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ABSTRACT A recent challenging task in the field of nanotechnology is nanofluids, which are potential

heat transfer fluids. Numerous researchers worked on nanofluid with different physical conditions. In this

research work, we presented the three-dimensional flow of couple stress nanofluid with Hall current, viscous

dissipation and Joule heating impacts past an exponentially stretching sheet. The Cattaneo–Christov heat

flux model is implemented to examine the thermal relaxation properties. The modeled equations have been

transformed to nonlinear ordinary differential equations with the help of correspondence transformations.

The homotopy analysis method is used to solve the proposed model. The effect of dimensionless parameters,

which are couple stress, Hartmann number, the ratio of rates, and Hall on velocity fields in x- and y-directions

has been scrutinized. The rise in Hall parameter, Hartmann number, the ratio of rates parameter, and couple

stress parameter are reducing the velocity function in the x-direction. The rise in Hall parameter, Hartmann

number, and the ratio of rates parameter are improving the velocity function in the y-direction. The influence

of Prandtl number, thermal relaxation time, and temperature exponent on temperature field are presented in

this paper. The rise in thermal relaxation parameter, Prandtl number, and temperature exponent are reducing

the temperature function. The influence of thermophoresis, the Schmidt number, and Brownian motion

on concentration field are presented. The rise in thermophoresis parameter is increasing the concentration

function while the rise in Brownian motion parameter and Schmidt number are reducing the concentration

function. The impacts of implanted factors on skin friction, Nusselt number, and Sherwood number are

accessible through tables. The determined result of skin friction is compared with the previous study.

INDEX TERMS Hall effect, MHD, nanofluid, couple stress fluid, thermal radiation, heat transfer, mass

transfer.

NOMENCLATURE

A Temperature exponent

B0 Magnetic field strength
(

NmA−1
)

C Coefficient of concentration

Cf Skin friction coefficient

cp Specific heat
(

Jkg−1K−1
)

DB Brownian diffusion of nanofluids
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DT Thermophoretic diffusion of Nano fluids

E Electric field
(

NC−1
)

f , g Dimensional velocity profiles

J Current density
(

Am−2
)

K Couple stress parameter

L Reference length(m)

M Hartmann number

m Hall parameter

Nb Brownian motion
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Nt Thermophoretic parameter

Nux Nusselt number

ne electrons density number
(

cm−3
)

pe electronic pressure(Pa)

Pr Prandtl number

qr Heat flux
(

Wm−2
)

Rex Local Reynolds number

Sc Schmidt number

Shx Sherwood number

T Fluid temperature(K )

U0,V0 Constants

u, v,w Velocity components
(

ms−1
)

x, y, z Coordinate axis

yi(i = 1 − 10) Constants

Greek Letters

ωe Frequency of electron(J)

τe Collision time of electron

α Ratio of rates parameter

� Thermal relaxation time

γ Biot number

θ Dimensional heat profile

8 Dimensional concentration profile

ξ Similarity variable

ν Kinematic viscosity
(

m2s−1
)

λr Relaxation time(s)

λr Thermal conductivity
(

m2s−1
)

ρ Fluid density
(

Kgm−3
)

σnf Electrical conductivity
(

Sm−1
)

I. INTRODUCTION

The nanoparticles are particles between 1 and 100 nanome-

ters in size with a surrounding interfacial layer. Nanofluids

are castoff in microelectronics, hybrid powered machines,

pharmaceutical procedures, fuel cells, and nanotechnolo-

gies’ field. For the first time, Choi and Estman [1] pre-

sented the term nanoparticle immersed into a base fluid.

Wang and Mujumdar [2] added the metallic and non-metallic

particle into it and presented the heat transfer characteristics

of the nanofluid. This study was trailed from the numer-

ical study of Eastman et al. [3], [4]. They examined the

heat transfer characteristics of nanofluid considering differ-

ent nanoparticles as base fluid. Considering TiO2 as base

fluid, the thermal conductivity of nanofluid was examined by

Murshed et al. [5]. In uniform heated tube Maïga et al. [6]

examined the heat transfer in a nanofluid. They consid-

ered water-γAl2O3 and ethylene glycol-γAl2O3 nanofluids

as based fluid. They claimed that under consideration of these

nanofluids, the heart transfer is increased. They also originate

that ethylene glycol-γAl2O3 nanofluid has well increment in

heat transfer phenomena than the water-γ Al2O3 nanofluid.

Bianco et al. [7] numerically examined the water-γAl2O3

nanofluid flow in a flat tube. Tiwari and Das [8] introduced

the single phase model, while Buongiorno [9] introduced

the second phase model for nanofluids. Succeeding these

models, copious investigators have functionalized in different

areas of attentiveness. Kasaeian et al. [10] scrutinized the heat

transfer performance of nanofluid flow in a porous media.

The boundary value problem for impacts of Hall and ion-

slip current and chemical reaction in micro-polar fluid flow

has been examined byMotsa and Shateyi [11]. The peristaltic

viscous fluid flow with convective boundary conditions in a

rotating channel has been scrutinized by Hayat et al. [12].

Hayat and Nawaz [13] probed the impact of Hall and ion-slip

on the second grade fluid flow. Hayat et al. [14] inspected the

impact of Hall current and chemical reactions on peristaltic

fluid flow. Hayat et al. [15] examined the impact of Hall

and ion-slip on three-dimensional mixed convection flow

of fluid. Hayat and Nawaz [16] scrutinized the impacts of

Soret and Dufour on the second grade fluid flow subject to

Hall and ion-slip current. Hayat et al. [17] deliberated the

peristaltic nanofluid flow with joule heating, Hall and ion-

slip current impacts. Nawaz et al. [18] examined the three-

dimensional flow of nanofluid with Hall and ion-slip impacts.

Recently, Nawaz et al. [19] examined the impacts of Hall

and ion-slip on three-dimensional flow of micro-polar fluid.

Hayat et al. [20] examined the impact of Hall current on

couple stress fluid flow in an inclined symmetry channel.

Ramzan et al. [21] inspected the radiative magnetohy-

drodynamic (MHD) flow of nanofluid. Considering porous

enclosure, Sheikholeslami and Shehzad [22] numerically

examined the MHD flow of nanofluid. Besthapu et al. [23]

examined the mixed convection flow of MHD nanofluid with

the impact of viscous dissipation. Dawar et al. [24] scru-

tinized the flow of nonofluid over an unsteady oscillatory

porous stretched sheet. Alharbi et al. [25] examined [24]

with entropy generation considering the magnetic field

impact. Shah et al. [26] examined the Darcy-Forchheimer

nanofluid flow with inertial characteristics in a rotating

frame. Khan et al. [27] scrutinized the MHD flow of

Darcy-Forchheimer nanofluid with thermal radiation impact.

Khan et al. [28] scrutinized the 2-D flow of nanofluid over a

linear stretched surface. Dawar et al. [29] probed the MHD

nanofluid flow considering entropy generation viscous dis-

sipation. Sheikholeslami [30] numerically observed the free

convective nanofluid in a porous enclosure under electric

field impact. In another article, Sheikholeslami [31] inves-

tigated the flow of CuO- water nanofluid with the impacts

of magnetic field and Brownian motion. Dawar et al. [32]

analytically scrutinized the Darcy-Forchheimer flow of

nanofluid over a stretched sheet with convective condi-

tions. Ramzan et al. [33] scrutinized the 3-D MHD couple

stress nanofluid flow on convective heat and zero mass flux

conditions.

In 1822, Fourier [34] proposed a model for heat transmis-

sion in materials. In 1948, Cattaneo [35] further modified

the Fourier law with thermal relaxation time. After then,

Christov [36] has further amended the model [35] and is

recognized as Cattaneo-Christov model for heat flux. Using

the Cattaneo-Christov heat flux model, in a porous media,

Straughan [37] deliberated the stability and wave motion.

In another article, Straughan [38] examined the heat transfer
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in nanofluid. Han et al. [39] inspected the heat transfer for vis-

coelastic fluids. Khan et al. [40] numerically investigated [39]

over an exponentially stretched sheet. Hayat andNadeem [41]

examined the nanofluid flow with Cattaneo-Christov heat

flux model and chemical processes over a stretching sheet.

Tibullo and Zampoli [42] examined themodel [36] for incom-

pressible fluids. Ciarletta and Straughan [43] deliberated the

stability and uniqueness of model [36]. Haddad [44] exam-

ined the thermal stability of the model [36] in porous media.

Mustafa [45] used the model [36] for heat transfer and rotat-

ing flow of nanofluid. Hayat et al. [46] scrutinized the influ-

ence of the model [36] in the flow of fluids. Waqas et al. [47]

deliberated the thermal conductivity of Burgers fluid using

the model [36] for heat flux. Using model [36], Li et al. [48]

examined the viscoelastic MHD fluid flow and heat trans-

fer over a stretched sheet. Shah et al. [49] examined the

MHD electrical ferrofluid nanofluid with model [36] over a

stretching sheet. Hayat et al. [41] examined the 3-D nanofluid

flow with model [36] over stretching surface. Muskat [50]

scrutinized the homogeneous fluids flow in a porous media.

Seddeek [51] deliberated the Darcy-Forchheimer flow of

mixed convention fluid with thermophoresis and viscous dis-

sipation impacts. Pal and Mondal [52] examined the Darcy-

Forchhemier flow in a porous media. Sadiq and Mondal [53]

deliberated the Darcy-Forchhemier flow of MHD Maxwell

nanofluid with heated sheet. Gul [54] examined the scat-

tering of thin layer over a nonlinear extending surface.

Gul et al. [55] examined the thin film nanofluid flow on a

rotating disk. Ali et al. [56] scrutinized the MHD flow thin

film fluid with thermophoresis and variable fluid properties.

Gohar et al. [57] examined the thin film flow single-walled

and multi-walled carbon nanotubes over a nonlinear extend-

ing disc. Gul et al. [58] studied the entropy generation in a

thin film flow over a stretching sheet. Khan et al. [59] exam-

ined the MHD thin film second grade fluid past a stretching

sheet with thermophoresis and thermal radiation impacts.

Gireesha et al. [60] examined the MHD mixed convection

Casson nanofluid flow under the influences of ohmic heating

and cross diffusion. Ganesh Kumar et al. [61] examined

the Burgers nanofluid over a stretching sheet with non-

uniform heat source/sink and nonlinear radiation impacts.

Gireesha et al. [62] inspected the MHD nonfluid flow con-

taining gyrotactic microorganism with chemical reaction.

The other related studies can be seen in [63]– [69].

Keeping in observation the overhead literature review,

we are able to study the 3-D flow of couple stress nanofluid

with Hall current past an exponentially porous stretching

sheet. It should be noted that this model is presented with

joule heating and viscous dissipation influences. To study the

relaxation properties, the Cattaneo-Christov heat flux model

is employed. For the very first time, the impact of temperature

exponent is examined in the literature.

II. PROBLEM FPRMULATION

Assume the 3-D flow of couple stress nanofluid past an

exponentially porous stretching sheet with zero mass flux

and convective heat conditions. The stretched velocity along

x-direction is considered as u = Uw (x, y) = U0e

(

x + y/L

)

whereas the velocity along y-direction is considered as v =

Vw (x, y) = V0e

(

x + y/L

)

where (U0,V0) are constants. Uni-

form magnetic field impacts are considered in the nanofluid

flow. The uniformmagnetic field is applied along y-direction.

The porous stretching surface is kept at constant temperature

Tw and the ambient temperature T∞. Also Cw indicates the

constant concentration andC∞ indicates the ambient concen-

tration.

Keeping in view the above assumption, the Ohm’s law

along with Hall current is of the form;

J +
ωeτe

B0
× (J × B) = σnf

(

E + V × B +
1

ene
Pe

)

(1)

where J =
(

Jx , Jy, Jz
)

is the current density vector, B is

the magnetic induction vector applied in y-axis, E is the

electric field intensity vector, V = (u, v,w) is the velocity

vector, σ is the effective electrical conductivity, ωe is the

frequency of electron, τe is the collision time of electron, e is

the electron charge, ne is the electron density number and pe
is the electronic pressure. Since no voltage in imposed on the

fluid flow therefore, electric field becomes as E = 0. So the

components of the current density become

Jx =
σB0

(

1 + m2
) (mu− v) , (2)

Jy =
σB0

(

1 + m2
) (u− mv) , (3)

where m = ωeτe is Hall parameter.

The principal equations for the demonstrated problem are

as [33], [41]:

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0, (4)

u ∂u
∂x

+ v ∂u
∂y

+ w ∂u
∂z

= ν ∂2u
∂z2

−ν′ ∂4u
∂z4

+
σB20

(1+m2)ρ
(v− mu) ,

(5)

u ∂v
∂x

+ v ∂v
∂y

+ w ∂v
∂z

= ν ∂2v
∂z2

−ν′ ∂4v
∂z4

−
σB20

(1+m2)ρ
(mu− v) ,

(6)

ρcp

(

u ∂T
∂x

+ v ∂T
∂y

+ w ∂T
∂z

)

= −∇ · Eq, (7)

u ∂C
∂x

+ v ∂C
∂y

+ w ∂C
∂z

= DB

(

∂2C
∂z2

)

+ DT
T∞

(

∂2T
∂z2

)

. (8)

The heat flux Eq satisfies

Eq+ λr

(

∂Eq
∂t

+ EV · ∇Eq− Eq · ∇ EV +
(

∇ · EV
)

Eq
)

= −λc∇T ,

(9)

where λr and λc signify the thermal relaxation time and

thermal conductivity. Reducing equation (9) to Fourier’s law
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(i.e. taking λr = 0). Now, excluding Eq from equations (4) and

(6), the heat equation is reduced as:

u ∂T
∂x

+ v ∂T
∂y

+ w ∂T
∂z

=
λc

ρcp

(

∂2T
∂z2

)

− λr

[

u2 ∂2T
∂x2

+ v2 ∂2T
∂y2

+w2 ∂2T
∂z2

+ 2uv ∂2T
∂x∂y

+ 2vw ∂2T
∂y∂z

+2uw ∂2T
∂x∂z

+
(

u ∂u
∂x

+ v ∂u
∂y

+ w ∂u
∂z

)

∂T
∂x

+
(

u ∂v
∂x

+ v ∂v
∂y

+ w ∂v
∂z

)

∂T
∂y

+

(

u ∂w
∂x

+

v ∂w
∂y

+ w ∂w
∂z

)

∂T
∂z

]

, (10)

with boundary conditions

u = Uw (x, y)=U0e

(

x + y/L

)

, v=Vw (x, y)=V0e

(

x + y/L

)

,

w = 0, k ∂T
∂z

=−hf (Tw − T ) ,

DB
∂C
∂z

+ DT
T∞

∂T
∂x

= 0, at z = 0,

u → 0, v → 0,C → C∞,T → T∞asz → ∞. (11)

In the exceeding equations, u, v,w are the velocity

components in their corresponding directions, kinematic

viscosity(ν), thermal conductivity (k), couple stress viscosity
(

ν′ = n
/

p
)

where nis the viscosity parameter, heat transfer

coefficient
(

hf
)

, electric charge density (σ ), density (ρ),

temperature exponent (A), specific heat
(

cp
)

, coefficient

of Brownian diffusion (DB), is the reference length (L),

thermophoretic diffusion coefficient (DT ).

Using the following transformations

u = U0e

(

x + y/L

)

f ′ (ξ) , v = U0e

(

x + y/L

)

g′ (ξ) ,

w = −

√

νU0

2L
e

(

x + y/2L

) {

f (ξ) + ξ f ′ (ξ)

+g (ξ) + ξg′ (ξ)

}

,

Tw = T∞ + T0e
A
(

x + y/2L

)

θ (ξ) ,

Cw = C∞ + C0e
A
(

x + y/2L

)

8 (ξ) ,

ξ =

√

U0

2νL
e

(

x + y/2L

)

z. (12)

Equation (4) is gratified inexorably, and equations (5)-(10)

yield

d3f

dξ3
− 2

{

df

dξ
+
dg

dξ

}

df

dξ
+ {f + g}

d2f

dξ2

−K
d5f

dξ5
+

M2

1 + m2

{

dg

dξ
− m

df

dξ

}

= 0, (13)

d3g

dξ3
− 2

{

df

dξ
+
dg

dξ

}

dg

dξ
+ {f + g}

d2g

dξ2

−K
d5g

dξ5
−

M2

1 + m2

{

m
df

dξ
−
dg

dξ

}

= 0, (14)

1

Pr

d2θ

dξ2
− A

{

df

dξ
+
dg

dξ

}

θ + {f + g}
dθ

dξ

+
�

2

[{

ξ

{

df

dξ
+
dg

dξ

}

+ (1 + 2A) {f + g}

}

FIGURE 1. Geometrical illustration of the fluid flow [33].

×

{

df

dξ
+
dg

dξ

}

dθ

dξ
− A







(A+ 2)
{

df
dξ

+ dg
dξ

}2
−

{f + g}
{

d2f

dξ2
+ d2g

dξ2

}







θ

− {f + g}2
d2θ

dξ2

]

= 0, (15)

d28

dξ2
− ScA

{

df

dξ
+
dg

dξ

}

8

+Sc {f + g}
d8

dξ
+
Nt

Nb

d2θ

dξ2
= 0, (16)

which satisfy the following boundary conditions

f = 0,
df

dξ
= 1, g = 0,

dg

dξ
= α,

dθ

dξ

= −γ (1 − θ) ,Nb
d8

dξ
+ Nt

dθ

dξ
= 0atξ = 0,

df

dξ
→ 0,

dg

dξ
→ 0, θ → 0, 8 → 0asξ → ∞. (17)

In equations (12)-(16), K = ν′a
ν2

represents the dimensionless

couple stress parameter, M2 =
2σB20L

ρUw
represents the Hart-

mann number, α = V0
U0

represents the ratio of rates parameter,

Pr =
νρcp
λc

represents the Prandtl number, � = λrUw
L

rep-

resents dimensionless thermal relaxation time, γ = h
k

√

2νL
Uw

indicates the Biot number, Sc = ν
DB

represents Schmidt num-

ber, Nb = τDB
ν

(Cw − C∞) represents the Brownian motion

parameter and Nt = τDT (Tw−T∞)
νT∞

represents thermophoresis

parameter.

The equations of skin friction coefficients, local Nusselt

number, and Sherwood number are:

Cfx

(

Rex

2

)
1/2

= e

(

3(x+y)
2L

)

d2f (0)

dξ2
,

Cfy

(

Rex

2

)
1/2

= e

(

3(x+y)
2L

)

d2g(0)

dξ2
,

VOLUME 7, 2019 64847
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FIGURE 2. ℏ-curves for velocities fields.

FIGURE 3. ℏ-curves for temperature and concentration fields.

FIGURE 4. Impression of M on df
d ξ

.

L

x
Nux

(

Rex

2

)
1/2

= −e

(

x + y/2L

)

dθ (0)

dξ
,

L

x
Shx

(

Rex

2

)
1/2

= −e

(

x + y/2L

)

d8(0)

dξ
, (18)

where Rex = U0L
ν

is the Reynolds number.

III. SOLUTION BY HAM

In this section we used HAM to solve the equations (13)-(16)

with boundary condition (17). The successive process is used

to solve the equations by HAM.

FIGURE 5. Impression of M on
dg
d ξ

.

FIGURE 6. Impression of m on df
d ξ

.

FIGURE 7. Impression of m on
dg
d ξ

.

The initial suppositions are chosen as:

f0(ξ ) = 1 − e−ξ , g0(ξ ) = α
(

1 − e−ξ
)

,

θ0(ξ ) =

(

γ

1 + γ

)

e−ξ , 80(ξ ) = −

(

Nb

Nt

γ

1 + γ

)

e−ξ .

(19)

The Lf , Lg, Lθ and L8 are picked as:

Lf (f ) =
d3f

dξ3
−
df

dξ
, Lg (g) =

d3g

dξ3
−
dg

dξ
,

Lθ (θ ) =
d2θ

dξ2
− θ, L8(8) =

d28

dξ2
− 8, (20)

64848 VOLUME 7, 2019
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FIGURE 8. Impression of α on df
d ξ

.

FIGURE 9. Impression of α on
dg
d ξ

.

FIGURE 10. Impression of K on df
d ξ

.

with the following properties:

Lf
(

y1 + y2e
−ξ + y3e

ξ
)

= 0, Lg
(

y4 + y5e
−ξ + y6e

ξ
)

= 0,

Lθ

(

y7e
−ξ + y8e

ξ
)

= 0, L8

(

y9e
−ξ + y10e

ξ
)

= 0,

(21)

where yi(i = 1− 10) are constants for the general solution of

the problem.

IV. HAM CONVERGENCE

The convergence of velocities fields, temperature field, and

concentration field are calculated by the assisting parameters

FIGURE 11. Impression of K on
dg
d ξ

.

FIGURE 12. Impression of � on θ (ξ).

FIGURE 13. Impression of Pr on θ (ξ).

ℏf , ℏg, ℏθ and ℏ8 of HAM are accessible in Figures 2-3. The

convergence graphs are obtained at 10th order approximation.

These legal regions show the convergence of HAM.

V. RESULTS AND DISCUSSION

This segment operates with the impact of dimensionless

parameters arise during studying the fluid flow phenom-

ena. These parameters include the Hartmann number (M),

Hall parameter (m), ratio of rates parameter (α), couple

stress parameter(K ), thermal relaxation time (�), Prandtl

number (Pr), temperature exponent (A), Brownian motion

parameter (Nb), Schmidt number (Sc), and thermophoresis

VOLUME 7, 2019 64849
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FIGURE 14. Impression of A on θ (ξ).

FIGURE 15. Impression of Nb on 8 (ξ).

FIGURE 16. Impression of Nt on 8 (ξ).

parameter (Nt). The effect of M on
df
dξ

and
dg
dξ

is revealed

in Figures 4-5. The Lorentz force theory says that the esca-

latingM declines
df
dξ

and
dg
dξ
. The more augmented Hartmann

numbere M results, the more collision of molecules occurs

which produce the opposing force to the flow of fluid and

consequently the fluid flow velocity reduces. The effect of m

on
df
dξ

and
dg
dξ

is depicted in Figures 6-7. It is clear from the

figures that the escalating Hall current parameter m reduces

the velocity in x-direction
df
dξ

while increases the velocity in

y-direction
dg
dξ
. This impact is due to the fact that the aug-

mented Hall parametermoverpowers the opposed magnetic

field and speed-up the velocity of the fluid. The impression

FIGURE 17. Impression of Sc on 8 (ξ).

FIGURE 18. The comparison of HAM and Numerical for df
d ξ

.

FIGURE 19. The comparison of HAM and Numerical for
dg
d ξ

.

of ratio of rates parameter α on
df
dξ

and
dg
dξ

is displayed

in Figures 8-9. The augmented values of α upsurges
df
dξ

while

declines
dg
dξ
. This effect is because of the more dominancy

of α along y-direction of the fluid flow in comparison of α

along x-direction of the fluid flow. The effect of couple stress

parameter K on
df
dξ

and
dg
dξ

is depicted in Figure 10-11. There

is a direct relationship between K and couple stress viscosity

parametern. The larger values of K indicate the more viscos-

ity of the fluid, which delays the fluid motion and as a result

the decline in
df
dξ

and
dg
dξ

is perceived. The impact of � on

θ (ξ) is illustrated in Figure 12. It is perceived that there is an

inverse relationship between� and θ (ξ). The growing values
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FIGURE 20. The comparison of HAM and Numerical for θ (ξ).

TABLE 1. Estimate of Cf Re
1/2
x for α, K , M and m.

of � reduces the fluid flow temperature. In addition, the zero

thermal relaxation time narrates to traditional Fourier’s law,

so this can be deduced that the temperature is smaller than

the classical Fourier’s model. The impression of Prandtl num-

ber Pr on θ (ξ) is portrayed in Figure 13. The augmented

Prandtl number Pr declines θ (ξ). This effect is owing to the

datum that small Pr causes large thermal conductivity but

this impact is quite opposite for higher Pr. The impact of

temperature exponent A on θ (ξ) is presented in Figure 14.

The temperature exponent A and θ (ξ) has inverse impact.

The escalatingA reduces θ (ξ). The impression ofNb on φ (ξ)

is portrayed in Figure 15. The escalating Nb escalates the

motion of nanoparticles of the fluid, which fallouts the reduc-

tion in concentration of the fluid. Therefore, the augmented

Nb reduces φ (ξ). The impact of Nt on φ (ξ) is presented

in Figure 16. The augmented Nt upsurges the φ (ξ). This is

due to the fact that the augmentedNtthrust the nanoparticles

TABLE 2. Estimate of CgRe
1/2
x for α, K , M and m.

TABLE 3. Estimate of Nux Re
1/2
x for γ, Pr, A and �.

of the fluid flow from the warm surface and as a result the

φ (ξ) upsurges. The impression of Sc on φ (ξ) is portrayed

in Figure 17. Physically, theweakmass diffusivity is observed

for escalating values of Sc. This weak mass diffusivity has
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TABLE 4. Estimate of Shx Re
1/2
x for Sc, Nb, A and Nt .

TABLE 5. The assessment of HAM and Numerical for df
d ξ

.

emotional impact on the fluid concentration and as a result

the decrease in φ (ξ)is observed.

Figures 18-20 display the comparison of HAM and numer-

ical method for velocities and temperature functions.

TABLE 6. The assessment of HAM and Numerical for
dg
d ξ

.

TABLE 7. The assessment of HAM and Numerical forθ (ξ).

VI. TABLES DISCUSSION

Tables 1 and 2 demonstrate the repercussions of incipi-

ent parameters on coefficients of skin friction in x- and

y-directions respectively. These parameters are ratio of
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rates (α), couple stress (K ), Hartmann number (M),

and Hall parameter (m). It is observed that augmented

ratio of rates (α), couple stress (K ) and Hartmann num-

ber (M) augmented the skin friction coefficients while the

augmented Hall parameter (m) falloff the skin friction coef-

ficients. Table 3 demonstrates the repercussions of incipi-

ent parameters on local Nusselt number. From the tabulated

values, it is observed that the escalating temperature expo-

nent, Prandtl number, and thermal relaxation time increases

the local Nusselt number while reduces with the escalation

in Biot number. Table 4 demonstrates the repercussions of

incipient parameters on Sherwood number. It is concluded

that the rising in Schmidt number, temperature exponent,

and thermopherises parameter reduce the Sherwood number

while the rising Brownian motion parameter increases the

Sherwood number.

Tables 5-7 display the comparison of HAM and numerical

method for velocities and temperature functions.

VII. CONCLUSION

In this research work, we presented the three-dimensional

flow of couple stress nanofluid with Hall current, viscous

dissipation and joule heating impacts past an exponentially

stretching sheet. The Cattaneo-Christov heat flux model is

implemented to examine the thermal relaxation properties.

The modeled equations have been transformed to nonlinear

ordinary differential equations with the help of correspon-

dence transformations. The homotopy analysis method is

used to solve the proposed model.

The concluding observations are given as:

1) The rise in Hall parameter, Hartmann number, ratio of

rates parameter, and couple stress parameter dropped

the
df
dξ
.

2) The rise in Hall parameter, Hartmann number, and ratio

of rates parameter improved the
dg
dξ
.

3) The escalation in couple stress parameter dropped

the
dg
dξ
.

4) The upsurge in thermal relaxation parameter, Prandtl

number, and temperature exponent reduced the θ (ξ).

5) The escalation in thermophoresis parameter increased

the 8 (ξ).

6) The upsurge in Brownian motion parameter and

Schmidt number reduced the 8 (ξ).

7) The rise in temperature exponent, Prandtl number, and

thermal relaxation time increased theNux while the rise

in Biot reduced the Nux .

8) The rise in Schmidt number, temperature exponent, and

thermophoresis parameter reduced the Shx while the

rise in Brownian motion parameter increased the Shx .
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