponding bromide in THF followed by a Schlenk-dismutation with dioxane.

(Q)

(R)

(X)

By the reaction of $\mathrm{Trip}_{2} \mathrm{Mg}$. 2 THF (A) with $\mathrm{AlCl}_{3}(\mathrm{THF})$ and by the addition of dioxane and THF, TripAICl $2 \cdot$ THF (1) was isolated as a yellowish solid (Scheme 1).

1
Scheme 1
Upon the reaction of 1 with Na / K alloy in THF, 2,8-bis(2,4,6-triisopropylphenyl)-1,7-dioxonia-2,8-dialuminatatricyclo[6,4,0, 0^{27}]dodecane, 2 was obtained (Scheme 2). Compound 2 is apparently formed by the reaction of a species containing subvalent aluminum with THF (Scheme 2). Due to the conformations of the bridging C_{4}-units in solution, there are two conformers of 2 as shown by the splittings of the H - and ${ }^{13} \mathrm{C}$-NMR signals of these units in solution.

Scheme 2
Recrystallization of $\mathbf{2}$ from hexane yielded crystals and an X-ray structure analysis was performed. The molecule possesses an inversion centre (see. Figure 1) leading to an exactly planar $\mathrm{Al}_{2} \mathrm{O}_{2}$ ring and trans $\mathrm{Al}-\mathrm{O}-\mathrm{C}_{4}$ rings. This is in contrast to the other compound exhibiting a tricyclic

structure where the $\mathrm{Al}-\mathrm{O}-\mathrm{C}_{4}$ ring is not planar (mean deviation $0.13 \AA$) and where the $\mathrm{Al}-$ $\mathrm{O}-\mathrm{C}_{4}$ rings are in cis configuration ${ }^{12}$.

By the reaction of 2,6 -bis[(dimethylaminomethyl)phenyl]lithium with $\mathrm{AlX}_{3}(X=\mathrm{Cl}, \mathrm{Br}$, I), EtAlCl_{2} or $\mathrm{Et}_{2} \mathrm{AlCl}$ the compounds B^{9} and 3-6 containing pentacoordinate Al atoms (Scheme 3) were obtained.

Figure 1. Crystal structure of 2, selected bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$]: $\mathrm{Al}(1)-\mathrm{O}(1) 1.854(2)$, $\mathrm{Al}(1)-\mathrm{O}(1) \# 1 \quad 1.836(2), \mathrm{Al}(1)-\mathrm{C}(19) 1.959(2), \mathrm{Al}(1)-\mathrm{C}(1)$ 1.992(2), $\mathrm{O}(1) \# 1-\mathrm{Al}(1)-\mathrm{O}(1) 80.9(1)$, $\mathrm{O}(1) \# 1-\mathrm{Al}(1)-\mathrm{C}(19) 114.0(1), \mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{C}(19) 100.0(1), \mathrm{O}(1) \# 1-\mathrm{Al}(1)-\mathrm{C}(1) 112.7(1), \mathrm{O}(1)-\mathrm{Al}(1)-$ $\mathrm{C}(1) 121.5(1), \mathrm{C}(19)-\mathrm{Al}(1)-\mathrm{C}(1) 120.9(1), \mathrm{C}(16)-\mathrm{O}(1)-\mathrm{Al}(1) \# 1127.3(1), \mathrm{C}(16)-\mathrm{O}(1)-\mathrm{Al}(1) 122.6(1)$, $\mathrm{Al}(1) \# 1-\mathrm{O}(1)-\mathrm{Al}(1) 99.1(1)$, symmetry transformations used to generate equivalent atoms: \#1 -$x+1,-y+2,-z$.

$$
\begin{array}{ll}
X=Y=C l & B \\
X=Y=B r & 3 \\
X=Y=I & 4 \\
X=Y=E t & 5 \\
X=C l, Y=E t & 6
\end{array}
$$

Scheme 3

Figure 2. Crystal structure of 4, selected bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$]: $\mathrm{I}(1)-\mathrm{Al}(1)$ 2.544(1), $\mathrm{l}(2)-\mathrm{Al}(1) 2.559(1), \mathrm{Al}(1)-\mathrm{C}(1) 1.927(4), \mathrm{Al}(1)-\mathrm{N}(2) 2.180(4), \mathrm{Al}(1)-\mathrm{N}(1) 2.197(4), \mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{N}(2)$ $80.0(2), \mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{N}(1) 80.0(2), \mathrm{N}(2)-\mathrm{Al}(1)-\mathrm{N}(1) 150.2(2), \mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{I}(1) 106.4(1), \mathrm{N}(2)-\mathrm{Al}(1)-\mathrm{I}(1)$ 102.0(1), $\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{I}(1) 104.7(1), \mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{I}(2) 149.7(1), \mathrm{N}(2)-\mathrm{Al}(1)-\mathrm{I}(2) 93.4(1), \quad \mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{I}(2)$ 92.8(1), $\mathrm{I}(1)-\mathrm{Al}(1)-\mathrm{I}(2) 103.9(1)$.

Recrystallization from hexane and benzene resp. gave single crystals of 4 and 6 and X-ray structure analyses were performed (Figures 2 and 3). In both structures the aluminum atom is coordinated in a distorted trigonal-bipyramidal fashion with the nitrogen atoms occupying the axial positions. The (AIN) distance is $0.1 \AA$ shorter in 4 compared to 6 . The (AIC) distances are nearly the same in both compounds. In B^{9} the (AIC) bond is in identical range (1.911(7)) as observed in 4 and 6 (1.927(4) and 1.936(3)), while r(AIN) $(2.261(5) \AA)$ corresponds to that in $6(2.282(2) \AA)$.

Figure 3. Crystal structure of 6 , selected bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$]: $\mathrm{Al}(1)-\mathrm{C}(1) 1.936(3)$, $\mathrm{Al}(1)-\mathrm{C}(9) 1.942(6), \quad \mathrm{Al}(1)-\mathrm{N}(1) 2.282(2), \mathrm{Al}(1)-\mathrm{Cl}(1) 2.290(3), \mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{C}(9) 136.9(2), \mathrm{C}(1)-$ $\mathrm{Al}(1)-\mathrm{N}(1) 78.6(1), \mathrm{C}(9)-\mathrm{Al}(1)-\mathrm{N}(1) 98.1(2), \mathrm{N}(1) \# 1-\mathrm{Al}(1)-\mathrm{N}(1) 157.2(1), \mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{Cl}(1) 117.0$ (1), $\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{Cl}(1) 96.3(1)$, symmetrie transformation used to generate the equivalent atoms: \#1$x, y,-z+1 / 2$.

In the monomeric organyl aluminum halides, Mes*AIBr ${ }_{2}{ }^{1}, \mathrm{Mes}^{*} \mathrm{AlCl}_{2}{ }^{6}$ and Mes*AICIH ${ }^{6}$, which were characterized by X -ray structure analyses $\mathrm{r}(\mathrm{AIC})$ is observed at $1.94-1.95 \AA, r(\mathrm{~A} \mid \mathrm{Br})=2.28 \AA$ and $\mathrm{r}(\mathrm{AlCl})=2.12-2.19 \AA$. Therefore $\mathrm{r}(\mathrm{AIC})$ apparently is more controlled by structural influences in the solid state than by the hybridization at the Al atom or possible π-interactions in the sp^{2}-case.

Table 1 exhibits a correlation of the chemical shifts $\delta^{27} \mathrm{Al}$ and $\delta^{13} \mathrm{C}$ (of the ipso carbon atom). The influence of the halogeno and the ethyl substituents on $\delta^{27} \mathrm{Al}$ is documented by the highfield shift of \mathbf{B} and 3 (slightly) and 4 (strongly) compared to other shifts reported for pentacoordinated Al^{13}. On the other hand the signals for 5 and 6 appear at low field. The same trend can be seen in the tables 2 and 3 (for tetracoordinated species).

Table 1. Selected NMR-Data of 3-6 (in $\mathrm{C}_{6} \mathrm{D}_{6}$)

Compound	X	Y	$\delta^{27} \mathrm{Al}[\mathrm{ppm}]$	$\delta^{13} \mathrm{C}[\mathrm{ppm}]$
\mathbf{B}	Cl	Cl	99	$\mathrm{C}(1) 142.9$
$\mathbf{3}$	Br	Br	98	$\mathrm{C}(1) 143.3$
$\mathbf{4}$	I	1	74	$\mathrm{C}(1) 144.0$
$\mathbf{5}$	Et	Et	163	$\mathrm{C}(1) 151.2$
$\mathbf{6}$	Cl	Et	120	$\mathrm{C}(1) 146.9$

Compounds with tetracoordinated aluminum atoms were prepared from $\mathrm{AlX}_{3}(\mathrm{X}=\mathrm{Cl}$, Br) and EtAlCl_{2} respectively according to Scheme 4:

$$
\begin{array}{ll}
X=Y=C l & 7 \\
X=Y=B r & C^{8} \\
X=C l Y=E t & 8 \\
X=Y=E & D^{13}
\end{array}
$$

Scheme 4

Single crystals of 7 were grown from hexane and data provided by the X -ray structure analysis make it possible to compare them with the results reported for $7 \cdot \mathrm{H}_{2} \mathrm{~N}^{\prime} \mathrm{Pr}^{7}$ and for C. ${ }^{8}$ In the tetrahedrally coordinated derivatives $\mathrm{r}(\mathrm{AIN})=1.994(2) \AA$ (for 7) and 2.003(5) \AA (for C). In $7 \cdot \mathrm{H}_{2} \mathrm{~N}^{\prime} \operatorname{Pr}$ (pentacoordinated) $\mathrm{r}\left(\mathrm{AlNMe}_{2}\right)=2.171(1) \AA$ and $\mathrm{r}\left(\mathrm{AlNH}_{2}{ }^{\prime} \mathrm{Pr}\right)=2.070(1) \AA$. The (AIC) distances are 1.945(2) \AA (for 7), 1.987(1) \AA (for $7 \cdot \mathrm{H}_{2} \mathrm{~N}^{\prime} \mathrm{Pr}$) and1.967(6) \AA (for C). The distances between Al and the halogens (mean values) are $\mathrm{r}(\mathrm{AlCl})=2.127 \AA$ (for 7), $2.196 \AA$ (for $7 . \mathrm{H}_{2} \mathrm{~N}^{\prime} \mathrm{Pr}$) and $\mathrm{r}(\mathrm{AlBr})=2.313 \AA$ (for C). Thus, pentacoordination (compared to tetracoordination) leads to an elongation of about $0.18 \AA$ in the (AIN) distance and $0.07 \AA$ for $r(A \mid C l)$ as to be expected. The crystal structure of 7 is depicted in Figure 4.

Figure 4. Crystal structure of 7 , selected bond lengths $[\AA]$ and angles [${ }^{\circ}$]: Al-C(1) 1.945(2), AlN 1.994(2), $\mathrm{Al}-\mathrm{Cl}(1) 2.121(1), \mathrm{Al}-\mathrm{Cl}(2) 2.133(1), \mathrm{C}(1)-\mathrm{Al}-\mathrm{N} 88.4(1), \mathrm{C}(1)-\mathrm{Al}-\mathrm{Cl}(1)$ 123.7(1), $\mathrm{N}-\mathrm{Al}-$ $\mathrm{Cl}(1) 105.2(1), \mathrm{C}(1)-\mathrm{Al}-\mathrm{Cl}(2) 116.7(1), \mathrm{N}-\mathrm{Al}-\mathrm{Cl}(2) 105.1(1), \mathrm{Cl}(1)-\mathrm{Al}-\mathrm{Cl}(2) 111.9(1)$.

Table 2. Selected NMR-Data of 7, 8, C^{7} and D^{13} (in $\mathrm{C}_{6} \mathrm{D}_{6}$)

Compound	X	Y	$\delta^{27} \mathrm{Al}[\mathrm{ppm}]$	$\delta^{13} \mathrm{C}[\mathrm{ppm}]$
$\mathbf{7}$	Cl	Cl	128	$\mathrm{C}(1) 142.5$
\mathbf{C}	Br	Br	129	$\mathrm{C}(1) 142.0$
$\mathbf{8}$	Cl	Et	156	$\mathrm{C}(1) 146.3$
\mathbf{D}	Et	Et	174	$\mathrm{C}(1) 151.7$

We have also prepared diethyl-2-[(dimethylaminomethyl)phenyl]aluminum (D). ${ }^{14}$ The new determined $\delta^{13} \mathrm{C}$ (for D) and $\delta^{27} \mathrm{Al}$ (for C and D) NMR data are included together with those of 7 and 8 in Table 2.

Like in the pentacoordinated species (Table 1) the alkyl substituted moieties appear at lower field, however, the difference in the shift values is less pronounced: $\Delta \delta^{27} \mathrm{Al}$ $=64 \mathrm{ppm}$ between B and 5, and 46 ppm between 7 and \mathbf{D} (Table 2). It should be noted that the chemical shift is almost the same for the dichloro- and dibromo moiety (like in Table 1). On the other hand the influence of the substituents (halogeno/alkyl) is more pronounced than that of the coordination number (5/4). For the ${ }^{27} \mathrm{Al}$ NMR chemical shift range as a function of the coordination number in aluminum compounds compare ${ }^{15}$. The only monomeric aryldihalogenoaluminum compound $\left(s p^{2}\right)$ for which a ${ }^{27} \mathrm{Al}$ signal was detected is $\mathrm{Mes}^{*} \mathrm{AICl}_{2} \delta^{27} \mathrm{Al}=130 \mathrm{ppm}$ (in $\mathrm{C}_{6} \mathrm{D}_{6}, 80^{\circ} \mathrm{C}$) ${ }^{6}$. The signal of the corresponding THF adduct ${ }^{6}\left(\mathrm{sp}^{3}\right)$ is at $\delta^{27} \mathrm{Al}=108 \mathrm{ppm}$.

The reaction of $2-\left[\left(\right.\right.$ dimethylaminomethyl)phenyl]lithium with AlBr_{3} in a molar ratio of $2: 1$ gave 9 (Scheme 5). Compound 9 and the corresponding Cl derivative E^{7} are also formed as by-products in the synthesis of 7 and C^{8}. In the reaction with EtAICl, 10 was obtained. The dynamic behaviour observed at elevated temperatures was examinated extensively on the basis of a detailed NMR study for E^{7}.

Scheme 5

The difference between chemical shifts $\delta^{27} \mathrm{Al}$ between $\mathrm{E}\left(\delta^{27} \mathrm{Al}=148\right)^{6}$ and 10 . $\left(\delta^{27} \mathrm{Al}=126\right)$ is only 22 ppm in this case, due to the exchange of only one substituent.

Finally 11 was prepared in the reaction of three molar equivalents of 2-[(dimethy)aminomethyl)phenyl]lithium with AlCl_{3} (Scheme 6). The X-ray structure analysis (single crystals from hexane) shows, that in the solid state only two of the three amino groups are coordinated to the aluminum atom, thus giving pentacoordination (Figure 5). The aluminum atom is distorted trigonal bipyramidally coordinated with the nitrogen atoms in the axial positions. The AI-N distances $(2.273(2)$ and $2.310(2) A)$ are similar to those in 6 $(2.282(2) A$), while the $\mathrm{Al}-\mathrm{C}$ bonds $(2.009(2)-2.018(2) \AA$) are slightly elongated compared to 4 and 6 (1.927(4) (4) and $1.936(3)(6))$. In solution there exists a fluctuating structure as only singlets are observed for the methyl and the methylene groups.

11
Scheme 6

Figure 5. Crystal structure of 11, selected bond lengths $[A]$ and angles [${ }^{\circ}$]: $\mathrm{Al}(1)-\mathrm{C}(11)$ $2.009(2), \quad \mathrm{Al}(1)-\mathrm{C}(21) 2.014(2), \mathrm{Al}(1)-\mathrm{C}(1) 2.018(2), \quad \mathrm{Al}(1)-\mathrm{N}(2) 2.273(2), \quad \mathrm{Al}(1)-\mathrm{N}(3) 2.310(2)$, $\mathrm{C}(11)-\mathrm{Al}(1)-\mathrm{C}(21) 127.2(1), \mathrm{C}(11)-\mathrm{Al}(1)-\mathrm{C}(1) 114.8(1), \mathrm{C}(21)-\mathrm{Al}(1)-\mathrm{C}(1) 117.6(1), \mathrm{C}(11)-\mathrm{Al}(1)-\mathrm{N}(2)$ $80.0(1), \mathrm{C}(21)-\mathrm{Al}(1)-\mathrm{N}(2) 99.3(1), \mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{N}(2) 97.2(1), \mathrm{C}(11)-\mathrm{Al}(1)-\mathrm{N}(3) 95.7(1), \mathrm{C}(21)-\mathrm{Al}(1)-$ $\mathrm{N}(3) 78.4(1), \mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{N}(3) 90.1(1), \mathrm{N}(2)-\mathrm{Al}(1)-\mathrm{N}(3) 172.5(1)$.

Upon the reactions of 8-[(dimethylamino)naphthyl]lithium with $\AA \mathrm{AlCl}_{3}, \mathrm{AlBr}_{3}$ and $\mathrm{Et}_{2} \mathrm{AICl}$ according to Scheme 7, compounds 12-14 were prepared.

$\begin{array}{ll}X=Y=C l & 12 \\ X=Y=B r & 13 \\ X=Y=E t & 14\end{array}$
Scheme 7
The $\delta^{2 i} \mathrm{Al}$ - and $\delta^{i j} \mathrm{C}$-NMR data (for C_{1}) confirm the tetracoordination at the aluminum atom.
Table 3. Selected NMR-Data of 12-14 (in $\mathrm{C}_{6} \mathrm{D}_{6}$)

Compound	X	Y	$\delta^{2 \prime} \mathrm{Al}[\mathrm{ppm}]$	$\delta^{13} \mathrm{C}[\mathrm{ppm}]$
$\mathbf{1 2}$	Cl	Cl	128	$\mathrm{C}(1) 137.4$
13	Br	Br	131	$\mathrm{C}(1) 138.6$
14	Et	Et	174	$\mathrm{C}(1) 148.6$

By reacting 2,6-dimethyl- N -(trimethylsilyl)aniline with 3 and C we prepared 15 (pentacoordinated) and 16 (tetracoordinated) (colorless solids) (Scheme 8). An X-ray structure analysis was performed of 16 (single crystals from hexane). The asymmetric unit contains two nearly identical molecules. Figure 6 presents one of them.

All bond lengths in 16 are comparable to the other tetracoordinated species 7 and $\mathrm{C}: r(\mathrm{AlBr})=2.328(2), 2.329(2) \AA(16)$ and $2.313(2) \AA(\mathrm{C}), r(A I C)=1.945(5), 1.939(5) \AA(16)$, $1.945(2)(7)$ and $1.967(6)(\mathrm{C}), \mathrm{r}\left(\mathrm{AlNMe}_{2}\right)=2.010(4), 2.019(4)(16), 1.994(2)(7)$ and $2.003(5)$ (C). The covalent bond to the bulky amine $(\mathrm{Al}(1)-\mathrm{N}(1))$ is about $0.2 \AA$ shorter than (AIN) bond distances by the coordinating ligand

Figure 6. Crystal structure of 16, selected bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$]: $\operatorname{Al}(1)-\mathrm{N}(1) 1.802(4)$, $\mathrm{Al}(1)-\mathrm{C}(11) 1.945(5), \mathrm{Al}(1)-\mathrm{N}(11) 2.010(4), \mathrm{Al}(1)-\mathrm{Br}(1) 2.328(2), \mathrm{Al}(2)-\mathrm{N}(2) 1.805(4), \mathrm{Al}(2)-\mathrm{C}(41)$ 1.939(5), $\mathrm{Al}(2)-\mathrm{N}(41) 2.019(4), \mathrm{Al}(2)-\mathrm{Br}(2) 2.329(2), \mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{C}(11) 128.1(2), \mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{N}(11)$ 116.7(2), $\mathrm{C}(11)-\mathrm{Al}(1)-\mathrm{N}(11) 87.8(2), \mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{Br}(1) 110.1(1), \mathrm{C}(11)-\mathrm{Al}(1)-\mathrm{Br}(1) 107.7(1), \mathrm{N}(11)-$ $\mathrm{Al}(1)-\mathrm{Br}(1) \quad 102.0(1), \quad \mathrm{N}(2)-\mathrm{Al}(2)-\mathrm{C}(41) \quad 127.3(2), \quad \mathrm{N}(2)-\mathrm{Al}(2)-\mathrm{N}(41) 117.1(2), \quad \mathrm{C}(41)-\mathrm{Al}(2)-\mathrm{N}(41)$ 87.4(2), $\mathrm{N}(2)-\mathrm{Al}(2)-\mathrm{Br}(2) 110.4(1), \mathrm{C}(41)-\mathrm{Al}(2)-\mathrm{Br}(2) 108.4(1), \mathrm{N}(41)-\mathrm{Al}(2)-\mathrm{Br}(2) 102.0(1)$.

EXPERIMENTAL

All reactions and manipulations were performed in an inert atmosphere of dry nitrogen in dry solvents saturated with nitrogen. Solutions of the aluminum alkyls in hexane or toluene were added to the reaction mixtures with a special syringe (Merck AG) through a rubber diaphragm. Most high vacuum distillations or sublimations were performed using a rotating three-bulb system. In these cases, boiling point (bp) and sublimation point (sublp) temperatures are those of the air bath. Melting points (mp) were determined in sealed capillaries. Elemental analyses were performed in the analytical laboratory of the institute of inorganic chemistry and by Mikroanalytisches Labor Beller, Göttingen, Germany. Due to the formation of $\mathrm{Al}_{4} \mathrm{C}_{3}$ there are deviations of some analytical results. NMR spectra were recorded on Bruker AM-250 or MSL-400 instruments. Heteroatom spectra were recorded in
the proton-decoupled mode. Assignments of ${ }^{13} \mathrm{C}$ signals were made by distortionless enhancement of polarization transfer (DEPT, $100,60 \mathrm{MHz}$), HH-Cosy and CH-correlations Solvents and standards used were as follows: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}_{1}{ }^{29} \mathrm{Si} \mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{TMS}$ or $\mathrm{CDCl}_{3} / \mathrm{TMS}$ (internal); ${ }^{27} \mathrm{Al}:\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ (external). Mass spectra were obtained in a Varian CH 5 instrument (electron impact (EI) 70 eV and field ionization (FI)) and a Finnigan MAT 8230 (El, 70 eV) spectrometer.

Starting materials were prepared according to the following references: bromo-2,4,6-tert-butylbenzene ${ }^{14}$; bromo-2,4,6-triisopropylbenzene ${ }^{16} ; \quad$ 2,4,6-triisopropylphenyllithium ${ }^{17}$; aluminumtrichloride $\cdot 2 \mathrm{THF}^{18,19} ;$ 1-bromo-2,6-(dimethylaminomethyl)benzene ${ }^{19}$; di(2,4,6-triisopropylphenyl)magnesium $\cdot 2$ THF 11; trimesitylaluminum ${ }^{5}$; 2,6-bis(dimethyl-aminomethyl)-1-lithiobenzene ${ }^{-}$; 2-(dimethylaminomethyl)-1-lithiobenzene ${ }^{2 n}$; 8 -(dimethyl-amino)-1-lithionaphthalene ${ }^{23} ; \quad 2,6$-dimethyl- N -(trimethylsilyl)aniline ${ }^{24,25}$. All other starting materials are commercial.

Bis(2,4,6-triisopropylphenyl)magnesium . 2 tetrahydrofurane: Was prepared according to ${ }^{5}$. NMR (in $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta\left({ }^{1} \mathrm{H}\right)+\delta\left({ }^{3} \mathrm{C}\right) \mathrm{CCH}_{2}(\mathrm{THF}): 1,21(\mathrm{~m}, 4 \mathrm{H})+25.42 ; \mathrm{CHCH}_{3}(\mathrm{p}): 1.38$ (d, ${ }^{3}{ }^{3} \mathrm{HHH}=6.9$ $\mathrm{Hz}, 6 \mathrm{H})+25.19 ; \mathrm{CHCH}_{3}(\mathrm{o}): 1.42\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 12 \mathrm{H}\right)+26.36 ; \mathrm{CH}_{2}(\mathrm{p}): 2.85$ (sept., ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8$ $\mathrm{Hz}, 1 \mathrm{H})+35.09 ; \mathrm{CHMe}_{2}(0): 2.97\left(\mathrm{sept}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2 \mathrm{H}\right)+35.40 ; \mathrm{OCH}_{2}(\mathrm{THF}): 3.51(\mathrm{~m}, 4 \mathrm{H})+$ $69.58 ; \mathrm{C}_{1}: 164.63, \mathrm{C}_{2.6}: 158.18 ; \mathrm{C}_{3.5} \mathrm{H}: 7.15$ (s, 2 H) $+118.84 ; \mathrm{C}_{4}: 146.48$.
Dichloro(2,4,6-triisopropylphenyl)aluminum-tetrahydrofuran (1): To $56 \mathrm{~g}(0.2 \mathrm{~mol}) \mathrm{AlCl}_{3} \cdot 2$ THF, dissolved in $500 \mathrm{ml} \mathrm{THf}, 58 \mathrm{~g}(0.1 \mathrm{~mol})$ A were added in small portions. After stirring 18 h at $23^{\circ} \mathrm{C}, 62 \mathrm{ml}$ dioxane were added dropwise and the stirring continued for 4 more h . After decantation from MgCl_{2} the solution was concentrated to 100 ml . The precipitated crystals were separated using a pressure filtration funnel and recrystallized from THF. The yield was $36 \mathrm{~g}(47 \%)$. The colorless crystals melted at $55^{\circ} \mathrm{C}$. NMR (in $\left.\mathrm{CDCl}_{3}\right): \delta\left({ }^{1} \mathrm{H}\right)+\delta\left({ }^{13} \mathrm{C}\right.$) $\mathrm{CCH}_{2}(\mathrm{THF}): 1.22(\mathrm{~m}, 4 \mathrm{H})+24.61 ; \mathrm{CHCH}_{3}(\mathrm{p}): 1.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 6 \mathrm{H}\right)+25.49 ; \mathrm{CHCH}_{3}$ (o): 1.38 (d, ${ }^{3} J_{H H}=6.7 \mathrm{~Hz}, 12 \mathrm{H}$) $+26.01 ; \mathrm{CHMe}_{2}(\mathrm{p}): 2.86$ (sept, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 1 \mathrm{H}$) +35.17 ; $\mathrm{OCH}_{2}(\mathrm{THF}): 3.71(\mathrm{~m}, 4 \mathrm{H})+70.75 ; \mathrm{CHMe}_{2}(0): 3.73\left(\mathrm{sept},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right)+36.29 ; \mathrm{C}_{26}$: 158.62; $\mathrm{C}_{3} \mathrm{H}: 7.18$ (s, 2 H) $+121.22 ; \mathrm{C}_{4}: 150.40$.
$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{AlCl}_{2}\left(\mathrm{OC}_{4} \mathrm{H}_{8}\right)(373.34)$. Anal. Calcd: C, 61.13; H, 8.40; Al, 7.22. Found: C, $60.93 ; \mathrm{H}$, 8.21; Al, 7.43.

2,8-Bis(2,4,6-triisopropylphenyl)-1,7-dioxonia-tricyclo[6,4,9, $0^{2.7}$]dodecane (2): To a suspension prepared from $0.2 \mathrm{~mol} \mathrm{Na} / \mathrm{K}$ alloy ($1.7 \mathrm{~g} \mathrm{Na} / 5.2 \mathrm{~g} \mathrm{~K}$) in 200 ml THF containing 6 g benzene, $35 \mathrm{~g}(0.094 \mathrm{~mol}) 2,4,6-1 \mathrm{Pr}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{AlCl} \mathrm{I}_{2} \cdot \mathrm{THF}$, dissolved in 50 ml , were added dropwise with stirring. The solution turned from blue to black color. Stirring was continued for 16 hrs at $20^{\circ} \mathrm{C}$ and for 16 more hrs under reflux. Solids were filtered off on a pressure funnel and the solvent evaporated from the filtrate. Distillation in high vacuum in a 3 -bulb tube gave a yield of 5.2 g (18\%) of 2 (highly viscous); bp $215^{\circ} \mathrm{C} / 0.001 \mathrm{mbar}$ (air bath temp.). Colorless crystals from hexane, $\mathrm{mp} 136^{\circ} \mathrm{C}$. NMR (in CDCl_{3}). Signals labeled with * are partly covered by the signals of the 'Pr groups and are not completely resolved: $\delta\left({ }^{1} \mathrm{H}\right)+$ $\delta\left({ }^{13} \mathrm{C}\right)$ for isomer 1: $\mathrm{AlCH} 2: 0.63\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, 2 \mathrm{H}\right)+11.8 ; \mathrm{OCH}_{2} .3 .9-4.2(\mathrm{~m}, 2 \mathrm{H})+68.0$; $\mathrm{CH}_{2}: 1.23\left(\mathrm{~m}^{*}, 2 \mathrm{H}\right)+23.8 ; \mathrm{CH}_{2}: 1.63-1.72(\mathrm{~m}, 2 \mathrm{H})+32.8 ; \mathrm{C}_{1}: 139.7 ; \mathrm{C}_{26}: 157.2 ; \mathrm{C}_{3} \mathrm{H}$: $7.18(\mathrm{~s}, 2 \mathrm{H})+120.4 ; \mathrm{C}_{4}: 149.9$. Isomer 2: $\mathrm{AlCH}_{2}: 0.53\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, 2 \mathrm{H}\right)+9.3 ; \mathrm{OCH}_{2}: 3.9-$ $4.2(\mathrm{~m}, 2 \mathrm{H})+67.0 ; \mathrm{CH}_{2}: 1.96-2.09(\mathrm{~m}, 2 \mathrm{H})+23.9 ; \mathrm{CH}_{2}: 1.45\left(\mathrm{~m}^{*}, 2 \mathrm{H}\right)+33.5 ; \mathrm{C}_{1}: 140.7$; $\mathrm{C}_{2,6}: 157.0, \mathrm{C}_{3.5} \mathrm{H}: 7.00(\mathrm{~s}, 2 \mathrm{H})+119.8 ; \mathrm{C}_{4}: 149.4$. It was not possible to make assignments of the ' Pr groups to the individual isomers: $3 \times \mathrm{CHMe}_{2}$: 2.8 und $2.83(\mathrm{~m}, 4 \mathrm{H}) ; 3.2(\mathrm{~m}, 2 \mathrm{H})+$ $38.0+34.9+38.0 .6 \times \mathrm{CHCH}_{3}: 1.04\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 6 \mathrm{H}\right)+24.3 ; 1.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 6 \mathrm{H}\right)$ $+24.4 ; 1.27\left(\mathrm{~d}_{1}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 6 \mathrm{H}\right)+24.3 ; 1.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.83 \mathrm{~Hz}, 6 \mathrm{H}\right)+26.2 ; 1.37\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $=6.75,6 \mathrm{H})+26.2 ; 1.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 6 \mathrm{H}\right)+25.4 \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}(\%) 604(100)$. $\left(\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{AlO}\right)_{2}(604.84)$. Anal. Calcd: Al, 8.99. Found: Al, 8.97.

2,6-Bis[(dimethylamino)methyl]phenylaluminum compounds (3-6, B)

General preparation procedure: To a solution of 10 g (0.037 mol) 1-bromo-2,6-bis(dimethylaminomethyl)benzene in 175 ml hexane, a solution of butyllithium (23% in hexane, $25 \mathrm{ml})$ is added dropwise with stirring and stirring is continued for 1 more h . To this solution, 0.037 mol of the aluminum halide dissolved in 175 ml hexane are added dropwise and the
reaction mixture is stirred at $20^{\circ} \mathrm{C}$ for 20 h and under reflux 4 h . After removal of solids by pressure filtration, the solvent was distilled off and the remainder fractionated in vacuum.

Dibromo-2,6-bis[(dimethylamino)methyll]phenyl- N, N '-aluminum (3): The reaction of 2,6-bis[(dimethylmino)methyl]phenyllithium with AlBr_{3} was slightly exothermic. Yield: 8.78 g (62.8%). The colorless, viscous distillation product crystallizes within a few days bp: $125^{\circ} \mathrm{C} / 0.001 \mathrm{mbar}$ (air bath temp.). NMR (in $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta\left({ }^{1} \mathrm{H}\right)+\delta\left({ }^{13} \mathrm{C}\right) \mathrm{NCH}_{3}: 2.21(\mathrm{~s}, 12 \mathrm{H})+47.39$; $\mathrm{CH}_{2} \mathrm{~N}: 3.12(\mathrm{~s}, 4 \mathrm{H})+65.14 ; \mathrm{C}_{1}: 143.3(\mathrm{br}) ; \mathrm{C}_{26}$: $145.08 ; \mathrm{C}_{3} 5 \mathrm{H}: 6.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right)+$ 123.35; $\mathrm{C}_{4} \mathrm{H}: 7.21\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, 1 \mathrm{H}\right)+129.91 .{ }^{27} \mathrm{Al}$-NMR: $\delta 98(\mathrm{~h} 1 / 2=4500 \mathrm{~Hz})$.
$\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{AlBr} \mathrm{I}_{2}$ (378.08). MS (EI): $\mathrm{m} / \mathrm{z} \% 378(17)\left[\mathrm{M}^{+}\right]$, 58(100). HRMS: Found: 377.971028 Calcd: 377.97099. Anal. Calcd: N, 7.40; Al, 7.38. Found: N, 7.27; AI, 7.38.
Diiodo-2,6-bis[(dimethylamino)methyl]phenyl-N, N^{\prime}-aluminum (4): From the reaction of 2,6bis[(dimethylaminomethyl)phenyl]lithium with All_{3} a yield of $4.9 \mathrm{~g}(28 \%)$ of 4 , bp $149^{\circ} \mathrm{C} / 0.001$ mbar (air bath temp.) was obtained. Single crystals resulted from the recrystallization from hexane. $\mathrm{mp} 86^{\circ} \mathrm{C}$. NMR (in $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta\left({ }^{4} \mathrm{H}\right)+\delta\left({ }^{13} \mathrm{C}\right) \mathrm{NCH}_{3}: 2.22(\mathrm{~s}, 12 \mathrm{H})+47.60 ; \mathrm{CH}_{2} \mathrm{~N}: 3.10$ (s , $4 \mathrm{H})+64.15 ; \mathrm{C}_{1}: 144(\mathrm{br}), \mathrm{C}_{26}: 145.66 ; \mathrm{C}_{35} \mathrm{H}: 6.76(\mathrm{~d}, 3 \mathrm{~J}(\mathrm{HH})=7.3 \mathrm{~Hz}, 2 \mathrm{H})+123.49 ; \mathrm{C}_{4} \mathrm{H}: 7.15$ (not resolved $\left.\sim \mathrm{C}_{6} \mathrm{D}_{6}(\mathrm{H}), 1 \mathrm{H}\right)+129.96$. ${ }^{27}$ Al-NMR: $\delta 74(\mathrm{~h} 1 / 2=5480 \mathrm{~Hz}$).
$\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{All}_{2} \mathrm{~N}_{2}(472.07) . \mathrm{MS}(E \mathrm{EI}): \mathrm{m} / \mathrm{z} \% 472(4)\left[\mathrm{M}^{+}\right], 345(100)\left[\mathrm{M}^{+}-\mathrm{I}\right] . \mathrm{MS}(\mathrm{FI}): \mathrm{m} / \mathrm{z} \% 472(100)$. Anal. Calcd.: N, 5.93; I, 53.76. Found: N, 5.88; I, 53.37.
Diethyl-2,6-bis[(dimethylamino)methyl]phenylaluminum (5): The exothermic reaction of 2,6bis[(dimethylaminomethyl)phenyl]lithium was performed at $0^{\circ} \mathrm{C} .5$ is a colorless liquid. bp $89^{\circ} \mathrm{C} / 0.001$ mbar (air bath temp.). Yield: $3.3 \mathrm{~g}(32 \%)$. NMR (in $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta\left({ }^{1} \mathrm{H}\right)+\delta\left({ }^{13} \mathrm{C}\right) \mathrm{AlCH}_{2}$: $0.16\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 4 \mathrm{H}\right)+(-0.67 \mathrm{br}) ; \mathrm{AlCH}_{2} \mathrm{CH}_{3}: 1.28\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.1,6 \mathrm{H}\right)+10.83 ; \mathrm{NCH}_{3}: 2.09$ $(\mathrm{s}, 12 \mathrm{H})+46.11 ; \mathrm{CH}_{2} \mathrm{~N}: 3.29(\mathrm{~s}, 2 \mathrm{H})+67.29 ; \mathrm{C}_{1}: 151.2$ (br); $\mathrm{C}_{26}: 146.65 ; \mathrm{C}_{35} \mathrm{H}: 6.85$ (d, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H})+123.25 ; \mathrm{C}_{4} \mathrm{H}: 7.2\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right)+127.62 .{ }^{2} \mathrm{Al}-\mathrm{NMR}: \delta 163(\mathrm{~h} 1 / 2=5400 \mathrm{~Hz})$. $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{ACN}_{2}$ (276.40). $\mathrm{MS}(\mathrm{EI}): m / 2 \% 275(3)\left[\mathrm{M}^{+}-\mathrm{H}\right]$, 247(100) $\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right.$]. Anal. Calcd: C , 69.52; H, 10.57; N, 10.13. Found: C, 69.33; H, 10.35; N, 9.91.

Chloro(ethyl)-2,6-bis[(dimethylamino)methyl]phenylaluminum (6): From EtAICl_{2} and 2,6bis[(dimethylamino)methyl]phenyllithium 6 was obtained upon distillation as a highly viscous colorless melt; bp $93^{\circ} \mathrm{C} / 0.001$ mbar. The viscous distillate crystallizes within a week. Yield: $8.25 \mathrm{~g}(79 \%)$. $\mathrm{mp} 60^{\circ} \mathrm{C}$. NMR (in $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta\left({ }^{1} \mathrm{H}\right)+\delta\left({ }^{13} \mathrm{C}\right) \mathrm{AlCH}_{2}: 0.30\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}\right)+0.34$ (br); AlCH ${ }_{2} \mathrm{CH}_{3}: 1.26\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 3 \mathrm{H}\right)+10.24 ; \mathrm{NCH}_{3}: 2.14(\mathrm{~s}, 12 \mathrm{H})+46.46 ; \mathrm{CH}_{2} \mathrm{~N}: 3.17$ (d, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.1 \mathrm{~Hz}, 2 \mathrm{H}\right)+66.32 ; \mathrm{CH}_{2} \mathrm{~N}: 3.28\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=13.9 \mathrm{~Hz}, 2 \mathrm{H}\right) ; \mathrm{C}_{1}: 146.01$ (br); C_{26}; 145.24; $\mathrm{C}_{3} 5 \mathrm{H}: 6.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right)+123.23 ; \mathrm{C}_{4} \mathrm{H}: 7.18\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right)+128.33$. ${ }^{27} \mathrm{Al}-\mathrm{NMR}$: $\delta 121\left(h_{1 / 2}=6860 \mathrm{~Hz}\right)$.
$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{AlClN}_{2}(282.79) . \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z} \% 253(60)\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right], 58(100)\left[\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}^{+}\right] . \mathrm{MS}(\mathrm{FI}): \mathrm{m} / \mathrm{z}(\%)$ 282(24) [M^{+}], 192(100) [$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2}{ }^{+}$]. Anal. Calcd: N, 9.60. Found: 10.26.
Dichloro-2,6-bis[(dimethylamino)methyl]phenylaluminum (B) ${ }^{9}$: The synthesis is described in a short form by ${ }^{9}$, but we prepared B also from 2,6-bis [(dimethylaminomethyl)phenyl) lithium and AlCl_{3} in hexane. bp $95^{\circ} \mathrm{C} / 0.01$ mbar (air bath temp.). NMR (in $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta\left({ }^{1} \mathrm{H}\right)+\delta\left({ }^{15} \mathrm{C}\right) \mathrm{NCH}_{3}: 2.21$ (s, 12H) + 47.07; $\mathrm{CH}_{2} \mathrm{~N}: 3.16(\mathrm{~s}, 4 \mathrm{H})+65.62 ; \mathrm{C}_{1}: 142.9$ (br); $\mathrm{C}_{26}{ }_{2} 145.25 ; \mathrm{C}_{3} \mathrm{H}: 6.79$ ($\mathrm{d}_{1}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H})+123.23 ; \mathrm{C}_{4} \mathrm{H}: 7.20\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right)+129.87 .{ }^{27} \mathrm{Al}-\mathrm{NMR}: \delta 99(\mathrm{~h} 1 / 2=6330 \mathrm{~Hz})$. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{AlCl}_{2} \mathrm{~N}_{2}$ (289.18). MS (EI): $\mathrm{m} / \mathrm{z} \% 288(26)\left[\mathrm{M}^{+}\right], 245(100)\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}\right] . \mathrm{MS}(\mathrm{FI}): \mathrm{m} / \mathrm{z}(\%)$ 288(100). Anal. Calcd: N, 9.68; AI, 9.33. Found: 9.44; AI, 9.76.
Dichloro-2-(dimethylaminomethyl)phenyl-N,1-aluminum (7): The reaction product of 2[(dimethylaminomethyl)phenyl]lithium with AlCl_{3} is a colorless solid, bp. $120^{\circ} \mathrm{C} / 0.001 \mathrm{mbar}$ (air bath temp.). After recrystallization from hexane the mp was $91^{\circ} \mathrm{C}$; the yield $7.3 \mathrm{~g}(32 \%)$. E^{7} is obtained as a by-product ($4.63 \mathrm{~g}, 14 \%$ yield). NMR (in $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta\left({ }^{1} \mathrm{H}\right)+\delta\left({ }^{13} \mathrm{C}\right.$) $\mathrm{NCH}_{3}: 1.86$ (s, $6 \mathrm{H})+45.64, \mathrm{NCH}_{2}: 3.03(\mathrm{~s}, 2 \mathrm{H})+65.32 ; \mathrm{C}_{1}: 142.5(\mathrm{br}) ; \mathrm{C}_{2}: 142.57 ; \mathrm{C}_{3} \mathrm{H}: 6.69\left(\mathrm{~d},{ }^{3} \mathrm{JHH}=7.3 \mathrm{~Hz}\right.$, $1 \mathrm{H})+124.92 ; \mathrm{C}_{4.5} \mathrm{H}: 7.11(\mathrm{~m}, 2 \mathrm{H})+127.40,129.50 ; \mathrm{C}_{6} \mathrm{H}: 7.63\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right)+136.57$. ${ }^{27}$ Al-NMR: $\delta 127$ (h1/2 $=2540 \mathrm{~Hz}$).
$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{AlCl}_{2} \mathrm{~N}$ (232.08). MS (EI): m / z \% 231(10) [M ${ }^{+}$], 58(100). MS (FI): m/z (\%) 231(100). HRMS: Calcd: 231.016224. Found: 231.016223 . Anal. Calcd: $\mathrm{N}, 6.04 ; \mathrm{Cl}, 30.55$. Found: $\mathrm{N}, 5.93$; Cl . 29.23

Dibromo-2-[(dimethylamino)methyl]phenyl-N,1-aluminum (C): Synthesis, spectroscopic data and an x-ray structure analysis of C were completely described. Our own results are fully in agreement with the results by ${ }^{\text {b }}$.

Chloro-(ethyl)-2-[(dimethylamino)methyl]phenylaluminum (8): Was prepared from 2[(dimethylamino)methyl]phenyllithium and $\mathrm{EtAICl}_{2} ;$ bp $98^{\circ} \mathrm{C} / 0.001$ mbar (air bath temp.), colorless solid, $\mathrm{mp} 64^{\circ} \mathrm{C}$. Yield: $15.8 \mathrm{~g}\left(70 \%\right.$). NMR (in $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta\left({ }^{1} \mathrm{H}\right)+\delta\left({ }^{13} \mathrm{C}\right.$) $\mathrm{AlCH}_{2}: 0.26$ (q , $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.15 \mathrm{~Hz}, 2 \mathrm{H}\right)+-0.18(\mathrm{br}) ; \mathrm{AICH}_{2} \mathrm{CH}_{3}: 1.32\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 3 \mathrm{H}\right)+8.95 ; \mathrm{NCH}_{3}: 1.71$ (s, $3 \mathrm{H})+44.25 ; \mathrm{NCH}_{3}: 2.07(\mathrm{~s}, 3 \mathrm{H})+45.73 ; \mathrm{CH}_{2} \mathrm{~N}: 2.89\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.2 \mathrm{~Hz}, 1 \mathrm{H}\right)+65.55 ; \mathrm{C}_{1}: 146.3$ (br); $\mathrm{C}_{2}: 143.58 ; \mathrm{C}_{3} \mathrm{H}: 6.81(\mathrm{~m}, 1 \mathrm{H})+124.45: \mathrm{C}_{4.5} \mathrm{H}: 7.16(\mathrm{~m}, 2 \mathrm{H})+(127.28,128.43) ; \mathrm{C}_{6} \mathrm{H}: 7.72$ $(\mathrm{m}, 1 \mathrm{H})+136.96 .{ }^{27} \mathrm{Al}-\mathrm{NMR}: \delta 156(\mathrm{~h} 1 / 2=3960 \mathrm{~Hz})$.
$\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{AlCIN}$ (225.69). MS (EI): $\mathrm{m} / \mathrm{z} \%$ 196(92) [M $\left.{ }^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right]$, 58(100). MS (FI): $\mathrm{m} / \mathrm{z}(\%) 225(6)\left[\mathrm{M}^{+}\right]$, 135(100).

Bis\{2-[(dimethylamino)methyl]phenyl\}aluminum compounds 9,10 and E

General preparation procedure: To a slurry of 0.1 mol of the aluminum halide in 300 ml of hexane, a solution of $28 \mathrm{~g} \mathrm{(} 0.2 \mathrm{~mol}$) of 2-[(dimethylamino) methyl]phenyllithium ($23 \% \mathrm{in}$ hexane) is added dropwise with stirring and the stirring is continued for 20 h at ambient temp. and 6 more h under reflux. In due course solids are removed by pressure filtration, the solvent distilled off and the remainder distilled in high vacuum (3-bulb apparatus).

Bromo-bis\{2-[(dimethylamino)methyllpheny/\}aluminum (9): The light yellow substance prepared from 2-[(dimethylamino)methyl]phenyllithium and AlBr_{3} was sublimed at $130^{\circ} \mathrm{C} / 0.001 \mathrm{mbar}$ (air bath temp.). Yield $9.0 \mathrm{~g}(24 \%)$. NMR (in $\left.\mathrm{CDCl}_{3}\right): \delta\left({ }^{1} \mathrm{H}\right)+\delta\left({ }^{13} \mathrm{C}\right) \mathrm{NCH}_{3}: 2.64(\mathrm{~s}, 12 \mathrm{H})+46.7$; $\mathrm{CH}_{2} \mathrm{~N}: 3.72(\mathrm{br}, 2 \mathrm{H})$ und $4.27(\mathrm{br}, 2 \mathrm{H})+66.44 ; \mathrm{C}_{1}: 147.3(\mathrm{br}) ; \mathrm{C}_{2}: 146.62 ; \mathrm{C}_{3} \mathrm{H}: 7.06-7.23(\mathrm{~m}$, $6 \mathrm{H})+(125.78,125.79,127.5), \mathrm{C}_{6} \mathrm{H}: 7.77(\mathrm{~d}, 2 \mathrm{H})+137.68$.
$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{AlBrN}_{2}$ (375.28). MS (EI): m/z \% 374(3) [M ${ }^{+}$], 58(100). MS (FI): m / z (\%) 374(18), 295(100) [$\mathrm{M}^{+}-\mathrm{Br}$]. Anal. Calcd: $\mathrm{Br}, 21.29$; Found: $\mathrm{Br}, 21.85$.
Ethyl-bis\{2-8(dimethylamino]methyl]pheny/\}aluminum (10): Was prepared from 2-[(dimethylamino) methyl]phenyllithium and 100 ml of a solution of EtAlCl_{2} in hexane (1.0 molar); the reaction mixture was filtered hot. After 14 h yellow crystals of 10 were collected and dried in vacuum. bp $125^{\circ} \mathrm{C} / 0.001$ mbar (air bath temp.); $\mathrm{mp} 73^{\circ} \mathrm{C}$. Yield: $22.4 \mathrm{~g}\left(69 \%\right.$). NMR (in $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta\left({ }^{1} \mathrm{H}\right)+\delta\left({ }^{13} \mathrm{C}\right) \mathrm{AICH}=0.15\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right)+(-1.1 \mathrm{br}) ; \mathrm{AICH}_{2} \mathrm{CH}_{3}: 1.32\left(\mathrm{t} .{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 3 \mathrm{H}\right)$ $+10.97 ; \mathrm{NCH}_{3}: 2.11(\mathrm{~s}, 12 \mathrm{H})+46.22 ; \mathrm{CH}_{2} \mathrm{~N}: 3.26(\mathrm{~s}, 4 \mathrm{H})+67.48 ; \mathrm{C}_{1}: 151.8(\mathrm{br}), \mathrm{C}_{2}: 147.32$; $\mathrm{C}_{3} \mathrm{H}: 6.98-7.02(\mathrm{~m}, 2 \mathrm{H})+125.74 ; \mathrm{C}_{4.5} \mathrm{H}: 7.22-7.25(\mathrm{~m}, 4 \mathrm{H})+(125.86,126.71) ; \mathrm{C}_{6} \mathrm{H}: 7.82-$ $7.85(\mathrm{~m}, 2 \mathrm{H})+138.78$. ${ }^{27}$ Al-NMR: $\delta 126(\mathrm{~h} 1 / 2=4920 \mathrm{~Hz})$.
$\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{AlN}_{2}$ (324.44). MS (EI): $m / z \% 295(100)\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right.$]. MS (FI): m/z (\%) 324(100) [M+${ }^{+}$. Anal. Calcd: N, 8.63; AI, 8.05. Found: N, 8.27; Al, 8.05.
Chloro-bis\{2-[dimethylamino)methyl]phenyl/3aluminum (E): Our data are in full agreement with those published by?
Tris\{2-[(dimethylamino)methyl]phenyl\}aluminum (11): A solution of 25 g (0.17 mol) 2[(dimethylamino) methyl]phenyllithium in 300 ml of hexane was reacted with $7.8 \mathrm{~g}(0.058$ $\mathrm{mol}) \mathrm{AlCl}_{3}$ with stirring. After 24 h reflux, LiCl was filtered off, the hexane evaporated and the honeylike residue distilled at $185^{\circ} \mathrm{C} / 0.001$ mbar. Recrystallization from hexane delivered colorless crystals, $\mathrm{mp} 85^{\circ} \mathrm{C}$. Yield: $8.9 \mathrm{~g}(35 \%)$. From the forerun (bp $165-170^{\circ} \mathrm{C} / 0.001 \mathrm{mbar}$) and from the mother liquor about 10 g of E were obtained. NMR (11) (in $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta\left({ }^{1} \mathrm{H}\right)+\delta\left({ }^{13} \mathrm{C}\right)$ $\mathrm{NCH}_{3}: 2.04(\mathrm{~s}, 6 \mathrm{H})+46.01 ; \mathrm{CH}_{2} \mathrm{~N}: 3.55(\mathrm{~s}, 2 \mathrm{H})+67.30 ; \mathrm{C}_{1}: 151.8$ (br); $\mathrm{C}_{2}: 147.38 ; \mathrm{C}_{3} \mathrm{H}$ und $\mathrm{C}_{4.5} \mathrm{H}: 7.18-7.31(\mathrm{~m}, 3 \mathrm{H})+(125.71,126.60,126.83) ; \mathrm{C}_{6} \mathrm{H}: 7.91\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{JHH}}=6.76 \mathrm{~Hz}, 1 \mathrm{H}\right)+$ 138.76. Remark: In the NMR spectra in solution all ligands appear equivalent. The x-ray structure analysis, however, shows one of the ligands bonded only via the C_{1} atom, the two others additionally coordinating via their N atoms.
$\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{AlN}_{3}$ (429.57). $\mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z} \% 295(100)\left[\mathrm{M}^{+}-\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right]$. Anal. Calcd: $\mathrm{N}, 9.78 ; \mathrm{Al}, 6.28$; Found: N, 9.59; Al, 6.08.

8-(Dimethylamino)naphthylaluminum compounds 12-14

General preparation procedure: To a stirred solution of $17.3 \mathrm{~g}(0.1 \mathrm{~mol}) \mathrm{N}, \mathrm{N}$-dimethyl-1-naphthylamine in 100 ml hexane, 42 ml BuLi (23% in hexane) were added dropwise. After 24 h under reflux, this solution was added during 2 h to a slurry of 0.1 mol of the aluminum halide in 500 ml hexane. The reaction mixture was refluxed for 6 h , solids removed by hot pressure filtration, the solvent distilled off and the residue fractionated in high vacuum.

Dichloro-[8-(dimethylamino)naphthyl-1]-aluminum (12): The reaction between 8(dimethylamino) naphthyllithium and AlCl_{3} gave a yield of $7.5 \mathrm{~g}(28 \%)$ of 12 , a colorless liquid, bp $128^{\circ} \mathrm{C} / 0.001 \mathrm{mbar}$ (air bath temp.). 6.1 g 1-(dimethylamino) naphthylalene we recovered. NMR (in $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta\left({ }^{1} \mathrm{H}\right)+\delta\left({ }^{13} \mathrm{C}\right.$) $\mathrm{NCH}_{3}: 2.32(\mathrm{~s}, 6 \mathrm{H})+49.58 ; \mathrm{C}_{1}: 137.4$ (br); $\mathrm{C}_{8}: 148.12$; $C_{9 / 10:}: 133.17+136.01 ; 6 \times$ ArH: 6.57 (dd, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}^{5}{ }^{5} \mathrm{~J}_{\mathrm{HH}}=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right)+115.21 ; 7.04$ (dd, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.2 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right)+125.19 ; 7.30\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.3 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{\mathrm{HH}}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right)+128.15$; $7.45\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.3 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{\mathrm{HH}}=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right)+128.28 ; 7.55\left(\mathrm{dd}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.3 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{\mathrm{HH}}=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right)+$ 128.34; 7.81 (dd, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.4 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{\mathrm{H}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right)+135.42 .{ }^{27} \mathrm{Al}-\mathrm{NMR}: \delta 129(\mathrm{~h} 1 / 2=3650 \mathrm{~Hz}$).
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{AlCl}_{2} \mathrm{~N}$ (268.18). MS (FI): m/z (\%) 267(100) [M ${ }^{+}$]. Anal. Calcd: C, $53.75 ; \mathrm{H}, 4.51 ; \mathrm{N}, 5.22$; Found: C, 53.66; H, 4.89; N, 4.92.
Dibromo-[8-(dimethylamino)naphthyl-1]aluminum (13): The analogous reaction with AlBr_{3} delivered 13 ($5.7 \mathrm{~g}, 10 \%$ yield) as colorless crystals; mp $132^{\circ} \mathrm{C}$. NMR (in $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta\left({ }^{1} \mathrm{H}\right)+\delta\left({ }^{13} \mathrm{C}\right)$ $\mathrm{NCH}_{3}: 2.32(\mathrm{~s}, 6 \mathrm{H})+50.52 . \mathrm{C}_{1}: 138.6(\mathrm{br}) ; \mathrm{C}_{8}: 147.86 ; \mathrm{C}_{9110}: 133.2$ 135.54; $6 \times \mathrm{ArH}: 6.50(\mathrm{dd}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{\mathrm{HH}}=0.85 \mathrm{~Hz}, 1 \mathrm{H}\right)+115.39 ; 6.99\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.2 \mathrm{~Hz},{ }^{5} \mathrm{JHH}^{2}=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right)+125.41$; $7.29\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.2 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{\mathrm{HH}}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right)+128.28 ; 7.43\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.3 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{\mathrm{HH}}=0.7 \mathrm{~Hz}, 1 \mathrm{H}\right)+$ 128.36; $7.52\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{H H}=8.2 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{H H}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right)+128.38 ; 7.81\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.5 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{H H}=1.0\right.$ $\mathrm{Hz}, 1 \mathrm{H})+135.08 .{ }^{27} \mathrm{Al}-\mathrm{NMR}: \delta 131(\mathrm{~h} 1 / 2=3125 \mathrm{~Hz}$).
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{AlBr}_{2} \mathrm{~N}$ (357.02). $\mathrm{MS}(\mathrm{FI}): \mathrm{m} / \mathrm{z}(\%) 357(60)\left[\mathrm{M}^{+}\right]$, 171(100) [$\left.\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}^{+}\right]+$. Anal. Calcd: C, 40.37; H, 3.39; N, 3.92; Br, 44.74. Found: C, 39.56; H, 3.64; N, 3,55; Br, 43.88.

Diethyl-[8-(dimethylamino)naphthyl-1]aluminum (14): Was obtained as a colorless liquid, bp $105^{\circ} \mathrm{C} / 0.001$ mbar, from 8 -(dimethylamino) naphthyllithium and 150 ml of a 1 molar $\mathrm{E}_{3} \mathrm{AICl}$ solution in hexane. Yield: $8.4 \mathrm{~g}(33 \%)$. NMR (in $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta\left({ }^{1} \mathrm{H}\right)+\delta\left({ }^{13} \mathrm{C}\right.$) $\mathrm{AICH}_{2}: 0.24$ (q , ${ }^{3} \mathrm{JH}^{2}=$ $8.21 \mathrm{~Hz}, 2 \mathrm{H})+0.20(\mathrm{br}) ; \mathrm{AlCH}$: $0.29\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right)+0.68(\mathrm{br}) ; \mathrm{AlCH}_{2} \mathrm{CH}_{3}: 1.36\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $8.0 \mathrm{~Hz}, 6 \mathrm{H})+9.96_{3} \mathrm{NCH}_{3}: 2.25(\mathrm{~s}, 6 \mathrm{H})+48.5 ; \mathrm{C}_{1}: 148.67$ (br); $\mathrm{C}_{8}: 151.23 ; \mathrm{C}_{9 / 10}: 133.7$, 137.53. $6 \times$ ArH: $6.70\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{\mathrm{HH}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right)+114.33 ; 7.13\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.1 \mathrm{~Hz},{ }^{5}{ }^{5}{ }^{\mathrm{JH}}=7.5\right.$ $\mathrm{Hz}, 1 \mathrm{H})+124.66 ; 7.47\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.2 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{\mathrm{HH}}=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right)+126.01 ; 7.55\left(\mathrm{dd},{ }^{3} \mathrm{~J}^{\mathrm{H}} \mathrm{F}=8.2 \mathrm{~Hz}\right.$, $\left.{ }^{5} \mathrm{~J}_{\mathrm{HH}}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right)+127.85 ; 8.03\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.3 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right)+134.94 .{ }^{27} \mathrm{Al}$-NMR: δ 173 (h1/2= 4750 Hz).
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{AlN}(255.34) . \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z} \%$ 254(6) [$\left.\mathrm{M}^{+}-\mathrm{H}\right]$, 183(100) [$\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{12}$]. MS (FI): m/z (\%) 255(100) $\left[\mathrm{M}^{+}\right]$. Anal. Calcd: $\mathrm{C}, 75.26$; H, 8.68; N, 5.49. Found: C, 75.57 ; H, 9.11; N, 5.15. Bromo-\{2,6-bis[(dimethylamino)methyl]phenyl\}-[N,N-(2, 6-dimethylphenyl)(trimethylsilyl)amino]aluminum (15): At $0^{\circ} \mathrm{C} 0.035 \mathrm{~mol}$ BuLi were added to the stirred solution of $6.76 \mathrm{~g}(0.035 \mathrm{~mol})$ (2,6 -dimethylphenyl)(trimethylsilyl)amine in 100 ml hexane. This reagent was added dropwise to a solution of $13.2 \mathrm{~g}(0.035 \mathrm{~mol})$ of 3 in 500 ml of hexane. Stirring was continued for 3 d at ambient temperature, LiBr removed by pressure filtration, hexane distilled off and the residue fractionated in the 3-bulb apparatus. $\mathrm{Bp} 165^{\circ} \mathrm{C} / 0.001 \mathrm{mbar}$ (air bath temp.); mp $89^{\circ} \mathrm{C}$. Yield: $3.1 \mathrm{~g}(18 \%)$. NMR (in $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta\left({ }^{1} \mathrm{H}\right)+\delta\left({ }^{13} \mathrm{C}\right) \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}: 0.34(\mathrm{~s}, 9 \mathrm{H})+3.89$; NCH_{3} : $2.07(\mathrm{~s}, 12 \mathrm{H})+45.82(\mathrm{br}), \mathrm{ArCH}_{3}: 2.24(\mathrm{~s}, 6 \mathrm{H})+21.25 ; 2 \times \mathrm{CH}_{2} \mathrm{~N}: 3.26\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{HH}}=13.3 \mathrm{~Hz}, 2 \mathrm{H}\right)+$ 66.50 (br), $3.45\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{H H}=13.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$) +66.50 (br); ArH: $6.75-7.2$ (m); $\mathrm{C}_{1}: 145.32$ (br); C_{26} : 145.68; $C_{35}: 122.22 ; C_{4}: 129.22 ; C_{7}: 148.35 ; C_{812}: 136.80 ; C_{9} 11: 128.65 ; C_{10}: 122.98 .{ }^{29}$ Si-NMR: $\delta 2.96$
$\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{AlBrN} \mathrm{N}_{3} \mathrm{Si}(490.54) . \mathrm{MS}(\mathrm{FI}): \mathrm{m} / 2(\%) 489(70)\left[\mathrm{M}^{+}\right]$, 192(100) [$\left.\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NSi}^{+}\right]$. Anal. Calcd: C, 56.32 H, 7.60 ; N, 8.57 ; Si, 5.73 . Found: C, 55.96 ; H, 7.96 ; N, 8.58; Si, 5.57.

Bromo-\{2-[(dimethylamino)methyl]phenyl\}-[N,N(2,6-dimethylphenyl) (trimethylsilyl)amino]aluminum (16): Analogously to 15 , the reaction starting from $4.8 \mathrm{~g}(0.025 \mathrm{~mol}) 2,6$-dimethylphenyltrimethylsilylamin, 0.025 mol . BuLi and $8.25 \mathrm{~g}(0.025 \mathrm{~mol}) \mathrm{C}$ gave 16 as a colorless solid: bp $148^{\circ} \mathrm{C} / 0.001 \mathrm{mbar}$. Recrystallization from toluene gave single crystals (mp $124^{\circ} \mathrm{C}$) in 2.5 g (23%) yield. NMR (in $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta\left({ }^{1} \mathrm{H}\right)+\delta\left({ }^{13} \mathrm{C}\right) \mathrm{SiCH}_{3}: 0.41(\mathrm{~s}, 9 \mathrm{H})+3.00 ; \mathrm{NCH}_{3}: 1.34(\mathrm{~s}, 3 \mathrm{H})+$ 44.05; $\mathrm{NCH}_{3}: 2.09(\mathrm{~s}, 3 \mathrm{H})+46.45 ; \mathrm{CH}_{2} \mathrm{~N}: 2.45\left(\mathrm{~d}_{1}{ }^{2} \mathrm{~J}_{\mathrm{HH}}=13.9 \mathrm{~Hz}, 1 \mathrm{H}\right)+66.32 ; \mathrm{CH}_{2} \mathrm{~N}: 3.74(\mathrm{~d}$, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=13.9 \mathrm{~Hz}, 1 \mathrm{H}\right)+66.32 ; \mathrm{ArCH}_{3}: 2.27(\mathrm{~s}, 3 \mathrm{H})+20.95 ; \mathrm{ArCH}_{3}: 2.40(\mathrm{~s}, 3 \mathrm{H})+20.96 ; \mathrm{C}_{1}: 145.9$ (br); $C_{2}: 142.55 ; C_{3} \mathrm{H}: 7.75\left(\mathrm{~d}^{\mathrm{X}},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right)+124.57 ; \mathrm{C}_{4} \mathrm{H}: 7.14\left(\mathrm{~d}^{\mathrm{X}},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right)+$ $127.62 ; \mathrm{C}_{5} \mathrm{H}: 7.12\left(\mathrm{~d}^{\mathrm{X}},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right)+128.51 ; \mathrm{C}_{6} \mathrm{H}: 6.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right)+136.55 ;(\mathrm{x}$ these signals are not fully resolved, due to multiple coupling).

Table 4. Crystal data for the structures $2,4,6,7,11$ and 16

$C_{7}: 147.97 ; C_{3}: 136.2 ; \mathrm{C}_{9} \mathrm{H}: 6.89\left(\mathrm{dX}^{\mathrm{X}}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right)+128.59 ; \mathrm{C}_{10} \mathrm{H}: 6.80\left(\mathrm{t}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5\right.$ $\mathrm{Hz}, 1 \mathrm{H})+122.90 ; \mathrm{C}_{11} \mathrm{H}: 6.97\left(\mathrm{~d}^{\mathrm{X}},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right)+128.65 ; \mathrm{C}_{12}: 136.81$. ${ }^{<1}$ Al-NMR: δ $125\left(\mathrm{~h}_{1 / 2}=7000 \mathrm{~Hz}\right) .{ }^{29}$ Si-NMR: $\delta 2.98\left({ }^{1} \mathrm{~J}_{\mathrm{sic}}=28.15 \mathrm{~Hz}\right)$.
$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{AlBrN} 2 \mathrm{Si}(433.44)$. $\mathrm{MS}(\mathrm{EI}): ~ m / z \% 434(6)\left[\mathrm{M}^{+}\right], 58(100) . \mathrm{MS}(\mathrm{FI}): m / z(\%) 434(100)$. Anal. Calcd: N, 6.46. Found: N, 6.44.

X-Ray Crystal Structure Analyses of 2, 4, 6, 7, 11 and $16{ }^{26}$

A summary of the crystallographic data is presented in Table 4. Data were collected for 6 on a Stoe-Siemens-AED 2 diffractometer, for 7 and 11 on a Stoe-Siemens-Huber-diffractometer and for 2, 4 and 16 on a Stoe-Siemens AED diffractometer using Mo-K ${ }_{\alpha}$ radiation ($\lambda=0.71073 \AA$). All X-ray measurements were performed at $-120^{\circ} \mathrm{C}$. For the structures of 4 and 16 semiempirical absorption corrections via Ψ scans were employed. The structures were solved by direct methods using SHELXS -90^{27}. The structures were refined against F^{2} using SHELXL-93 ${ }^{28}$. All non hydrogen atoms were refined anisotropically. The hydrogen atoms were positioned ideally and refined with the riding model. The $U(H)$ values were obtained by using 1.2 or 1.5 (for CH_{3}) as multiplication factors for the $\mathrm{U}_{\text {eq }}$-values of the respective carbon atoms. The molecule of structure 6 is positioned on a 2 -fold axis just as the solvent benzene, therefore the chlorine atom and the ethyl group are disordered. An attempted refinement in the space group C_{c} did not lead to better results. For the refinement in $\mathrm{C} 2 / \mathrm{c}$ we applied Similarity Restraints ${ }^{28}$ and the Rigid Bond Restraint ${ }^{29-31}$ for the $U_{\|}$values of the atoms concerned.

ACKNOWLEDGMENT

Support of this work by the Fonds der Chemischen Industrie is gratefully acknowledged.

REFERENCES

1. M.A. Petrie, P.P. Power, H.V. Rasika Dias, K. Ruhlandt-Senge, K.M. Waggoner and R.J. Wehmschulte, Organometallics 1993, 12, 1086.
2. St. Schulz, St. Pusch, E. Pohl, S. Dielkus, R. Herbst-Irmer, A. Meiler and H.W. Roesky, Inorg. Chem. 1993, 32, 3343.
3. A. Meller, St. Pusch, E. Pohl, L. Haming and R. Herbst-lrmer, Chem. Ber. 1993, 126, 2255.
4. A. Meiler, Ch. Kümmel and M. Noltemeyer, Z. Naturforsch. 1995, 51b, 107.
5. W. Seidel, Z. anorg. allg. Chem. 1984, 524, 101.
6. R.J. Wehmschulte and P.P. Power, Inorg. Chem. 1996, 35, 3262.
7. J. Müller and U. Englert, Chem. Ber. 1995, 128, 493.
8. H.S. Isom, A.H. Cowley, A. Decken, F. Sissingh, S. Corbelin and R.J. Lagow, Organometallics 1995, 14, 2400.
9. L. Contreras, A.H. Cowley, F.P. Gabbai, R.A. Jones, C.J. Carrano and M.R. Bond, J. Organomet. Chem. 1995, 489, C1.
10. A.H. Cowley, F.P. Gabbai, H.S. Isom and A. Decken, J. Organomet. Chem. 1995, 500, 81.
11. K.M. Waggoner and P.P. Power, Organometallics 1992, 11, 3209.
12. C. Schnitter, H.W. Roesky, C. Röpken, R. Herbst-Irmer, H.G. Schmidt and M. Noltemeyer, Angew. Chem. submitted.
13. R. Benn, E. Janssen, H. Lehmkuhl and A. Rufinska, J. Organomet. Chem. 1987, 333, 155.
14. D.E. Person, M.G. Frazer, V.S. Frazer and L.C. Washburn, Synthesis 1976, 621.
15. K.B. Starowieyski in "Chemistry of Alulminum, Gallium, Indium and Thallium", A.J. Downs ed., Blackie (London) 1993, p. 341 and lit. cited there.
16. H.U. Buschhaus, W.P. Neumann and Th. Apoussidis, Liebig Ann. Chem. 1981, 1190.
17. M. Weidenbruch and K. Kramer, J. Oganomet. Chem. 1985), 291, 159.
18. A.H. Cowley, M.C. Cushner, R.E. Davis and P.E. Riley, Inorg. Chem. 1981, 20, 1179.
19. J. Derouault and F.T. Forel, Inorg. Chem. 1977, 16, 3207.

20 F. Vögtle, Chem. Ber. 1969, 102, 1784.
21. Wehmann, J.T.B.H. Jastrzebski, J.-M. Ernsting, D.M. Grove and G. van Koten, J. Organomet. Chem. 1988, 353, 145
22. F.N. Jones, M.F. Zinn and C.R. Hauser, J. Org. Chem. 1960, 28, 663.
23. J.T.B.H. Jastrzebski, G. v. Koten, K. Goubitz, C. Arlen and M. Pfeffer, J. Organomet. Chem. 1983, 246, C75.
24. Y.-W. Chao, P.A. Wexler and D.E. Wigley, Inorg. Chem. 1989, 28, 3860.
25. D.K. Kennepohl, S. Brooker, G.M. Sheldrick and H.W. Roesky, Chem. Ber. 1991, 124, 2223.
26. Further details of the crystal structure investigations may be obtained from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D76344 Eggenstein-Leopoldshafen (Germany), on quoting the depository numbers CSD401968, 401969, 401970, 401972, 401973, and 408632.
27. G. M. Sheldrick, SHELXS-90, Acta Crystallogr. 1990, A46, 467.
28. G. M. Sheldrick, SHELXL-93, 1999 to be published.
29. J. S. Rollett, Crystallogr. Comput. editors F. R. Ahmed, S. R. Hall and C. P. Huber, Copenhagen: Munksgaard 1970, 167.
30. F. L. Hirshfeld, Acta Crystallogr. 1976, A32, 239.
31. K. N. Trueblood, J. P. Dunitz, Acta Crystallogr. 1983, B39, 120.

Received: May 7, 1998 - Accepted: May 18, 1998 -
Accepted in revised camera-ready format: May 20, 1998

