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Abstract
Exploration and exploitation of intelligent computing infrastructures are becoming of great interest for the research community
to investigate different fields of science and engineering offering new improved versions of problem-solving soft computing-
based methodologies. The current investigation presents a novel artificial neural network-based solution methodology for the
presented problem addressing the properties ofHall current onmagneto hydrodynamics (MHD) flowwith Jeffery fluid towards
a nonlinear stretchable sheet with thickness variation. Generalized heat flux characteristics employing Cattaneo–Christov heat
flux model (CCHFM) along with modified Ohms law have been studied. The modelled PDEs are reduced into a dimensionless
set of ODEs by introducing appropriate transformations. The temperature and velocity profiles of the fluid are examined
numerically with the help of the Adam Bashforth method for different values of physical parameters to study the Hall current
with Jeffrey fluid and CCHFM. The examination of the nonlinear input–output with neural network for numerical results is
also conducted for the obtained dataset of the system by using Levenberg Marquardt backpropagated networks. The value of
Skin friction coefficient, Reynold number, Deborah number, Nusselt number, local wall friction factors and local heat flux are
calculated and interpreted for different parameters to have better insight into flow dynamics. The precision level is examined
exhaustively by mean square error, error histograms, training states information, regression and fitting plots. Moreover, the
performance of the designed solver is certified by mean square error-based learning curves, regression metrics and error
histogram analysis. Several significant results for Deborah number, Hall parameters and magnetic field parameters have been
presented in graphical and tabular form.
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T Temperature of fluid
ν Kinematic viscosity
B0 Magnetic field strength
MHD Magnetohydrodynamics
CCHFM Cattaneo–Christov heat flux model
ANN Artificial Neural Network
P Pressure
S Stress tensor
λ1 Ratio of relaxation to the retardation times
ρ Density
U0 Reference velocity
n Velocity exponent
J Current density
pe Electronic pressure parameter
ρ Density
cp Specific heat
κ Thermal conductivity
α Thermal diffusivity parameter
T∞ Ambient temperature
γ Thermal relaxation parameter
m Hall parameter
θ Dimensionless temperature
τwz Shear stress perpendicular to horizontal direc-

tion
Rex Local Reynold number
qw Surface heat flux
η Dimensionless variable
DT Thermophoresis diffusion coefficient
u, v, w Velocity components
Fig. Figure
θ Dimensionless temperature
qw Surface heat flux
3D Three dimensional
HAM Homotopy analysis method
ANN-LMM Artificial Neural Network Model with Leven-

berg Marquardt method
τ Cauchy stress tensor
R1 Rivlin-Erickson tensor
λ2 Retardation time
μ Dynamic viscosity
b Relative stretching parameter
A Stretching coefficient
σ Electric conductivity parameter
B Magnetic field parameter
T Temperature
q Heat flux
λ Thermal relaxation factor
TW Surface temperature
M Magnetic field parameter
β Deborah number
f Dimensionless stream function

τwx Shear stress of the surface in horizontal direc-
tion

C fx ,C fz Denotes skin friction
Nux Local Nusselt number
CS Case Study

Introduction

The significant influence of Hall current utilizing the Ohms
law in hydro-magnetic (MHD) flow of non-Newtonian fluid
is a recent inclination. Hall current is noticeable when the
magnetic field is strong, or the density of the fluid is low
because electrons carry an excited currentwhichmoves faster
as compared to ions and produces an isotropic conductivity.
Dynamics of fluids with Hall current effect on MHD have an
extensive and broad use in the field of engineering and indus-
tries like geophysical, astrophysical space, bio-fluids, nuclear
power reactor, fluid engineering andhasmanypractical appli-
cations such as the construction of turbines, Hall sensor, Hall
accelerator, centrifugal machines, MHD energy generators,
control of crystal growth systems, lubrication restraint of high
accelerated spinning machines, magneto astronautical flows,
etc. Effect of MHD flow and Hall current inside rotating
plates is reported by Shah et al. [1]. Kumar et al. [2] investi-
gated MHD fluid flow between vertical conducting walls in
the presence of theHall effect. Opanuga et al. [3] investigated
the Influence of Hall current for entropy generation of radia-
tive MHD convective Casson fluid flow model. Akbar et al.
[4] Hall current and ion slip effect on hydromagnetic bio-
logically inspired hybrid nanofluid flow model. Awan et al.
[5] examined the effect of Hall current along with electrical
MHD on micropolar nanofluid. Recently, bio-heat transfer
in the human body gains the reflection of numerous analysts
because of its wide applications in human thermal standards
which includes heat convection because of the progression
of blood from the pores of tissues in a human body, radiation
process among surfaces and conduction process in tissues,
etc. The impact of Hall current on MHD with heat and mass
transmission in a porousmediumwith thermal radiationswas
investigated by Shah et al. [6]. Chu et al. [7] examined the
influence of heat transfer and radiative heat flux on Rabi-
nowitsch. Hayat et al. [8] observed the heat transfer impacts
in magneto-hydrodynamic (MHD) axisymmetric stream of
third-grade liquid between the extending sheets. Riaz et al.
[9] used the HAM along with a Genetic algorithm for the
investigation of peristaltic transport of Jeffry fluid in a porous
medium. The importance and usage of non-Newtonian fluid
in the modern world of science has tremendous application
in technology and industrial areas because all the rheolog-
ical properties of fluid do not describe by Navier–Stokes
equations. In the classification of non-Newtonian fluid Jef-
fery fluid is a rate type material which means it has a time
derivative rather convective derivative. The Jeffrey fluid has
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numerous industrial and technological applications including
wire coating, dying, polymer productions, food dispensation,
geophysics, chemical and petroleum, plastic manufacturing,
biological fluid, etc. Sreelakshami et al. [10] present the rela-
tion of Jeffrey fluid for non-Newtonian fluids. The power-law
fluid with the effect of MHD and entropy generation was
studied by Khan et al. [11]. Noreen et al. [12] examined
Dufour and Soret effects on Jeffrey fluid. The MHD bound-
ary layer with Jeffrey fluid was examined by Shahzad et al.
[13]. Researchers investigate a Jeffery fluid under different
circumstances. Patel andMaher [14]work on the Jeffery–He-
mal flow with a magnetic field. Vaidya et al. [15] look at the
peristaltic Jeffery liquid with heat movement in an oppo-
site permeable layer. Nazeer et al. [16] give the impact of
non-linear thermal radioactivity on the 3D Jeffery fluid over
shrinking/stretching surface in the occurrence of heteroge-
neous–homogeneous reactions, and injection/suction. Some
potential studies about Jeffery fluid are found in these Refs.
[17–20]. Asha and Sunitha [21] studied the effect of heat
transfer and hall current on peristaltic blood flow on MHD
with Jeffery fluid in a permeable channel. More features of
Jeffery fluid with Hall current over 3D are investigated by
Sinha et al. [22]. In literature, a lot of research have been
done on the transportation of heat and mass theories such
as enhancing the heat transfer rates and pressure loss reduc-
tion using compact heat exchanger [23]. Cattaneo model was
further modified by Christov by changing time-derivative
with Oldroyd-B variant [24, 25] and stability is reported in
[26]. Further relevant studies on Cattaneo–Christov heat flux
model (CCHFM) can be seen in [27–29]. Alamir et al. [30]
work on the perspective of CCHFM. Shah et al. [31] used
this model for micropolar ferrofluid on a stretched sheet.
Cattaneo-Cristov heat fluxmodel incorporated with slip con-
dition is studied byAhmad et al. [32]. Khan et al. [33]worked
on numerical and analytical solutions of Maxwell fluid on a
stretched cylinder with CCHFM.

The objective of the present research is to explore the
effects of Hall current on MHD with Jeffery fluid over a
nonlinear stretchable sheet. We examined the applications
of Hall current on MHD with a different perspective. We
analyze the characteristics of CCHFM over the variable
stretchable sheet with varied thickness. In this regards, we
consider the influences of heat transfer, temperature, velocity,
stretching sheet with variable thickness, effects of the electric
field, induced magnetic field, Hall current parameter, Jeffrey
parameters, Deborah number, Nusselt number, skin friction
coefficient, shear stress are computed. Mathematical mod-
eling will be presented to construct the nonlinear coupled
ordinary differential equations. Similarity transformations
are applied and transformed governing equations using
Adams Bash-forth method. Further, the experimental data
will be analyzed using the Artificial Neural Network model

with the LevenbergMarquardt method (ANN-LMM). Artifi-
cial intelligence techniques-based stochastic approaches are
based on machine learning mechanism which works on the
pattern of human behavior to find the stiff and valuable
solutions to various types of important problems related to
face identification, device management system, radar assem-
bling, cancer diagnostic mechanism, and virus deification.
The main components in the intelligent system work with
the setting and adjustments of neurons and layers which
play a vital and significant role for the best modeling of the
designed networks and for their optimizations through dif-
ferent local and global heuristics. system etc. Robbins and
Monro [34] analyzed intelligent computing infrastructure for
the mathematical system. Mehmood et al. [35] examined
the thermal transfer through a fluid flow via the design of
a stochastic intelligent computing system. The ANN tech-
nique for heat transfer rate are analyzed by Sheikholeslami
et al. [36]. An exclusive description made via investigators
on this regime consists of [37–39]. Transformed governing
equations are analyzed numerically using Adams Bashforth
method [40–43].

Description of the fluid flow system

Consider the electrically conducted, unsteady Jeffrey fluid
which passing over a stretching surface with fluctuating
thickness. The stretching is by the side of the axial direction
(x-axis) and y-axis which is perpendicular to the stretchable
surface. The applied magnetic field B � [0,B0,0] is taken
along y axis. The low magnetic Reynold number is taken
so that the induced magnetic field is negligible. The modi-
fied ohm’s law by adding Hall’s current effect are taken into
account. The expressions of the Jeffrey model for the non-
Newtonian fluids are given as:

τ � −P I +
μ

1 + λ1
+ S (1)

S � μ

1 + λ1

[
R1 + λ2

(
∂R1

∂t
+ ∇.V

)
R1

]
where

R1 � ∇V + ∇V t , (2)

whereP denotes the pressure, τ be theCauchy stress tensor, S
is the stress tensor, R1 is the Rivlin–Ericken tensor, λ1 stands
for the ratio of relaxation to the retardation times while the
λ2 is a retardation time (see Fig. 1).

Governing equations after boundary layer approximation
are reduced to [5, 10, 13, 18, 28]:

∂u

∂x
+

∂v

∂y
� 0, (3)
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Fig. 1 Physical configuration of the geometry
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(4)

u
∂w

∂x
+ v

∂w

∂y

� ν

1 + λ1

[
∂2w

∂y2
+ λ2

{
∂u

∂y

∂2w

∂x∂y
+ u

∂3w

∂x∂y2
+

∂v

∂y

∂2w

∂y2
+ v

∂3w

∂y3

}]

+
σ B2

0

ρ
(
1 + m2

) (u − mw) ,

(5)

with associated conditions

u � U (x) � Uo(x + b)n , v � 0, w � 0 at y � A(ax + b)
1−n
2

u → 0, w → 0 as y → ∞.

(6)

In the above expression, u, v, w and x, y represent the
velocity components andCartesian coordinates, respectively.
ν represents the kinematic viscosity, μ is the dynamic vis-
cosity and ρ is the density. The stretching rate U (x) �
U0(x + b)n , with U0 be the reference velocity, b represents
the relative stretching parameter and n denotes the velocity
exponent. The sheet is non-flat, and its surface is taken at
y � A(x + b)0.5(1−n) where A is the stretching coefficient
while the quantities are assumed to be constant along z-axis.

Modified Ohm’s law with Hall’s current effect is defined
as:

J � σ

(
E + V × B − 1

ene
J × B +

1

ene
∇ pe

)
. (7)

Here J denotes a current density, σ denotes electric
conductivity parameter, pe is called electronic pressure
parameter and B0 denotes the magnetic field parameter. The
components of J can be given as follows:

Jx � σ B2
0(

1 + m2
) (mu − w), Jz � σ B2

0(
1 + m2

) (u + mw), (8)

where m is the Hall parameter i-e m � σ B2
0

ene
. The heat equa-

tion of steady viscous flow is defined as:

ρcpV .∇T � −∇.q. (9)

where ρ is the density, T the temperature, cp stands for the
specific heat while q be the heat flux. Cattaneo–Christov heat
flux law is defined as:

q + λ(V .∇q − q.∇V + ∇.V )q � −κ∇.T . (10)

Here κ represents the thermal conductivity, λ be the ther-
mal relaxation factor. For incompressible flow

q + λ(V .∇q − q.∇V )q � −κ∇.T . (11)

From Eqs. (9) and (10) we have

u
∂T

∂x
+ v

∂T

∂y
� α

∂2T

∂2y
− λ

[(
u

∂u

∂x
+ v

∂u

∂y

)
∂T

∂x

+

(
u

∂u

∂y
+ v

∂v

∂y

)
∂T

∂y
+ 2uv

∂2T

∂x∂y

+u2
∂2T

∂x2
+ v2

∂2T

∂y2

]
. (12)

Conditions for fluid temperature are

T � TW at y � A(x + b)
1−n
2 and T → T∞ as y → ∞.

(13)

The expression α � κ
ρcp

, TW , T∞ defined respective ther-
mal diffusivity parameter, surface temperature and ambient
temperature.

Similarity Conversion system

The best suitable transformation system for the presented
model [44] is proved as follows:

u � U (x)F ′(ξ) � U0(x + b)n F ′(ξ),

v � −
√
n + 1

2
νU0(x + b)

n−1
2

[
F(ξ) + ξF ′(ξ)

(
n − 1

n + 1

)]
,

w � U (x)G(ξ) � U0(x + b)nG(ξ),
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�(ξ) � T − T∞
Tw − T∞

, ξ � y

√
n + 1

2

U0

ν
(x + b)

n−1
2 ,

ψ � F(ξ)

√
2

n + 1
νU0(x + b)

n+1
2 . (14)

Using these transformations, we have:

F ′′′ − (1 + λ1)

[
2n

n + 1

(
F ′)2 − FF ′

]

+ β

[
−

(
n + 1

2

)
FFiv +

3n − 1

2

(
F ′′)2 + (n − 1)F ′F ′′′

]

− 2M

(1 + n)
(
1 + m2

) (1 + λ1)
(
F ′ + mG

) � 0, (15)

G ′′ − (1 + λ1)

[
2n

n + 1
F ′G − FG ′

]

+ β

[
(n − 1)G ′′F +

3n − 1

2
F ′′G ′ −

(
n + 1

2

)
FG ′′′

]

+
2M

(1 + n)
(
1 + m2

) (1 + λ1)
(
mF ′ − G

) � 0, (16)

�′′ + Pr

[
F�′ + γ

(
n − 3

2
FF ′�′ − n + 1

2
F2�′′

)]
� 0

(17)

With the transformed boundary conditions:

F(α) � α
1 − n

1 + n
, F ′(α) � 1 , G(α) � 0 , �(α) � 1 ,

F ′(∞) � A , F ′′(∞) � 0, G(∞) � 0 , G ′(∞) � 0, �(∞) � 0.
(18)

In which differentiation is with respect to ξ . We further
assume the following [44]:

F(ξ) � f (ξ − α) � f (η),

G(ξ) � g(ξ − α) � g(η),

�(ξ) � θ(ξ − α) � θ(η),

(19)

where ξ − α � η, and α � A
√

n+1
2

U0
ν

. Then Eqs. (15)–(17)
becomes:

f ′′′ − (1 + λ1)

[
2n

n + 1

(
f ′)2 − f f ′′

]

+ β

[
−

(
n + 1

2

)
f f iv +

3n − 1

2

(
f ′′)2 + (n − 1) f ′′ f ′′′

]

− 2M

(1 + n)
(
1 + m2

) (1 + λ1)
(
f ′ + mg

) � 0, (20)

g′′ − (1 + λ1)

[
2n

n + 1
f ′g − f g′

]

+ β

[
(n − 1)g′′ f + 3n − 1

2
f ′′g′ −

(
n + 1

2

)
f g′′′

]

+
2M

(1 + n)
(
1 + m2

) (1 + λ1)
(
m f ′ − g

) � 0, (21)

θ ′′ + pr

[
f θ ′′ + γ

(
n − 3

2
f f ′θ ′ − n + 1

2
f 2θ ′′

)]
� 0 (22)

With the transformed boundary conditions:

η � 0; f (η) � α
1 − n

1 + n
, f ′(η) � 1 , g(η) � 0 , θ(η) � 1 ,

η → ∞; f ′(η) � 0 , f ′′(η) � 0,

g(η) � 0 , g′(η) � 0, θ(η) � 0.

(23)

Here M denotes the magnetic field parameter, γ is the
thermal relaxation parameter, β is the Deborah number, Pr
is the Prandtl number, α is the thermal diffusivity and m
is the Hall parameter. In boundary conditions α is the wall
thickness parameter, η corresponds to the surface of the sheet
which non-dimensional similarity variable, f is the dimen-
sionless stream function, T is the temperature of the fluid, TW
is the surface temperature, T∞ is the ambient temperature. 8
is the dimensionless temperature. where prime denotes the
derivative with respect to η. Parameters involved in the non-
dimensional equations are:

M � 2σ (x + b)n B
2

0

/
ρU (x) represent the magnetic

field parameter, Pr � ρcpν
/
k, represents Prandtl number

γ � λU0(x + b)n−1 is the thermal relaxation parameter,

α � A
√
(n + 1)U0

/
2ν is wall thickness parameter where

A � y(x + b)n and β � λ2A1 is the Deborah number where
A1 � γ /λ.

Skin friction factor and Nusselt number

The skin friction coefficient at the stretched surface is written
as:

C f x � τwx

ρu2w
, where

τwx � μ

1 + λ1

[
∂u

∂y
+ λ2

(
u

∂2u

∂x∂y
+ v

∂2u

∂y2

)]
y�A(x+b)

1−n
2

,

(24)

C f z � τwz

ρu2w
, where

τwz � μ

1 + λ1

[
∂w

∂y
+ λ2

(
u

∂2w

∂x∂y
+ v

∂2w

∂y2

)]
y�A(x+b)

1−n
2

.

(25)

Here τwx , τwz are shear-stress of the surface in the hor-
izontal direction and shear stress is perpendicular to the
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Fig. 2 Basic structure of ANN
model with 10 hidden layers

horizontal direction, accordingly. Dimensionless form is:

C fxRe
1/2
x � 1

1 + λ1

[
f ′′ + β

(
3n − 1

2
f ′ f ′′ − n + 1

2
f f ′′′

)]

(26)

C fzRe
1/2
x � 1

1 + λ1

[
g′ + β

(
3n − 1

2
f ′g′ − n + 1

2
f g′′

)]

(27)

where C fx ,C fz denotes skin friction Rex � (x+b)U (x)
ν

is the
Local Reynold number.

The heat transfer rate relations are written as follows:

Nux � xqw
k(Tw − T∞)

, qw � −k
∂T

∂y

∣∣∣∣
y�A(x+b)

1−n
2

(28)

Here qw is the surface heat flux. Non-dimensional form
is:

NuxRe
−1/2 � −

√
1 + n

2
θ ′′(0), (29)

where Nux represents the local Nusselt Number.

Structure of the designed intelligent
network

Stat of the art Adams Bash-forth numerical method is incor-
porated with the assistance of ND-Solve command exploited
through Mathematica software. The considered numerical
is the best suitable numerical computing technique for the
generation of the dataset for further designing of the artifi-
cial neural networks. The diagram of the designed intelligent
network is described in Fig. 2.

The above-mentioned network is a mathematical system
inspired by biological neural networks, which is dependent
upon the collection of neurons. Neurons are the integral
and important component of the designed soft computing-
based intelligent network that transformed the data obtained
through any deterministic-basedmethod like Adam’s numer-
ical method and then gives the result in the output layer. Data
traveled from the input layer to the layer connected with

the output setting of the network. Different layers are also
incorporated into the designed networks for finding the best
possible outcomes. The total data set is classified into 70%
training, 15% validation, 15% testing. The present article
carries out the Hall current with Jeffrey fluid and CCHFM.
In this regards the experimental data will be analyzed by
using the Artificial Neural Network model with Leven-berg
Marquardt method (ANN-LMM).

Numerical results and discussion

In a current research article, reference numerical result and
ANN is applied for the estimate of the Hall effect on MHD
flow with Jeffrey fluid and heat transfer with CCHFM.
Numerical solutions with the help of ND-Solve command
and Artificial Neural Network (ANNs) are investigated.
Table 1 is constructed for all variants of the presented MHD
flow of the Jeffrey fluid system under the impact of heat.
Velocity profile f ′(η) is represented through case study 1,
and another velocity profile g(η) is shown via case study
2, whereas case study 3 represents the temperature profile
θ(η). Scenarios 1, 2, 3 denotes the variables. Scenarios 1,
2 and 3 of case study 1 represent the Hall current parame-
ter (m), wall thickness parameter (α), ratio of relaxation to
the retardation time (λ1). Case study 2 is about Hall current
parameter (m), Deborah number (β). Case study 3 represents
the thermal relaxation parameter (γ ), Prandtl number (Pr.),
velocity exponent parameter (n).

Performance analysis of numerical solution:

We obtained the non-dimensional velocities and temperature
profiles for emerging parameters. Using ND-solve command
in MATHEMATICA software with ADAM BASHFORTH
method, we obtained solutions for profiles f ′(η), g(η) and
θ(η) for various cases. Figures 3, 4 and 5 investigate the
impact of parameter m, M, λ1 with the ranges 0.3 ≤ m ≤
0.12, 0.0 ≤ M ≤ 1.5, 0.0 ≤ λ1 ≤ 0.12 for f ′(η). Figure 3
indicates the behavior of hall current parameter (m). The
velocity profile f ′(η) increases for a large value of 0.3
≤ m ≤ 0.12 because the effect of electric conductivity of
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Table 1 Values of parameters
associated with the fluid flow
system

Case study 1 2 3

Scenario 1 2 3 1 2 1 2 3

Case: 1 0.3 0.0 0.0 0.1 0.3 0.2 0.71 0.1

Case: 2 0.6 0.3 0.4 0.3 0.4 0.6 1.0 0.3

Case: 3 0.9 1.0 0.8 0.6 0.6 0.7 1.5 0.6

Case: 4 0.12 1.5 0.12 0.9 0.8 0.8 2.0 0.9

Fig. 3 Plot representing Scenario (m) for case study 1

Fig. 4 Plot representing Scenario (M) for case study 1

the fluid enhances the molecular movement which results
in an increase in fluids velocity. According to this rela-
tion σ/(1 + m2), effective conductivity decreases when we
increase the values of m. By increasing the Hall current
parameter m, the factor 1/(1 + m2) becomes smaller so the
resistivity of the fluid decreases whereas it shows the same
behavior in the case of velocity profile g(η)which is observed
in Fig. 6. When we increase the value of Hall current param-
eter m, the velocity profile also increases. Figure 4 shows
the impact of the magnetic field parameter (M). When we
increase the value ofM the velocity component f ′(η) shows a
reduction. This is due to the fact thatmagnetic fieldM induces

Fig. 5 Plot representing Scenario (λ1) for case study 1

Fig. 6 Plot representing Scenario 1 (m) for case study 2

the resistive force which is also called a Lorentz force while
the velocity profile reduces because when the Lorentz force
becomes weaker, the motion of the fluid reduces and the fluid
become to rest. It is because of the fact themagnetic field acts
as retarding/controlling agent and has the ability to control
the fluids velocity upto desired value. Figure 5 influences the
ratio of relaxation to the retardation time λ1 on the velocity
profile f ′(η) alongwith the boundary layer because the phys-
ical ratio of relaxation to the retardation time depends upon
the retardation time. As λ1 increases the relaxation time and
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Fig. 7 Plot representing Scenario (β) for case study 2

Fig. 8 Plot representing Scenario (γ ) for case study 2

Fig.9 Plot representing Scenario (Pr.) for case study 3

Fig. 10 Plot representing Scenario (n) for case study 3

it reduces the retardation time. Jeffrey fluid parameter was
the reason for the variation of themomentum boundary layer,
so the velocity reduces in the variable sheet. Figure 7 exhibit
the effect of Deborah number β on the velocity profile g(η).
As it was observed from Fig. 7 that for the larger value of
the Deborah number β, velocity profile g(η) reduces. Phys-
ically, Deborah number depends upon retardation time so
with the enhancement of the retardation time Deborah num-
ber decreases but it increases for the gradient of the velocity
profile of the Jeffrey fluid. Figures 8, 9 and 10 exhibit the
influence of γ , Pr, n with the ranges 0.2≤ γ ≤ 0.8, 0.71≤ Pr.
≤ 2.0, 0.1 ≤ n ≤ 0.9 respectively on the temperature profile
θ(η). Figure 8 shows that an increment in the value of thermal
relaxation parameter γ results into a reduction of the temper-
ature profile θ(η) because the temperature of variable sheet
decreases with the enhancement of the thermal relaxation γ .
In casewhen the thermal relaxation parameter reduces to zero
i-e (γ � 0) the CCHFM becomes the classical Fourier law of
heat conduction. Figure 9 presents the impact of Prandtl num-
ber Pr. On the temperature profile θ(η).it is observed from
the figure that the temperature profile θ(η) reduces for the
larger values of Pr. Number. Physically, the Prandtl number
depends upon the thermal diffusivity and thermal diffusiv-
ity becomes lower with the enhancement of the Prandtl fluid
because of the fluid with high pr. number shows less con-
duction. Due to this reason when we increase the value of pr.
number thermal diffusivity reduced and temperature profile
reduces. Figure 10 demonstrated the influence of the velocity
exponent parameter (n) on θ(η). For the larger n, the profile
θ(η) increases. The positive value of n i-e (n > 0) shows that
the variable sheet is stretching. For the transverse velocity
distributions, it shows the same behavior. Variation for M,
Pr., α, λ1, m, γ , β of and skin friction coefficient and Nusselt
number are presented in Table 2.
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Performance analyses on outcomes of the networks

The elaborative numerical solution of transformed system of
ODEs by ANN is presented for various parameters of pro-
files f ′(η),g(η) and θ(η). Solution by ANN with Levenberg
Marquardt method (ANN-LMM) interpreted through error
histogram, plot fit, training states, performance and regres-
sion. Performances of three scenarios of all the cases of case
study 1, 2 and 3 are presented. Result will be analyzed by
comparison.

Case study 1

The performances of 3 scenarios (m, M, λ1) for case study 1
(CS1) for different f ′(η) are illustrated in Figs. 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24 and 25. Sub-Fig. 11a–c
present the error histogram which exhibits the data fitting
error for all the cases which are near to zero error reference
line. More positive error is exhibited for case 1 whereas neg-
ative error for case 2 and case 3. Figure 12a–c delineate the
data of fitness based on difference between the target and
network outputs after training a neural network, i.e., the dif-
ference between the predicted value and target value. The
range of the absolute zero in three cases of scenario 1 is
(−2×10−4 to 2×10−4). The error is found to be very close
to zero which shows the fitness of the method with good
accuracy. Means square error (MSE) of three cases of sce-
nario 1 is illustrated in sub-Fig. 13a–c. Minimum of MSE is
achieved at epoch (349, 66, 264) with respective best valida-
tion performance (8.2625e−10, 3.15671e−10, 1.5309e−9).
Figure 14a–c present algorithm execution states of the net-
works. Training states describe the outcomes of controlling
indices of Mu and gradient. For all the cases best validation
performance depends upon epoch weights. The values of the
gradient for all the cases at (349, 66, 264) are given respec-
tive as (9.96e−8, 9.51e−8, 9.99e−8) that verified networks
performance. Sub-Figure 15a–c gives the regression plots of
the data for different outputs. The regression measure, i.e.,
correlation R � 1, exhibits a strong correlation consistently.

Figures 16, 17, 18, 19 and 20 describe the interpretation
of three cases of scenario 2 of case study 1 (CS1) graph-
ically. Figure 16a–c portray plots for the error histogram
studies. The error is consistently close to reference with
higher error for cases 1 and 2 and relatively less for case 3
which shows the reasonable performance. Sub-Figure 17a–c
present the fitness plots. Interval of the absolute error with
the ranges (−5×10−4 to 5×10−4, −2×10−4 to 2×10−4,
−5 × 10−4 to 5 × 10−4) respectively are analyzed which
are close to zero. Figure 18a–c demonstrate the MSE for
all the cases of scenario 2. The MSE gradually decreases
with epochs, it is observed at epoch (73, 89, 298) with
the best respective validation performance are (1.33312e−8,
6.41000e−10, 9.79812e−10). Training states depend upon

Mu, gradient and validation check as shown in Fig. 19a–c.
Themagnitude of the gradient (1.78e−5, 9.99e−8, 9.99e−8)
at (73, 89, 298). The sub-Fig. 20a–c present the regression
plots with a value of R � 1 for scenario 2 consistently for
each dataset of the model.

Performance analysis of ANNs model for each variation
of scenario 3 is graphically provided in Figs. 21, 22, 23, 24
and 25. The sub-Fig. 21a–c displayed the error histograms of
scenario 3 for three cases. The data set points with an error
close to zero having less errors for cases 1 and 3 whereas bit
more errors for case 2. The sub-Fig. 22a–c present the fit-
ness plots which show that the error is close to zero i.e., the
predicted value suits to experimental data values. The error
for all the cases lies in the range of (−2×10−4 to 2×10−4 ,
−1×10−5 to 1×10−5 , −2×10−4 to 2×10−4). Figure 23
demonstrated the performance analysis graphically After
training the data set the least value of MSE is obtained.
The best validation performance at epochs (284, 293, 249)
is given as (1.6407e−9, 22.23755e−11, 8.87428e−10) which
shows that the data set is well trained. Further, the train-
ing states give Mu, gradient, validation checks observed in
Fig. 24a–c. The gradient is (9.96e−8, 9.97e−8, 9.83e−8)
for the three cases of scenario 3 which gives consistently
viable results. Additionally, the value of Mu (1e−9, 1e−9,
1e−9) is found close to zero for scenario 3 in each case.
Sub-Figure 25a–c also show the regression analysis of the
predicted and target value of scenario 3with regression index
R�1 that presents the rationality of the accurate performance
of the ANN network model.

Case study 2

The analysis of networks for velocity profile g(η) of differ-
ent scenarios for various emerging parameters of case study
2 (CS2) are illustrated in Figs. 26, 27, 28, 29, 30, 31, 32,
33, 34 and 35. Figure 26a–c depicts accurately our model
through the prediction of the data set after training. Higher
positive error exhibits for case 1 and negative error for cases
2 and 3. Figure 27a–c demonstrates the fitting plots graph-
ically for scenario 1 of three cases. Absolute errors for the
presented fluid system showgood performance analysis as its
most of the values lie in the ranges (−5× 10−5 to 5× 10−5 ,
−2 × 10−4 to 2 × 10−4 , −1 × 10−4 to 1 × 10−4) respec-
tively with better precision. The sub-Fig. 28a–c presents the
performance analysis with the best validation performance
of the given data set for three cases of scenario 1. The
minimum value of MSE are (1.57918e−10, 1.41400e−10,
2.98581e−10) at the epoch (12, 21, 39) with good validation.
The sub-Fig. 29a–c depict the training states of all variants
associated with scenario 1. The magnitudes of the gradient
(6.14e−8, 9.60e−8, 9.35e−8) at the epoch (12, 21, 39). Fur-
ther, the value of Mu for all the cases of scenario 1 is (1e−12,
1e−11, 1e−11) which shows the convergence of the ANN
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Table 2 Outcomes on Skin friction coefficients −C f xRe0.5x , C f zRe0.5x and local Nusselt number NuxRe−0.5 various values of parameters

M Pr α λ1 m γ β −C f xRe0.5x C f zRe0.5x NuxRe−0.5

0.1 0.71 0.1 0.12 0.1 0.1 0.3 0.882806 0.00867397 0.499076

0.5 1.76644 0.0350695 0.490395

1.0 1.48126 0.0573754 0.48217

1.5 1.7403 0.0739294 0.475888

0.5 0.71 1.17644 0.0350695 0.490395

1.0 1.17644 0.0350695 0.542903

1.5 1.17644 0.0350695 0.636657

2.0 1.17643 0.0350695 0.732635

0.5 0.71 0.1 1.17644 0.0350695 0.490395

0.5 1.41977 0.0363513 0.588698

1.0 1.75384 0.0370208 0.735939

1.5 2.1108 0.0371283 0.917479

0.5 0.72 0.1 0.11 1.17674 0.352166 0.491761

0.15 1.15536 0.0347679 0.491071

0.18 1.14012 0.0344409 0.490563

0.21 1.12552 0.0341218 0.490064

0.12 0.1 0.3 1.17644 0.0350695 0.490395

0.3 1.15457 0.0990267 0.490964

0.6 1.09684 0.165504 0.492517

0.9 1.03398 0.195308 0.494294

0.1 1.17644 0.350695 0.490395

0.5 1.17644 0.350695 0.467594

1.0 1.17644 0.350695 0.43867

2.0 1.17644 0.0350695 0.379288

0.3 1.2 0.3 0.1 0.1 1.63931 0.0622123 0.803698

0.3 1.73033 0.0665242 0.806509

0.5 1.81492 0.0694501 0.808414

0.8 1.93405 0.0723667 0.810269

Fig. 11 Error histogram of Scenario 1. a Case: 1, b Case: 2, c Case: 3
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Fig. 12 Plot fit of scenario 1. a Case: 1, b Case: 2, c Case: 3

Fig. 13 Performance curve of scenario 1. a Case: 1, b Case: 2, c Case: 3

Fig. 14 Training state of scenario 1. a Case: 1, b Case: 2, c Case: 3
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Fig. 15 Regression plot of scenario 1. a Case: 1, b Case: 2, c Case: 3

Fig. 16 Error histogram of scenario 2. a Case: 1, b Case: 2, c Case: 3

Fig. 17 Plot fit of scenario 2. a Case: 1, b Case: 2, c Case: 3
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Fig. 18 Performance curve of scenario 2. a Case: 1, b Case: 2, c Case: 3

Fig. 19 Training state of scenario 2. a Case: 1, b Case: 2, c Case: 3

Fig. 20 Regression plot of scenario 2. a Case: 1, b Case: 2, c Case: 3
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Fig. 21 Error Histogram of scenario 3. a Case: 1, b Case: 2, c Case: 3

Fig. 22 Plot fit of scenario 3. a Case: 1, b Case: 2, c Case: 3

Fig. 23 Performance curve of scenario 3. a Case: 1, b Case: 2, c Case: 3

model. Figures 30a–c presents the regression metric R � 1
for the three cases of scenario 1 with good accuracy of the
ANN model.

Figures 31, 32, 33, 34 and 35 influence the scenario for
three cases of case study 2 (CS2) Fig. 31a–c depicts that most
of the values give reasonable accuracy for case 1, whereas
higher negative zero error for case 2 and 3. Figure 32 shows

the plot fitness of all variants associated with scenario 1.
The error was found close to (−2 × 10−4 to 2 × 10−4)
for all the cases. Figure 33a–c shows the mean square
error and the best validation performance at epoch (7, 9, 9)
are given (6.29335e−9, 1.96818e−9, 2.22200e−9), respec-
tively,which shows that the data set iswell trained.Moreover,
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Fig. 24 Training state of scenario 3. a Case: 1, b Case: 2, c Case: 3

Fig. 25 Regression plot of scenario 3. a Case: 1, b Case: 2, c Case: 3

Fig. 26 Error histogram of scenario 1. a Case: 1, b Case: 2, c Case: 3
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Fig. 27 Plot fit of scenario 1. a Case: 1, b Case: 2, c Case: 3

Fig. 28 Performance/convergence curves of scenario 1. a Case: 1, b Case: 2, c Case: 3

Fig. 29 Training state of scenario 1. a Case: 1, b Case: 2, c Case: 3

the magnitude of controlling parameters, i.e., Mu and gradi-
ent, are presented in Fig. 34a–c. The value of gradient for
three cases (9.66e−8, 8.17e−8, 5.07e−8) with best fitting
data sets. The magnitude of Mu for all the cases is (1e−10,
1e−12, 1e−12). Figure 35a–c shows the best regression anal-
ysis (R � 1) plot for variants associated with scenario 2 with
good accuracy between the target and output values.

Case study 3

The network is designed to plot the temperature profile θ(η)

for two scenarios (γ , Pr.) for all variants associated with the
Jeffrey fluid flow system and are presented graphically in
Figs. 36, 37, 38, 39, 40, 41, 42, 43, 44 and 45. Figure 36a–c
shows the histogram analysis of the ANN model of sce-
nario 1 for three cases. The zero error line close to zero
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Fig. 30 Regression plot of scenario 1. a Case: 1, b Case: 2, c Case: 3

Fig. 31 Error histogram of scenario 2. a Case: 1, b Case: 2, c Case: 3

Fig. 32 Plot fit of scenario 2. a Case: 1, b Case: 2, c Case: 3
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Fig. 33 Performance curve of scenario 2. a Case: 1, b Case: 2, c Case: 3

Fig. 34 Training state of scenario 2. a Case: 1, b Case: 2, c Case: 3

Fig. 35 Regression plot of scenario 2. a Case: 1, b Case: 2, c Case: 3
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Fig. 36 Error histogram of scenario 1. a Case: 1. b Case: 2. c Case: 3

Fig. 37 Plot fit of scenario 1. a Case: 1. b Case: 2. c Case: 3

Fig. 38 Performance curve of scenario 1. a Case: 1. b Case: 2. c Case: 3

with negative zero error is observed in case 1, 2 and positive
zero error for case 3. The error line which is close to zero
represents the accuracy of data sets. Figure 37a–c demon-
strates the accuracy of the data for all variants associated
with scenario 1. Absolute errors values present the fitness of
the network and lie in the range (−5 × 10−0 to 5 × 10−0 ,
−1× 10−0 to 1× 10−0 , −1× 10−5 to 1× 10−5). Further,
training of data of 3 cases of scenario 1 is illustrated in
Fig. 38a–c which presents the best validation performance.

The least mean square error MSE with validation perfor-
mance (1.098096e−10, 7.21843e−14, 1.11346e−11) at the
corresponding epoch (466, 98, 381) is observed. The train-
ing states of data set are presented in Fig. 39a–c. Optimized
value of the weight with gradient value (9.99e−8, 9.67e−8,
9.95e−8). The value of Mu for three cases of scenario 1 are
(1e−8, 1e−13, 1e−9) respectively. Figure 40a–c shows the
best fitness analysis through regression plots with good accu-
racy.
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Fig. 39 Training state of scenario 1. a Case: 1. b Case: 2. c Case: 3

Fig. 40 Regression plot of scenario 1. a Case: 1. b Case: 2. c Case: 3

The analysis of designed ANNs for scenario 2 of all vari-
ants is depicted in Figs. 41, 42, 43, 44 and 45. Figure 41a–c
shows the plotted error histograms with negative absolute
error for case 1,3 and positive absolute error for case 2.
Figure 42a–c analyzed the fitting plot which shows the
best error analysis and lies in the range (−5 × 10−0 to 5 ×
10−0 , −5 × 10−5 to 5 × 10−5 , −1 × 10−0 to 1 × 10−0)
which authenticates the fitness of the proposed neural net-
work. Figure 43a–c presents MSE with the best validation
performances of scenario 2 for three cases. The best val-
idation performance with minimum MSE (1.63600e−12,
8.44640e−11, 9.51037e−14) at corresponding epoch (318,
374, 187) respectively with good validation. Figure 44a–c
shows the training states of all variants of scenario 2. As it is
observed from Fig. 44 training states depend upon Mu, gra-
dient, validation checks. The value of the gradient for three
cases are (9.98e−8, 9.97e−8, 9.99e−8) at the corresponding
epoch (318. 374, 187), respectively. The magnitude of Mu
for three values are (1e−10, 1e−8, 1e−13) which is close to
zero with good accuracy. Figure 45 shows the best regression

analysis of scenario 2 for all variants with good error fitness
of ANN showing the closeness of output and target values.

Tabular description for case studies 1–3

The results presented in Tables 3, 4 and 5 describe the trials
of performance of the networks for the three cases studies.
Results of different scenarios of all the cases with the least
value of MSE at the respective epoch are presented in tables.
The value of regression (R) for all the cases are 1. Different
values of Mu and gradient are presented. Time analysis are
presented in tables where the maximum time for an accurate
result is 6 s (see Table 6).

Concluding remarks

In the presented investigation, a Hall current effect on Mag-
netohydrodynamics flow with Jeffrey fluid and Heat transfer
with CCHFM over a stretchable sheet with varied thickness.
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Fig. 41 Error histogram of scenario 2. a Case: 1. b Case: 2. c Case: 3

Fig. 42 Plot fit of scenario 2. a Case: 1. b Case: 2. c Case: 3

Fig. 43 Performance curve of scenario 2. a Case: 1. b Case: 2. c Case: 3

The results are effectively analyzed through designed ANN-
LMM using error histogram, plot fit, performance, training
states, regression plot. Major outcomes of the present study
are summarized below:

1. Both velocity components f ′(η) and g(η) along with the
skin friction coefficient in the horizontal as well as in and
z-axis direction are accelerated with the increase in Hall
current parameter (m). Actually, it happens due to the

controlling mechanism of electric conductivity for the
fluid system, which accelerates molecular movement.

2. Magnetic field parameter reduces the thickness of
momentum boundary layer along x-axis, while an incre-
ment in M will tend to reduce fluid velocity as magnetic
field parameter is the ratio of electromagnetic force to the
viscous force and due to this fact drag force is enhanced
resulting in the increment in the skin friction coeffi-
cients along with x and z axes directions, respectively.
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Fig. 44 Training state of scenario 2. a Case: 1. b Case: 2. c Case: 3

Fig. 45 Regression plot of scenario 2. a Case: 1. b Case: 2. c Case: 3

Table 3 Convergence analysis presentation for all variants of Jeffery fluid-related CS

S Case Neurons MSE-based fitness Gradient R Epochs Mu Running time

Training Validation Testing

1 1 10 6.8527e–10 8.2625e–10 2.878e–09 9.96e–08 1 349 1.00e–08 0:00:04

2 10 6.9184e–10 3.1567e–10 1.7468e–09 9.51e–08 1 66 1.00e–10 0:00:01

3 10 2.2067e–09 1.5309e–09 1.6088e–09 9.99e–08 1 264 1.00e–08 0:00:04

2 1 10 4.7119e–09 1.3331e–10 5.9424e–09 1.78e–05 1 73 1.00e–08 0:00:01

2 10 7.0416e–10 6.4100e–10 7.4295e–10 9.99e–08 1 89 1.00e–10 0:00:01

3 10 3.1285e–10 4.3772e–10 7.6601e–10 9.798e–09 1 298 1.00e–08 0:00:03

3 1 10 5.1799e–10 1.6407e–09 5.8558e–09 9.96e–08 1 284 1.00e–09 0:00:03

2 10 1.8271e–11 2.2375e–11 2.5498e–11 9.97e–08 1 293 1.00e–09 0:00:03

3 10 1.0590e–09 8.8742e–10 1.8105e–09 9.83e–08 1 48 1.00e–10 0:00:02
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Table 4 Convergence analysis presentation for all variants of Jeffery fluid-related CS-2

Scenario Case Neurons MSE Gradient R Epochs Mu Running time

Training Validation Testing

1 1 10 1.8441e–10 1.5791e–10 1.2956e–10 6.14e–08 1 12 1.00e–12 0:00:00

2 10 1.6421e–10 1.4140e–10 1.1761e–09 9.60e–08 1 21 1.00e–11 0:00:00

3 10 1.1878e–10 2.9858e–10 1.2045e–10 9.35e–08 1 39 1.00e–11 0:00:00

2 1 10 7.0042e–09 6.2933e–09 9.4006e–09 9.66e–08 1 07 1.00e–10 0:00:00

2 10 1.5642e–09 1.9681e–09 1.8550e–09 8.17e–08 1 09 1.00e–12 0:00:00

3 10 1.4827e–09 2.2220e–09 1.0160e–09 5.07e–08 1 09 1.00e–12 0:00:00

Table 5 Convergence analysis presentation for all variants of Jeffery fluid-related CS-3

Scenario Case Neurons MSE Gradient R Epochs Mu Running time

Training Validation Testing

1 1 10 1.0614e–10 1.0980e–10 1.2006e–10 9.99e–08 1 466 1.00e–08 0:00:06

2 10 5.6532e–14 7.2184e–14 7.3058e–14 9.67e–08 1 98 1.00e–13 0:00:01

3 10 1.0913e–11 1.1134e–11 1.2658e–11 9.95e–08 1 381 1.00e–09 0:00:05

2 1 10 1.1531e–12 1.6360e–12 1.7100e–12 9.98e–08 1 318 1.00e–10 0:00:04

2 10 8.0637e–11 8.4464e–11 1.0036e–10 9.97e–08 1 347 1.00e–08 0:00:06

3 10 4.8363e–14 9.5103e–14 8.1864e–14 9.99e–08 1 187 1.00e–13 0:00:04

Table 6 Comparison of present results with published data [45] for different values of n

n Present results f ′′(0) when α � 0.25 [45] Present results f ′′(0) when α � 0.25 [45]

– 0.6 0.8503 0.850207 – 1.4522 – 1.452134

– 0.5 – 0.0833 – 0.083289 – 1.1667 – 1.166644

– 0.33 – 0.5000 – 0.500000 – 1.0000 – 1.0000000

0.0 – 0.7843 – 0.784284 – 0.9576 – 0.957648

0.5 – 0.9338 – 0.933828 – 0.9799 – 0.979948

3.0 – 1.0905 – 1.090490 – 1.0359 – 1.035867

5.0 – 1.1186 – 1.118587 – 1.0486 – 1.048610

7.0 – 1.1323 – 1.132388 – 1.0550 – 1.055043

10.0 – 1.1433 – 1.143316 – 1.0603 – 1.060323

Whereas along x-axis and z-axis the skin friction coeffi-
cient increases for M.

3. The temperature profile for θ(η) shows a reduction with
an increment of Pr as is the ratio ofmomentumdiffusivity
to the thermal diffusivity as due to the large value of Pr,
the thermal diffusivity becomes low which declines the
temperature profile.

4. The velocity component f ′(η) tends to increase with
an increment in Deborah number β, while the opposite
behavior is found for g(η).

5. Velocity profile f ′(η) decreases for larger value of ratios
of relaxation to the retardation time (λ1) while g(η)

shows opposite behavior.

6. With an increment in relaxation time of the heat flux γ

tend to decrease temperature profile θ(η) .
7. LocalNusselt numberNux increasewith increment in the

Pr, α, m, β and decreases with increase in M , λ1, γ /As
the larger value of the Nux corresponds to more effective
convection in the fluid flow system.

8. In the Artificial neural network, the error between the
target and output value after training are analyzed by an
error histogram. The Regression (R) of the trained data
set for all the cases is 1.i-e (R � 1).

In the future, one may exploit/investigate the strength
of the proposed ANN-LMM in various applications arising
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in the studies of nanofluids [46–52] and nonlinear systems
[53–55].

Acknowledgements Prof M. Y. Malik extends his appreciation to the
Deanship of Scientific Research at King Khalid University, Abha,
61413, Saudi Arabia for funding this work through the research group
program under number RGP-2-110-43.

Declarations

Conflict of interest The authors declared that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References:

1. Shah Z, Alzahrani EO, Alghamdi W, Ullah MZ (2020) Influences
of electrical MHD and Hall current on squeezing nanofluid flow
inside rotating porous plates with viscous and joule dissipation
effects. J Therm Anal Calorim 140(3):1215–1227

2. KumarD, SinghAK,KumarD (2020) Influence of heat source/sink
onMHDflowbetween vertical alternate conductingwallswithHall
effect. Phys A 544:123562

3. Opanuga AA, Adesanya SO, Okagbue HI, Agboola OO (2020)
Impact of Hall current on the entropy generation of radiative MHD
mixed convection casson fluid. Int J Appl Comput Math 6(2):1–18

4. Akbar Y, Abbasi FM, Shehzad SA (2020) Effectiveness of Hall
current and ion slip on hydromagnetic biologically inspired flow
ofCu−Fe3O4/H2Ohybrid nanomaterial. PhysScr 96(2):025210

5. Awan SE, Raja MAZ, Gul F, Khan ZA, Mehmood A, Shoaib
M (2021) Numerical Computing Paradigm for Investigation of
Micropolar Nanofluid Flow Between Parallel Plates System with
Impact of Electrical MHD and Hall Current. Arab J Sci Eng
46(1):645–662

6. Shah Z, Islam S, Gul T, Bonyah E, Khan MA (2018) The elec-
trical MHD and hall current impact on micropolar nanofluid flow
between rotating parallel plates. Results Phys 9:1201–1214

7. Chu YM, Nazeer M, Khan MI, Hussain F, Rafi H, Qayyum S,
Abdelmalek Z (2020) Combined impacts of heat source/sink,
radiative heat flux, temperature dependent thermal conductivity
on forced convective Rabinowitsch fluid. Int Commun Heat Mass
Transf 120:105011.

8. Hayat T, Riaz R, Aziz A, Alsaedi A (2020) Influence of Arrhe-
nius activation energy in MHD flow of third grade nanofluid over
a nonlinear stretching surface with convective heat and mass con-
ditions. Phys A Stat Mech Appl 549:124006

9. Riaz A, Zeeshan A, Bhatti MM, Ellahi R (2020) Peristaltic propul-
sion of Jeffrey nano-liquid and heat transfer through a symmetrical
duct with moving walls in a porous medium. Phys A 545:123788

10. Sreelakshmi K, Sarojamma G, Murthy JV (2018) Homotopy anal-
ysis of an unsteady flow heat transfer of a Jeffrey nanofluid over a
radially stretching convective surface. J Nanofluids 7(1):62–71

11. KhanMWA, KhanMI, Hayat T, Alsaedi A (2020) Numerical solu-
tion ofMHDflowof power lawfluid subject to convective boundary
conditions and entropy generation. Comput Methods Programs
Biomed 188:105262

12. Noreen S, Riaz A, Lu D (2020) Soret-Dufour effects in elec-
troosmotic biorheological flow of Jeffrey fluid. Heat Transfer
49(4):2355–2374

13. Shahzad F, Sagheer M, Hussain S (2018) Numerical simulation
of magnetohydrodynamic Jeffrey nanofluid flow and heat trans-
fer over a stretching sheet considering Joule heating and viscous
dissipation. AIP Adv 8(6):065316

14. Patel N, Meher R (2018) Analytical investigation of Jeffery-Hemal
flowwithmagnetic field by differential transformmethod. Int JAdv
Appl Math Mech 6:1–9

15. Vaidya H, Rajashekhar C, Divya BB, Manjunatha G, Prasad KV,
Animasaun IL (2020) Influence of transport properties on the peri-
stalticMHDJeffrey fluid flow through a porous asymmetric tapered
channel. Results Phys 18:103295

16. Nazeer M, Hussain F, Ahmad MO, Saeed S, Khan MI, Kadry S,
Chu YM (2021) Multi-phase flow of Jeffrey Fluid bounded within
magnetized horizontal surface. Surf Interfaces 22:100846

17. Waqas M (2021) Diffusion of stratification based chemically reac-
tive Jeffrey liquid featuring mixed convection. Surf Interfaces
23:100783

18. Malik HT, Farooq M, Ahmad S (2020) Significance of nonlinear
stratification in convective Falkner-Skan flow of Jeffrey fluid near
the stagnation point. Int Commun Heat Mass Transf 120:105032

19. Ahmed F (2021) Fully developed forced convective Jeffrey fluid
flow through concentric pipes annular duct. Eur Physi J Plus
136(1):1–20

20. Ali A, Saleem S, Mumraiz S, Saleem A, Awais M, Khan Marwat
DN (2020) Investigation on TiO 2–Cu/H 2 O hybrid nanofluid with
slip conditions inMHDperistaltic flow of Jeffreymaterial. J Therm
Anal Calorim 143:1–12

21. Asha SK, Sunitha G (2020) Thermal radiation and Hall effects
on peristaltic blood flow with double diffusion in the presence of
nanoparticles. Case Stud Therm Eng 17:100560

22. Sinha VK, Kumar B, Seth GS, Nandkeolyar R (2020) Features of
Jeffrey fluid flow with Hall current: a spectral simulation. Pramana
J Phys 94(1):1–8

23. Abeykoon C (2020) Compact heat exchangers–Design and opti-
mization with CFD. Int J Heat Mass Transf 146:118766

24. Cattaneo C (1948) Sulla conduzione del calore. In: Atti Semin
Mat Fis Univ Modena Reggio Emilia, Universitia di Modena, pp
83–101

25. Christov CI (2009) On frame indifferent formulation of the
Maxwell-Cattaneo model of finite-speed heat conduction. Mech
Res Commun 36:481–486

26. Ciarletta M, Straughan B (2010) Uniqueness and structural sta-
bility for the Cattaneo—Christov equations. Mech Res Commun
37:445–447

27. Tassaddiq A (2021) Impact of Cattaneo–Christov heat flux model
on MHD hybrid nano-micropolar fluid flow and heat transfer with
viscous and joule dissipation effects. Sci Rep 11(1):1–14

28. Awais M, Awan SE, Iqbal K, Khan ZA, Raja MAZ (2018) Hydro-
magneticmixed convective flow over a wall with variable thickness
and Cattaneo–Christov heat flux model: OHAM analysis. Results
Phys 8:621–627

29. Hayat T, Khan SA, Khan MI, Momani S, Alsaedi A (2020) Cat-
taneo–Christov (CC) heat flux model for nanomaterial stagnation
point flow of Oldroyd-B fluid. ComputMethods Programs Biomed
187:105247

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Complex & Intelligent Systems (2022) 8:5177–5201 5201

30. Alamri S, Khan AA, Azeez M (2019) Effects of mass transfer
on MHD fluid towards stretching cylinder: a novel perspective of
Cattaneo–Christov heat flux model. Phys Lett A 383:276–281

31. Shah Z, Alzahrani EO, Dawar A, Ullah A, Khan I (2020) Influ-
ence of Cattaneo–Christov model on Darcy-Forchheimer flow of
Micropolar Ferrofluid over a stretching/shrinking sheet. Int Com-
mun Heat Mass Transfer 110:104385

32. Ahmad S, Nadeem S (2020) Flow analysis by Cattaneo–Christov
heat flux in the presence of Thomson and Troian slip condition.
Appl Nanosci 10:1–15

33. Khan M, Ahmed A, Irfan M, Ahmed J (2020) Analysis of Cat-
taneo–Christov theory for unsteady flow of Maxwell fluid over
stretching cylinder. J Therm Anal Calorim 144:1–10

34. Robbins H, Monro S (1951) A stochastic approximation method.
Ann Math Stat 22:400–407

35. Mehmood A, Afsar K, Zameer A, Awan SE, Raja MAZ (2019)
Integrated intelligent computing paradigm for the dynamics of
micropolar fluid flowwith heat transfer in a permeablewalled chan-
nel. Appl Soft Comput 79:139–162

36. Sheikholeslami M, Gerdroodbary MB, Moradi R, Shafee A, Li Z
(2019) Application of Neural Network for estimation of heat trans-
fer treatment of Al2O3-H2O nanofluid through a channel. Comput
Methods Appl Mech Eng 344:1–12

37. Awan SE, Raja MAZ, Awais M, Shu CM (2021) Intelligent
Bayesian regularization networks for bio-convective nanofluidflow
model involving gyro-tactic organisms with viscous dissipation,
stratification and heat immersion. Eng Appl Comput Fluid Mech
15(1):1508–1530

38. Awais M, Bibi M, Raja MAZ, Awan SE, Malik MY (2021) Intel-
ligent numerical computing paradigm for heat transfer effects in a
Bodewadt flow. Surf Interfaces 26:101321

39. Raja MAZ, Awan SE, Shoaib M, Awais M (2022) Backpropagated
intelligent networks for the entropy generation and joule heating in
hydromagnetic nanomaterial rheology over surface with variable
thickness. Arab J Sci Eng, pp 1–25

40. Qureshi IH, Awais M, Awan SE, Abrar MN, Raja MAZ, Alharbi
SO, Khan I (2021) Influence of radiallymagnetic field properties in
a peristaltic flowwith internal heat generation: numerical treatment.
Case Stud Therm Eng 26:101019

41. Awan SE, AwaisM, RajaMAZ, ParveenN, Ali HM,KhanWU,He
Y (2021) Numerical treatment for dynamics of second law anal-
ysis and magnetic induction effects on ciliary induced peristaltic
transport of hybrid nanomaterial. Front Phys 9:68

42. Awan SE, Raja MAZ, Mehmood A, Niazi SA, Siddiqa S (2020)
Numerical treatments to analyze the nonlinear radiative heat trans-
fer in MHD nanofluid flow with solar energy. Arab J Sci Eng
45:4975–4994

43. Awais M, Awan SE, Raja MAZ, Parveen N, KhanWU, Malik MY,
He Y (2021) Effects of variable transport properties on heat and
mass transfer inMHDbioconvective nanofluid rheologywith gyro-
tactic microorganisms: numerical approach. Coatings 11(2):231

44. Hayat T, Khan MI, Farooq M, Alsaedi A, Waqas M, Yasmeen T
(2016) Impact of Cattaneo–Christov heat flux model in flow of
variable thermal conductivity fluid over a variable thicked surface.
Int J Heat Mass Transf 99:702–710

45. Fang T, Zhang J, Zhong Y (2012) Boundary layer flow over
a stretching sheet with variable thickness. Appl Math Comput
218(13):7241–7252

46. Parveen N, Awais M, Awan SE, Shah SA, Yuan A, Nawaz M,
Akhtar R, Malik MY (2021) Thermophysical properties of chemo-
tactic microorganisms in bio-convective peristaltic rheology of
nano-liquid with slippage, Joule heating and viscous dissipation.
Case Stud Therm Eng 27:101285

47. ShiQH,AhmedB,AhmadS,KhanSU, SultanK,BashirMN,Khan
MI, ShahNA,Chung JD (2021)Dual solution framework formixed
convection flow of Maxwell nanofluid instigated by exponentially
shrinking surface with thermal radiation. Sci Rep 11(1):1–12

48. Awais M, Raja MAZ, Awan SE, Shoaib M, Ali HM (2021) Heat
and mass transfer phenomenon for the dynamics of Casson fluid
through porous medium over shrinking wall subject to Lorentz
force and heat source/sink. Alex Eng J 60(1):1355–1363

49. Li YX, Mishra SR, Pattnaik PK, Baag S, Li YM, Khan MI, Khan
NB, Alaoui MK, Khan SU (2021) Numerical treatment of time
dependent magnetohydrodynamic nanofluid flow of mass and heat
transport subject to chemical reaction and heat source. Alex Eng J
61:2484–2491

50. Awais M, Awan SE, Raja MAZ, Shoaib M (2021) Effects of
Gyro-Tactic organisms in bio-convective nano-material with heat
immersion, stratification, and viscous dissipation. Arab J Sci Eng
46(6):5907–5920

51. Siddiqa S, Naqvi SB, Begum N, Awan SE, Hossain MA (2018)
Thermal radiation therapy of biomagnetic fluid flow in the presence
of localized magnetic field. Int J Therm Sci 132:457–465

52. Awan SE, Raja MAZ, Awais M, Bukhari SHR (2022) Backprop-
agated intelligent computing networks for 3D nanofluid rheology
with generalized heat flux. Waves in Random Complex Media, pp
1–31 (in press). https://doi.org/10.1080/17455030.2022.2039417

53. Shoaib M, Raja MAZ, Khan MAR, Farhat I, Awan SE (2021)
Neuro-computing networks for entropy generation under the influ-
ence of MHD and thermal radiation. Surf Interfaces 25:101243

54. Jin J (2021) A robust zeroing neural network for solving dynamic
nonlinear equations and its application to kinematic control of
mobile manipulator. Complex Intell Syst 7(1):87–99

55. Raja MAZ, Sabati M, Parveen N, Awais M, Awan SE, Chaudhary
NI, Shoaib M, Alquhayz H (2021) Integrated intelligent comput-
ing application for effectiveness of Au nanoparticles coated over
MWCNTs with velocity slip in curved channel peristaltic flow. Sci
Rep 11(1):1–20

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1080/17455030.2022.2039417

	Hall effect on MHD Jeffrey fluid flow with Cattaneo–Christov heat flux model: an application of stochastic neural computing
	Abstract
	List of symbols
	Introduction
	Description of the fluid flow system
	Similarity Conversion system
	Skin friction factor and Nusselt number

	Structure of the designed intelligent network
	Numerical results and discussion
	Performance analysis of numerical solution:
	Performance analyses on outcomes of the networks
	Case study 1
	Case study 2
	Case study 3
	Tabular description for case studies 1–3


	Concluding remarks
	Acknowledgements
	References:




