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Let R be a finite-dimensional representation-finite hereditary algebra over some 
field. Let A be its type, this is a disjoint union of Dynkin diagrams [-DR]. 
Let ~+ be the set of positive roots for A. Given ~ + ,  there is (up to isomorph- 
ism) a unique indecomposable R-module M(~) with dimension vector ~. Given 
a function a: ~+ ~ N o ,  let M(a) denote the direct sum of a(~) copies of the 
various M(c0 with ~ + ;  in this way, the isomorphism classes of R-modules 
of finite length correspond bijectively to the functions a: q~+ ~ N  o. Given a, 
b, c: q~+ ~ N o ,  we denote by .~u(b~ =r c the corresponding Hall polynomial WM(a), M(c) 

I-R I], it is a polynomial with integer coefficients which counts (for finite R) 
the number of filtrations of M(b) with factors M(a) and M(c). If A is an arbitrary 
commutative ring, and q~A, we define the Hall algebra ~(R,A,q)  as the free 
A-module with basis (UtMj)tM 1 indexed by the isomorphism classes of R-modules 
of finite length, with multiplication 

urn I urN, j = Y, ~0~N,(q) uE~ 1, 
[M] 

in this way, we obtain a (usually non-commutative) associative ring with 1. 
In [-R2], we have shown that we may identify ~ ( R ,  C, 1) with the universal 
enveloping algebra U(n +) of n +, where g = n_ G h ~ n + is a triangular decompo- 
sition of the semisimple complex Lie algebra of type A. 

It would be of interest to find a natural enlargement of ~(R ,  ~, 1) in order 
to obtain U(g) itself. As we will show in Sect. 3, there is a canonical way for 
obtaining at least U(b+), where b+ = h G n +  is the Borel algebra. Let S~ . . . . .  Ss 
be a complete set of simple R-modules. If M is an R-module of finite length, 
let (dim M)i be the Jordan-Hoelder multiplicity of Si in M. Then the map 3i 
of W(R, A, q) into itself defined by 3~(utMl)=(dim M)i ut~ q is a derivation, so 
we may define the skew polynomial ring 

~ ' ( R ,  A, q)= ~ ( R ,  A, q) ITs, 3,], 

in s variables T1 . . . . .  T~. Since ~'f(R, •, i) is isomorphic to U(n+), it follows 
that ~' (R,  ~, 1) is isomorphic to U(b+). 
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Instead of dealing with the degenerate Hall algebra ~ '  (R, C, 1), we are going 
to consider the generic Hall algebra ~ '  (R, ~ [q], q), where C [q] is the polyno- 
mial ring in the indeterminate q, or its completion 

~ ' ( R )  = ,llm ~P'(R, ~ [ q ] / ( q -  1)% q), 
m 

this is an algebra over the power series ring ~ [ [ q - 1 ] ] .  Our aim is to give 
a complete description of ~>(R) by generators and relations. 

In ~ [ [ q - 1 ] ] ,  the element In q =  ~' (--1)m+t~l (q--1)m is a multiple of 
m> 1 m 

q--1,  thus, for e~C, the element exp(c In q)= ~ L c~ q)m is defined. We 
ra > O egl  . 

also will write qC instead of exp (c In q), in particular, both q~ and q -~ are defined. 

We denote by [n  I ~" t q = q)t q~,-, the Gauss polynomials, where q~n = (1 - q)... (1 - q"). 

Let (aij)i~ be the Cartan matrix of type A, and (f3i the (minimal) symmetriza- 
tion of A (so that fl al i=f j  aii). Let qi=q j~. We will show that ~>(R) is, as 
a complete IE[[q--  1]]-algebra, generated by elements H~, . . . ,Hs,  X~ . . . . .  Xs 
subject to the relations 

[Hi, Hj] = 0, 

[Hi, Xl]  = aij X j, 

,=0 [tjq q i 2 XIXj =0,  with n = l - a i j ,  and i+j.  

This description shows that ~>(R) is precisely the quantization Uh(b+) of 
U(b+) as described by Drinfeld in his Berkeley lecture [D] (with h=lnq) .  In 
particular, it follows that ~'r(R) is a Hopf  algebra. 

The Hall algebra approach yields a rather natural interpretation of the 
awkward relations above. Consider besides 

n in] t, 
Y) = t~o q 2 X t Y X " -  p , (q ,X ,  = (--1)t t q 

also the polynomials 

t = O  q 

t = 0  q 

Observe that 3r (R, ~ [ [ q -  1] ], q) is a subring of ~V(R). The elements X 1 . . . . .  Xs 

of ~"I'(R) are suitable multiples of the canonical generators ul = Uts,j . . . . .  us = Uts.j 
of ~ (R, C [ [ q -  1] ], q). The relations which are satisfied by 
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u~, ..., us and which give rise to the relations above, depend on the orientation 
of A defined by R. So assume Extl(S~, Sj )=0 for some pair i+j. We will show 
that 

+ U + U Pl-aii(qi, i,U/)=O, and Pl-~j,(qj, j, ui)=O, 

and a simple substitution transforms these relations into the symmetric ones 
involving p instead of p+ and +p. The relations involving p+ and +p will 
be shown in a quite general setting in Sect. 2. In order to do so, we will introduce 
in Sect. 1 the composition algebra Cg(R) for an arbitrary ring R. 

The reader should be aware that q (and q~ = qS 0 may denote an integer, 
or a variable, in different parts of the paper. 

The author is endebted to R. Dipper, B. Pareigis, and L. Scott for helpful comments: they insisted 
that there should be a strong relationship between Hall algebras as presented in [ R I ]  and [R2] 
and the recent advances on Hopf algebras and quantum groups. 

1. Composition algebras 

Let R be any ring, let ~ be the set of isomorphism classes of finite simple 
R-modules (where 'finite' means: having only a finite number of elements). Let 
YCF(R) be the free semigroup with basis 5e, thus the elements of ~f'(R) are words 
of the form w= [$1] [$2] ... [St], where Sa . . . .  , Sr are finite simple R-modules, 
and [S~] denotes the isomorphism class of S~; here, t is the length of the word 
w, and there is a unique word of length zero (denoted by 1). We denote by 
~4(R) the free (associative) algebra with basis 5P. Clearly, the additive group 
of d ( R )  is the free abelian group with basis ~#/'(R). Given an element wE~IU(R), 
say w=[S~]...[St], and an R-module M, let ( w l M )  denote the number of 
filtrations 

M = M o ~ M I  ~ ... ~Mt=O 

such that Mi_I/Mi~-S i. (The number of such filtrations always is finite: if M 
has at least one such filtration, then M is a finite module, and so has only 

finitely many submodules.) In general, given ~ 2 iwi~4(R) ,  with 2i~E, 
wi~'ff(R), and an R-module M, we define i= 

n 

( ~  21wi lM)= ~ 21(wilM). 
i=1 i=1 

Let J ( R )  be the set of all a ~ d ( R ) ,  with ( a i M )  = 0  for all R-modules M. This 
is an ideal of ~r (For a~C(R)  and S a finite simple R-module, ( IS]  a iM)  
= ~ ( a l M ) ,  where the summation ranges over all submodules U of M such 

U 
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that  M/U ~- S; similarly, ( a  [S]I M )  = ~ (al M /V ) ,  where the summat ion  ranges 
v 

over all submodules  V of  M with M/Visomorphic  to S.) Define 

Cg(R) = ,~(R)/J(R),  

the composition algebra of R. No te  that  ( - ] - ) yields a bilinear form 

C~(R) • K ( R - f i n ) ~ Z .  

Assume that  the ring R is finitary, so that  the Hall algebra # f (R)  is de- 
fined. Consider  the ring h o m o m o r p h i s m  q: .~  (R) --* ~ (R) sending IS]  to U[s]. 
Then J ( R ) = k e r q .  (For, t / ( [ S 1 ] . . . [ S J ) =  ~ F s  M, ..... s~U[m] and F~ ..... s, 

[m] 

= ( [$1 ]  ... [St]] m ) ;  therefore, given a~ql(R), we have q(a)= ~ { a [ m )  U[M]. ) AS 
[m] 

a consequence,  we can identify Cg(R) with the subring of  J r (R)  generated by 
the elements of  the form U[s] with [S] ~ of. 

2. The fundamental relations 

Let R be a finitary ring. Let S~(i~I) be a complete set of finite simple R-modules  
(thus, they are pairwise non- isomorphic ,  and any finite simple R-module  is 
i somorphic  to one of  them). We assume that Ext~(S~,S3=0 for all i. Let q~ 
= I End(Si)[. Let i4:j with Ext 1 (Si, S j)= 0, and 

aij = -- dim Ext i (S j, Si)EndtS,), 

a'i j = -- dimund~Sj)Ext 1 (S j, Si), 
thus q~'J = q~b. 

Proposition. Both elements P +-a,j(qi, [Si], [Sj]) and + Pl-ab (qJ, [Sj], [Si]) belong 
to J (R). 

Proof We first consider p +. We are going to calculate 

a,(M)= < ESd' [S j3 ES,Y-*l M > 

for an arbi t rary module  M. We may  assume that  M is of  length n +  1, with 
one composi t ion  factor  Sj, the remaining ones of  the form S i. Since Ext 1 (Si, $3 
= 0  = Ext I (Si, Sj), we can decompose  M = N @ dS~, with N indecomposable  and  
some 0 < d_< n. The radical N '  of  N is i somorphic  to ( n -  d) Si, and N/N'  ~ Sj. 
Since dim Extl(Sj,  S~)End~S,)=n--l, it follows that  d > l .  No te  that M does no t  
have a factor  module  isomorphic  to ( d+  1)S, thus a t ( M ) = 0  for t>d.  Therefore, 
we may  assume t < d .  The composi t ion  series of  M we are interested in are 
of the form 

M = M o ~ M I  ~ . . .  D M n + I - - - - 0  
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with Mt/Mt+l~ Sj. In particular, N _  Mr, since M/N ~-dSi. There are-~--(q~) 
possibilities for choosing chains Vd-z 

M = M o ~ M  1 ~ . . .  ~ M t ~ N  

(p,(T) Always, M, with Mi maximal in M~+I, for 1 _< i<  t, where v,=v,(T)= (1~  T) ~ - "  

has a unique submodule M,+~ with Mt/M,+I ~-Sj, and since Mz+~(n--t)Si ,  
there are v,_,(qi) composition series 

M t + l ~ M t + 2  ~ . . .  ~M,~M,+1 =0. 

Thus 

at(m)=VdV"ZL(qi), for all t<d .  
Ud - t 

We claim that for 1 < d < n, we have 

~" ( -  1)' T - 0 .  (,) 
t=0 l )d- t 

But the evaluation of this polynomial at q~ is just + Pt-o,j(qi, [Si], [S2]), so this 
will finish the first part of the proof. We use 

Vd-t (Pt~P,-t q~d-t ( l - -T)"  v, , 

in order to rewrite the left hand side (.). We recall from [M] (I.2.Ex.3) that 

ed(T~ X):~--- t t T ~ 2 ) X t =  i=O[I (1 + T'X). 

Since d >  1, the right hand side shows that Eu(T, - 1)=0, therefore 

E ( - 1 ) '  T 
t=O Ud--t t=0 

In order to deal with +p, we may use a corresponding calculation. Alterna- 
tively, we may argue as follows: Without loss of generality, we may assume 
that Si, S i are the only simple R-modules, thus R is a finite ring, and, in fact 
a k-algebra for some finite field k. We apply the previous considerations to 
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the dual modules S*, S*, which we consider as R~ This is possible, 
since a , Ext~op(S~, S*)=0.  Given an R-module M, we have 

<[S*]'  IS* ]  [ S * ] " - ' I M * >  = <[Sy]" - '  [Si] [Sj ] ' IM>, 

this finishes the proof. 
As a consequence, we see that ~(R)  always may be considered as a factor 

algebra of d (R) /J  (R). 

3. Adjunction of Hom~,(K (R), 2E) 

Let R be a finitary ring. The class of all finite R-modules will be denoted by 
R-fin o. Recall that a function d: R-fino~2g is said to be additive on exact 
sequences provided d ( X ) -  d(Y) + d(Z) = 0 for any exact sequence 
O ~ X - ~  Y ~ Z ~ O in R-fino. 

Lemma.  Let d: R - f i n o ~  be additive on exact sequences. Define an additive 
function 6d: ~ g f ( R ) ~ ( R )  by 6d(ut~l)=d(M)utM 1, for any finite R-module M. 
Then 6d is a derivation. 

Proof Let N, N' be finite R-modules. Then 

6a(u~m utn,l)=6( ~ F~n, UtMI) = ~ F~N, d(M) utM l 
[M] [M] 

= ~ F~,n, (d (N)+ d(N')) ut~ ~ 
[M] 

= d(N) utm urN, ~ + utu ~ d(N') u~N,j 

= 6,~(utN 0 utN,l + u m  6,~(utN,l). 

As in the previous section, let S~, i~I  be a complete set of finite simple 
R-modules. For  i~I, and M~R-fino,  let d i (M)=(dim M)i be the Jordan-Hoelder  
multiplicity of Si in M. Then dg is additive on exact sequences (and (di)i is 
a basis of the free abelian group of all functions R-fin o ~ 2g which are additive 
on exact sequences). So we obtain a set of derivations 6i = 6d, of Yg(R). 

Let ogg'(R) be obtained from ~ ( R )  by forming the skew polynomial  ring 

~r = 3r176 (R) [T~, 6~]~ 

defined by the commutat ion  rules 

[r,, r~]=0, 
[Ti, utu 12 = 6i(utMl)= (dim M)i u [M] 

for all i , j~I,  and all MeR-f ino.  
Assume now that R is representation-directed, let A be an arbitrary commu- 

tative ring, and qeA.  Given a function d: R-fin o --* ;g which is additive on exact 
sequences, we define 6a: Jg(R, A, q) ~ ~f (R,  A, q) by 6a(ut~q)=d(M) utM 1, and 
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again we see that 6d is a derivation. In particular, we obtain the derivations 
6i with 61(UEM1)= (dim M)i UEMI, and we define 

J f ' (R,  A, q)= ~ ( R ,  A, q) ITs, 6J, 

with the same commutation rules as above. 

4. Completion 

Let k be a finite field, let R be a finite-dimensional k-algebra with centre k 
which is representation-finite and hereditary. Let A be its type, it is a Dynkin 
diagram (since R is supposed to be connected). Let S~ . . . .  , Ss be the simple 
R-modules, we assume that they are indexed in such a way that Ext ~ (S~, S j)= 0 
for j < i .  We define aii= 2, and, f o r j < i  

aij = -- dim Ext 1 (S j, Si)End(Si), 
aji = a'ij = -- dim~atsj) Ext 1 (S j, Si). 

Thus, A =(aij)ij is the Cartan matrix of type A. Let f i=dimk End(S~), thus (f/)i 
is the minimal symmetrization of A. 

Let I12 [q] be the polynomial ring in the indeterminate q. We consider 

(R) = lim ~ (R, (U [q] / (q-  1) ~, q), 
m 

and the corresponding ring ~>(R), both are algebras over the power series 

ring l12[ [q-1] ] .  We are going to describe both algebras ~ ( R )  and ~->(R) 
by generators and relations. Let ui = UEsil and ql = qfi, for 1 < i < s. 

Theorem. As a complete ~ [ [ q - 1 ] ] - a l g e b r a ,  2,@(R) is generated by ul . . . . .  us, 
with relations P~-a,j(qi, ui, u j) = 0 = + Pl -aj~(qj, u j, ui) for all j < i. 

Proof. Let d (R, 112 [q] ) = sr (R) | II; [q], the free C [q]-algebra with generators 
[$1] . . . . .  [Ss], and consider the algebra homomorphism 

q: d ( R ,  ll;[q]) ~ 3 f  = iF(R, II; [q], q) 

defined by rl([Si])=u i. Let )r be the ideal of d ( R , ~ [ q ] )  generated by the 
elements p I - , i  j (q i, [Si], IS j] ), and + p 1 - , j ,  (q j, [S~], [Si] ) for all j < i. According 
to Sect. 1, we see that J belongs to the kernel of t/, thus we obtain an algebra 
homomorphism 

4: ~ = d ( R ,  l l ; [q]) /J  ~ W .  
We denote by 

0,,: ~ / ( q - - 1 )  m ~  ~ Jt~ 1) r " ~  

the induced map modulo ( q - 1 )  m. According to [R2] ,  the map ff~ is bijective. 
We consider F/,, as a map of Am-modules, where A m = C [ q ] / ( q - l )  ". Now, 
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~/(q--1)"~,~ is a free Am-module, thus with 7/1 also Om is bijective. It follows 
that ~ induces an isomorphism 

l i ra  ~ / ( p -  1 ) m ~  --~ l i m  ~,'~/(q- 1)m~ '~ = ~ ( R ) .  
m m 

Corolary. As a complete C [ [ q - I l l - a l g e b r a ,  ~ '(R) is generated by the elements 
T 1 . . . . .  T~, u 1 . . . . .  u S subject to the relations 

IT/, T~] = 0, [T/, uj] = 6ij us, for all i,j, 
and 

P~-a,j(qi, Ui, uj)= 0 = +Pt-, j i(qj ,  Uj, Ui), for all j <  i. 

Here, 6ij is the Kronecker delta: 6~= 1, 6~j=0, for i+j. 

5. Revision of  the relations 

We keep the assumptions of the last section. We want to change the generators 

of ~-'>(R) in order to obtain more familiar relations. First of all, let 

Hi:= ~ aij Yj. 
j=l 

Since the Cartan matrix A = (aii)ii is invertible, the ~-space of ~>(R) generated 
by H1 . . . . .  H~ is the same as that generated by T 1 . . . .  , T~. Also, [Ti, T;]=0 for 
all i,j is equivalent to requiring [Hi, Hj] = 0  for all i, j. Similarly, IT/, uj] =6ij uj 
for all i, j is equivalent to requiring [Hi, us] = aij uj for all i, j. 

In order to rewrite the relations p+ and +p, we will replace the elements 

ui by suitable multiples ciu~, with c~ invertible in ~-V(R). Given an element 

1 b,,(lnq)m6~,(R) is defined, be~>(R), the element exp(b In q)= ~ ( - 1 )  m 
m__>0 

since In q is a multiple of q - 1 .  If bl ,  b2e~'V(R) commute, then exp((bl +b2) 
ln q)=exp(bl  lnq)exp(b2 ln q); in particular, any exp(blnq)  is invertible in 

~'r(R), with inverse e x p ( - b  In q). 
For  1 < i < s, let 

l i - 1  

X,:=exp ( - -~  ~ f /ai j  T; In q) u i. 
j = l  

Theorem. As a complete tE[[q--1]]-algebra,  ~r(R)  is generated by the elements 
Hx . . . . .  H~, X 1 . . . .  , X~, subject to the relations 

EH,, H/1 = O, 
[H~, Xj] = a~j X j, 

pl_~j(qi, Xi, Xj)=O, for i:#j. 
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Proof  For  l < j < i < s ,  let c l j=exp(- - �89  Tj lnq) ,  and c i=c i l . . . c l , i _ l  (with 
cl = I), thus X i = c i u i .  For  j + s ,  we have ci jus=usci j ,  since [Tj, u J  =0 .  On the 
other  hand,  T/ul = ui Ti + ui = ui( Ti + 1) implies by induct ion that  T/" ui = ui( Ti + 1)" 
for all m >  1. Therefore,  for c e ~  

1 
exp(cT~lnq)u~= ~, L ( c T ~ l n q ) m u , =  Z m~.cm(lnq)mui(T~+l) m 

m>=o m :  m> 0 

=ui exp(c(T/+  1) In q)=u  i exp(c T/In q) exp(c In q) 

=qC.ui exp(c Ti In q), 

thus we see that  
- - •  �9 

Ci jb l j=q i  2 ,~UjCij. 

For  j < i, it follows that  

Cibl i~UiCi ,  C i U j ~ q i � 8 9  C jUi=UiCj ,  CjLI j=II jCj ,  

and therefore, for all 0 _ t < n, 

q ,~", /X~Xj . - t  t uj " - t c j  X i = u  i ui c7, 
• t n--t t n--t t n X j  X i X j - -  ~lj uj  cj  q] ~,  b l  i C i, 

where we have used that  f / a i j = f j  aji, thus a,j ,j, qi = q j  . We assume now tha t  n = 

(~) a i j t  t ( t - - 1 ) ( 1 - - n ) t  t (n-- t )  and therefore 
1 - a i j .  Then  q- 2 - 2 F ~ -  2 ' 

Pl -a~j(qi, X i ,  X j )  + n = P l  -a , j (q l ,  Ui, Uj) Cj Ci, 

Pl - , j , (qj ,  X j, X i )=  + Px - , j , (qj ,  u j, ul) c'j c i. 

This finishes the proof.  
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