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In this paper, the effect of Hall current on an unsteady MHD transient three dimensional flow of an 
electrically conducting viscous incompressible fluid past an impulsively started infinite horizontal 
porous plate relative to a rotating system has been studied. It is assumed that the entire system rotates 
with a constant angular velocity about the normal to the plate and a uniform magnetic field is applied 
along the normal to the plate and directed into the fluid region. The magnetic Reynolds number is 
assumed to be so small that the induced magnetic field can be neglected. The expressions for the 
primary and secondary fields and shearing stress at the plate due to primary and secondary velocity 
fields are obtained in a non-dimensional form. The non-dimensional governing equations of the flow 
are solved by using the Galerkin FEM. The effects of the physical parameters, such as the Hartmann 
number (M), rotation parameter ( ) , porosity parameter ( )K  and Hall parameter (m) on primary and 
secondary velocities and shearing stresses x  and y  due to primary and secondary velocities are 

discussed through graphs and tables, and results are physically interpreted.  
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1. Introduction 
 
 MHD deals with the motion of an electrically conducting fluid in the presence of a magnetic field. 
There are numerous examples of application of the MHD principle. The dynamo and motor is a classical 
example of MHD principle. Geophysics encounters MHD characteristics in the interaction of a conducting 
fluid and the magnetic field. Engineers apply the MHD principle in fusion reactors, dispersion of metals, 
metallurgy, design of MHD pumps, MHD generators and MHD flow meters, etc. The MHD principle also 
finds its application in medicine and biology. Applications in biomedical engineering include cardiac MRI, 
ECG, etc. The mechanism of conduction in ionized gases in the presence of a strong magnetic field is 
different from that in a metallic substance. The electric current in ionized gases is generally carried by 
electrons which undergo successive collisions with other charged or neutral particles. In the ionized gases, 
the current is not proportional to the applied potential except when the electric field is very weak. However, 
in the presence of a strong electric field, the electrical conductivity is affected by the magnetic field. 
Consequently, the conductivity parallel to the electric field is reduced. Hence, the current is reduced to the 
direction normal to both electric and magnetic fields. This phenomenon is known as the Hall effect. The 
effect of Hall current on MHD flows has been studied by many researchers due to the application of such 
studies in the problems of MHD generators and Hall accelerators. Datta and Jana [1] studied the Hall current 
effects on oscillatory magneto-hydrodynamic flow past a flat plate. Biswal and Sahoo [2] presented the Hall 
current effects on oscillatory hydro-magnetic free convective flow of a visco-elastic fluid past an infinite 
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vertical porous flat plate with mass transfer. Watanabe and Pop [3] presented Hall effects on a magneto-
hydrodynamic boundary layer flow over a continuous moving flat plate. Aboeldahab and Elbarbary [4] 
studied the Hall current effect on a magneto- hydrodynamic free convection flow past a semi-infinite vertical 
plate with mass transfer. The Hall current effect with simultaneous thermal and mass diffusion on an 
unsteady hydro-magnetic flow near an accelerated vertical plate was studied by Acharya et al. [5]. Sharma et 
al. [6] presented the Hall effect on MHD mixed convective flow of a viscous incompressible fluid past a 
vertical porous plate, immersed in a porous medium with heat source/sink. Prabhakar Reddy and Anand Rao 
[7] presented radiation and thermal diffusion effects on an unsteady MHD free convection mass transfer flow 
past an infinite vertical porous plate with Hall current and heat source. Raju et al. [8] presented the Hall 
current effects on an unsteady MHD flow between a stretching sheet and an oscillating porous upper parallel 
plate with constant suction. Recently, Rajput and Kanaujia [9] studied MHD flow past a vertical plate with 
variable temperature and mass diffusion in the presence of Hall current.  
 The rotating flow of an electrically conducting fluid in the presence of a magnetic field is 
encountered in geographical fluid dynamics. It is also important in the solar physics dealing with the sunspot 
development, the solar cycle and the structure of rotating magnetic stars. It is well known that a number of 
astronomical bodies possess fluid interiors and magnetic fields. Changes that take place in the rate of rotation 
per minute, suggest the possible importance of hydro-magnetic spin-up. Sattar and Maleque [10] studied an 
unsteady MHD natural convection flow along an accelerated porous plate with Hall current and mass transfer 
in a rotating porous medium. The MHD flow over a moving plate in a rotating fluid with magnetic field, Hall 
currents and free stream velocity was studied by Takhar et al. [11]. Mbeledogu and Ogulu [12] studied heat 
and mass transfer of an unsteady MHD natural convection flow of a rotating fluid past a vertical porous flat 
plate in the presence of radiative heat transfer. Combined effects of Hall current and rotation on free a 
convection MHD flow in a porous channel were studied by Singh and Rakesh Kumar [13]. Ahmed and 
Sarma [14] studied the MHD transient flow past an impulsively started infinite horizontal porous plate in a 
rotating system with Hall current. The effects of Hall current and radiation absorption on the MHD micro-
polar fluid in a rotating system were presented by Satyanarayana et al. [15]. 
 The present paper is to analyze the effect of Hall current on an unsteady MHD transient three 
dimensional flow of an electrically conducting viscous incompressible fluid past an impulsively started 
infinite horizontal porous plate relative to a rotating system. The Galerkin FEM has been adopted to solve 
the governing equations of the flow. The behaviors of the primary and secondary velocities, shearing stresses 
have been discussed and presented for variations in the governing parameters.     
 
2. Mathematical model 
 
 The equations governing the motion of an incompressible viscous electrically conducting fluid in a 
rotating system in the presence of a magnetic field are 
 
Equation of continuity 
 
  . 0q . (2.1) 
 
Momentum equation 
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Kirchhoff’s first law 
 
  . 0J . (2.3) 
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General Ohm’s law 
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Gauss’s law of magnetism 
 
  . 0B  (2.5) 
 
where q is the velocity vector,   is the angular velocity of the fluid, r is the position vector of the fluid 
particle P considered, p is the pressure, J is the current density, B is the magnetic induction vector, E is the 
electric field, 2 q  is the Coriolis acceleration,    r   is the centripetal acceleration and the other 

symbols have their usual meaning. 
 We consider an unsteady MHD flow of an incompressible viscous electrically conducting fluid past 
a suddenly started infinite horizontal porous plate relative to a rotating system with constant suction in the 
presence of a magnetic field taking into account the effect of Hall current. The present investigation is 
restricted to the following assumptions. 

(i) All the properties are constant and the buoyancy force has no effect on the flow.   
(ii) The plate is electrically non-conducting. 

(iii)  The entire system is rotating with angular velocity   about the normal to the plate and   is so 

small that    r   can be neglected. 

(iv) The magnetic Reynolds number is so small that the induced magnetic field can be neglected. 
(v) ep  is constant. 

(vi)  0E  
 

 
 

Fig.1. Geometry of the flow. 
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 Initially, the plate and the fluid were rotating in unison with constant angular velocity Ω  about the 
normal to the plate. At time ' ,t 0  the plate is suddenly moved in its own plane relative to the rotating 

system with velocity 0U   which is thereafter maintained constant. We introduce the coordinate system 

 ', ', 'x y z  with the X  axis horizontally in the direction of the plate velocity, Y  axis horizontally 

perpendicular to the direction of the plate velocity and Z  axis along the normal to the plate which is its axis 

of rotation. Let ˆˆ ˆ' ' 'u i v j w k  q  be the fluid velocity, ˆˆ ˆ
x y zJ i J j J k    J  be the current density at the 

point ( ', ', ', ')P x y z t  and ˆ
0B kB  be the applied magnetic field, ˆˆ ˆ, ,i j k  being the unit vectors along the X  

axis, Y axis and Z  axis respectively. As the plate is infinite in the X direction and Z  direction, therefore, 
all the quantities except possibly the pressure are independent of 'x and 'y . 
 

Equation (2.1) gives 
'

'

w
0

z





, (2.6) 

 

which is trivially satisfied by 0w w    a constant (2.7) 
 
 Therefore the velocity vector q is given by  
 

  ˆˆ ˆ' ' 0u i v j w k  q . (2.8) 
 

Equation (2.5) is satisfied by ˆ
0B kB . (2.9) 

 

Equation(2.3) reduces to 
'
zJ

0
z





 which gives zJ 0  , (2.10) 

(as the plate is electrically non-conducting) 
 
 Hence, the current density is given by 
 

  ˆˆ
x yJ i J k  J . (2.11) 

 
 Under the assumptions (v) and (vi), Eq.(2.4) takes the form 
 

     
0

m

B
    J J B q B  (2.12) 

 
where  e em     is the Hall parameter. 

 Equations (2.8), (2.9), (2.11) and (2.12) yield 
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With these assumptions and under the usual boundary layer approximation, Eq.(2.2) reduces to  
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with   
'

'

p
0

z





 

 
where 0w  is the constant suction velocity,   is the kinematic viscosity and the relevant initial and boundary 
conditions are 
 
  ' ;t 0        ' , 'u 0 v 0  ,      for all      'z  
 
  ' ;t 0        ' , '0u U v 0         at        'z 0 , (2.17) 
 
              ' , 'u 0 v 0           as         'z 0 . 
 
We introduce the following non-dimensional variables and parameters 
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 Using the above non-dimensional quantities in Eqs (2.15), (2.16) and (2.17), we obtain the following 
non-dimensional form of the governing equations of the flow 
 

   
2

2 2

u u u M 1
v u mv u

t z Kz 1 m

  
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The corresponding initial and boundary conditions are 
 
  ;t 0        ,u 0 v 0         for all       z , 
 
  ;t 0        ,u 1 v 0           at         z 0 , (2.20) 
 
              ,u 0 v 0         as        z 0 . 
 
 
 
 
 



476  B.P.Reddy 

3. Method of solution 
 
 Finite element methods are widely used to solve boundary value problems. Here, we use the 
Galerkin finite element method to solve the governing Eqs (2.18) and (2.19), under the boundary conditions 
given in Eq.(2.20). The method entails the following steps. 

1. Division of the whole domain into smaller elements of finite dimensions called “finite elements”. 
2. Generation of the element equations using variational formulations. 
3. Assembly of element equations as obtained in step 2. 
4. Imposition of boundary conditions to the equations obtained in step 3. 
5. Solution of the assembled algebraic equations. 

 The assembled equations can be solved by any of the numerical technique viz. Gauss-Seidal iteration 
method. An important consideration is that of shape functions which are employed to approximate actual 
functions. For one dimensional and two dimensional problems, the shape factions can be linear/quadratic and 
higher order. However, the suitability of the shape functions varies from problem to problem. Due to simple 
and efficient use in computations linear shape functions are used in the present problem. The numerical 
solutions for the primary and secondary velocities are obtained by using C  program. To judge the 
convergence and stability of the Galerkin FEM, the same program was run with slightly changed values of 
step sizes in the time and space directions, no significant change was observed in the values of the primary 
velocity ( )u  and the secondary velocity ( ).v  Hence, we conclude that the Galerkin finite element method is 
convergent and stable.    
 
Shearing stresses 
 
 The shearing stress at the plate in the direction of the primary velocity is given by 
 

  x
z 0

u

z 

     
. 

 
 The shearing stress at the plate in the direction of the secondary velocity is given by  
 

  y
z 0

v

z 

     
. 

 
4. Results and discussion 
 
 In order to study the effects of physical parameters, such as the magnetic parameter ( ),M  rotation 

parameter ( ),  porosity parameter (K) and Hall parameter (m) on the flow, numerical calculations have 
been carried out for the non-dimensional primary velocity u and secondary velocity v  as well as shearing 
stresses x  and y  due to primary and secondary velocities, respectively. The obtained numerical results are 

presented in figures and tables. These results show the effect of the material parameters on the quantities 
mentioned. 
 The effects of the magnetic parameter M  on the primary and secondary velocity fields are presented 
in Figs 1 and 2, respectively. It can be seen that an increase in the magnetic parameter decreases the primary 
velocity and the reverse effect is observed on the secondary velocity. That is retarded under the effect of the 
transverse magnetic field. This phenomenon is clearly supported by the physical reality. Figures 3 and 4 
depict the effect of the Hall parameter  e em     on the primary and secondary velocity fields, 

respectively. It is seen that an increase in the Hall parameter increases the primary and secondary velocity 
fields. Also, the effect of the Hall parameter m has a minor increasing effect on the primary velocity whereas 
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there is a quite larger increasing effect on the secondary velocity which indicates and also supports the fact 
that the Hall parameter induces a cross-flow in the boundary layer. The effects of the porosity parameter K  
on the primary and secondary velocity fields are presented in Figs 5 and 6, respectively. It is observed that an 
increasing values of the porosity parameter increases in both primary and secondary velocities. Figures 7 and 
8 depict the effect of the rotation parameter   on the primary and secondary velocity fields, respectively. It 
is clear that an increase in the rotation parameter decreases the primary velocity and increases the secondary 
velocity. Also, we notice that the rotation parameter has a little effect on the primary velocity whereas there 
is a quite larger increasing effect on the secondary velocity. The same figures further demonstrate that the 
primary velocity asymptotically decreases from its maximum value u 1  to its minimum value u 0  as z  
increases and the secondary velocity first increases in a very thin layer adjacent to the plate and after this 
layer it asymptotically decreases to zero as z  increases. In other words, it may be stated that the secondary 
motion is accelerated under the effects of the Hall current and rotation due to the application of the 
transverse magnetic field. 
 The numerical values of the shearing stresses x  and y  due to the primary and secondary velocities 

for variations in the magnetic parameter (M), Hall parameter (m), porosity parameter ( )K  and rotation 
parameter ( )  are presented in Tab.1. It is seen that an increase in the strength of the magnetic field and 

angular velocity of rotation of the fluid leads to an increase in x  and y  falls due to the Hall effect. Also, an 

increase in the porosity parameter decreases x . From this observation, we may interpret that the viscous 
drag on the plate due to primary motion is reduced under the Hall effect, but this frictional force increases 
the effect of the magnetic field, rotation of the fluid. The magnetic strength, rotation of the fluid and porosity 
parameter y  increasing. Also, for small and moderate values of the Hall parameter y   rises as the Hall 

parameter increases but for large values of the Hall parameter this behavior takes a reverse trend.  
 

 
 

Fig.1. Effect of the magnetic parameter M on the primary velocity. 
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Fig.2. Effect of the magnetic parameter M  on the secondary velocity. 
 

 
 

Fig.3. Effect of the Hall parameter m on the primary velocity. 
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Fig.4. Effect of the Hall parameter m on the secondary velocity. 
 

 
 

Fig.5. Effect of the porosity parameter K  on the primary velocity. 
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Fig.6. Effect of the porosity parameter K  on the secondary velocity. 
 

 
 

Fig.7. Effect of the rotation parameter   on the primary velocity. 
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Fig.8. Effect of the rotation parameter   on the secondary velocity. 
 

Table 1.  The numerical values of the shearing stresses x  and y  due to the primary and secondary 

velocities for different values of , ,M m K and . . 
 

M  m  K    x  y  

 
1.0 
2.0 
1.0 
1.0 
1.0 

 

0.2 
0.2 
0.4 
0.2 
0.2 

1.0 
1.0 
1.0 
2.0 
1.0 

0.4 
0.4 
0.4 
0.4 
0.6 

 
1.312586 
1.425732 
1.303914 
1.240932 
1.318460 

 

0.066124 
0.067201 
0.085820 
0.081876 
0.087432 

 
Conclusions 
 
 In this paper, an MHD transient three dimensional flow of an electrically conducting viscous 
incompressible fluid past an impulsively started infinite horizontal porous plate relative to a rotating system 
has been presented. It is assumed that the entire system rotates with a constant angular velocity about the 
normal to the plate and a uniform magnetic field is applied along the normal to the plate and directed into the 
fluid region. The Galerkin FEM has been adopted to solve the non-dimensional governing equations of the 
flow. The study has shown that the primary velocity is retarded under the effects of the magnetic field and 
rotation of the fluid, whereas this motion is accelerated under the Hall effect. The secondary velocity is 
accelerated under the effects of the Hall current and rotation due to the application of the transverse magnetic 
field. The viscous drag on the plate due to primary motion is reduced under the Hall effect, but this frictional 
force increases under the effects of the magnetic field and rotation. The shearing stress y  due to the 

secondary velocity rises under the effects of the Hartmann number M  and the angular velocity . . 
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Nomenclature 
 
 0B

 
− strength of the magnetic field applied 

 e  − electron charge  
 K   − porosity number 
 M  − Hartmann number 
 m  − Hall number 
 ep

 
− electron pressure 

 t   − time 
 e  

− number density of electron 

   − coefficient of viscosity 
   − kinematic viscosity 
   − fluid density 
 e  

− electron collision time   

 x   − shearing stress due to the primary velocity 

 y   − shearing stress due to the secondary velocity 

   − electrical conductivity of the fluid  
    − rotation parameter 
 e   − electron frequency  
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