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HALL-LITTLEWOOD FUNCTIONS, PLANE PARTITIONS,
AND THE ROGERS-RAMANUJAN IDENTITIES

JOHN R. STEMBRIDGE

Abstract. We apply the theory of Hall-Littlewood functions to prove sev-
eral multiple basic hypergeometric series identities, including some previously
known generalizations of the Rogers-Ramanujan identities due to G. E. Andrews
and D. M. Bressoud. The techniques involve the adaptation of a method due
to I. G. Macdonald for calculating partial fraction expansions of certain types
of symmetric formal power series. Macdonald originally used this method to
prove a pair of generating function identities for plane partitions conjectured
by MacMahon and Bender-Knuth. We show that this method can also be used
to prove another pair of plane partition identities recently obtained by R. A.
Proctor.

0. Introduction

Many identities from the theory of symmetric functions can be viewed as
generalizations of standard results from the theory of partitions and/or basic
hypergeometric series. See Chapter I of [M], for example. The sense of gen-
ralization typically derives from the fact that when the variables xx, x2, ...
in a symmetric function identity are specialized to be powers of a single vari-
able q , one usually obtains combinatorial information about partitions (linear
or plane), or else a well-known fact about basic hypergeometric series, i.e., q-
series. However, most of the results that have been obtained in this way do not
extend very deeply into the theory of ^-series.

The main purpose of this paper is to present methods for deriving some non-
trivial ^-series identities via the theory of Hall-Littlewood symmetric functions.
For example, we will obtain the Rogers-Ramanujan identities

oo r oo
EQ TT,, 5n-l,-l,, 5/1-4.-1
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as a consequence of these methods.
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470 J. R. STEMBRIDGE

The most crucial part of the method we present was suggested by Macdonald's
derivation of a partial fraction expansion involving Hall-Littlewood functions
(see Example III.5.5 in [M]). Macdonald [M] used this expansion to prove a pair
of plane partition conjectures due to MacMahon (Example 1.5.17), and Bender
and Knuth (Example 1.5.19), and to calculate the Hecke series for the group
of symplectic similitudes over a local field (§V.5). By specializing the variables
in Macdonald's expansion, one obtains an interesting pair of apparently new
multiple <?-series identities (see Corollary 1.5(a) and (b) below), but not, unfor-
tunately, the Rogers-Ramanujan identities. Nevertheless, in §1, we will derive
another Hall-Littlewood identity using Macdonald's method that will imply not
only the Rogers-Ramanujan identities, but also a pair of generalizations due
originally to Andrews [A2] (see Corollary 1.5(c) and (d) below).

In view of the unusual nature of this proof of the Rogers-Ramanujan identi-
ties, it is natural to inquire as to whether the theory of symmetric functions in
general, or Hall-Littlewood functions in particular, is unavoidably required by
these methods. In fact, they are not; in §2 we give a redevelopment of the main
steps in §1 that is entirely elementary. (Although it would be foolish to claim
we have contradicted Hardy's assertion that none of the proofs of the Rogers-
Ramanujan identities can be called both "simple" and "straightforward.")

The techniques we present in §2 show that Macdonald's method can be ap-
plied directly to certain types of ^-series, rather than symmetric functions. This
observation suggests the possibility of deriving further identities of the Rogers-
Ramanujan type by working directly with c7-series. This possibility is realized in
§3, where we use Macdonald's method to prove even more general results, cul-
minating in 16 families of multiple c7-series identities of the Rogers-Ramanujan
type. Some of these identities can be found in the vast catalogue of multiple
<7-series identities due to Andrews [A2, A3] and Bressoud [Bl, B2] but others
appear to be new.

There have also been many combinatorial generalizations of the Rogers-
Ramanujan identities, beginning with Gordon [Gl], and later with Andrews
[Al, A3] and Bressoud [B1-B3]. However, we have made no attempt to recast
the 67-series identities we prove here in combinatorial terms.

Finally, in §4 we return to one of the original purposes of Macdonald's partial
fraction method: the enumeration of plane partitions. There are a number of
known or conjectured generating function formulas for sets of plane partitions
belonging to various types of symmetry classes (see [St] for a survey). Two of
these are the pair mentioned earlier; these were proved not only by Macdonald,
but also independently by Andrews [A7, A8], Gordon [G2], and Proctor [PI].
Recently, two more plane partition generating function formulas were found by
Proctor [P2]; we will show that Macdonald's method can be adapted to prove
this new pair as well.

Among the further applications of Macdonald's method, we remark that it
has been recently used by Goulden to enumerate Young tableaux of bounded
width [Go].
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Notation and background. For any nonnegative integer n and indeterminates
z, q we will use the abbreviations

(z)n = (l-z)(l-qz)--.(l-q"-Xz),

(z)oo = (l-z)(l-qz)(l-q2z)--- ,

with the dependence on q implicitly understood. In circumstances where the q-
dependence needs to be displayed explictly, we will write (z ; q)n and (z ; q)^ .
For future reference, let us record here Jacobi's Triple Product Identity [A9,
(7.1)]:

(0.1) iQ)00ia)00iQ/a)00=  £ i-l)"aq^ ,
r=—oo

and the ^-Binomial Identity [A9, (2.9)]:

Note that the terms of the two-sided series (0.1) can be combined and rearranged
into the following equivalent pair of one-sided series:

°° ( r\
(0.3) («)oo(«)oo(*/«)oo = ! + £(-l)W2>(1 + Qlar),

r=\
oo

(0.4) (íUaUí/fl)«, = £(-1W*>(i - Q2r+i/a2/-+1.

r=0

Also, if we replace q with q     and z with —z/q , the special case a = q" of
(0.2) becomes the following well-known ^-analogue of the Binomial Theorem:

(0.5) (-z;q)n = J2zq^
r=0

where ["] = (q)„/(q)r(q)n_r denotes the ^-binomial coefficient.
A partition of r is a weakly decreasing sequence X = (Xx, X2, ...) of nonneg-

ative integers such that |A| = ¿f,X¡ = r. The number of nonzero terms of X is
called the length and denoted by f(X). The conjugate X' is the partition whose
zth term X'¡ is defined to be the number of terms > z in A. In most cases, we
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will follow the partition notation of [M], although one important exception will
be the parameter

"«:=£(*<)

This quantity would be n(X') in the notation of [M].
It will be convenient to extend the notation (z)n to partitions X by defining

iz)x = iz)il-i2i*h2-xf '

and to extend the <?-binomial notation by defining

iQ)n
ÍQ)n-LÍQ)x

with the convention that ["] = 0 if Xx > n .
Finally, if x = (xx, ... , xn) is an zz-tuple of variables and a e Z" (or even

R"), we will use the notation xa as an abbreviation for x"' ■ ■ -x°".

1. Basic techniques

For each partition X = (Xx, ... ,Xf of length at most zz, let Pfx) =
Px(x; q) denote the Hall-Littlewood function indexed by X in the variables
x = (xx, ... , Xn), i.e.,

11        X;-X¡(1.1) Pfx;q)=   £   w
weSJX

where Sn/X denotes a set of left coset representatives for the subgroup of the
symmetric group 5   consisting of those permutations of (xx, ... , xf) that fix
xk [M, III].

Let px > p2 > ■ ■ ■ > Pj > 0 denote the distinct integers occurring among
(Xx, ... , Xn), and let m¡ denote the multiplicity of p¡ in X. The /-tuple
(m) = (mx, ... , mf is thus a composition of zz. The distinct permutations
of xÁ may be indexed by (ordered) partitions of the indeterminate-set x into
blocks of sizes mx, ... , m¡,or equivalen tly, by functions f:x —>■ {1, 2, ...,/}
with \f~ (i)\ = m¡. We will refer to such a map / as a function of type (m).
Using fij as an abbreviation for the product of the variables in fi~ (i), the
definition (1.1) may be rewritten in the form

(1-2)      ^;<7) = £/f'---./rv  */=   II   ir^r-
f f(x,)<Axj)    '       J

summed over functions of type (m).
It is well known and not difficult to show that the Hall-Littlewood functions

are symmetric polynomial functions of the variables xx, ... , xn. In fact, they
form a basis of R[xx, ... , xnfn as a module over the coefficient ring R = Z[q]
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HALL-LITTLEWOOD FUNCTIONS 473

(see [M, III]). An alternative definition which makes the symmetry of Pk more
transparent is the the following:

(1.3) PÂx\q) = 1
VM) E

wes„
w u xi~xJ

where vfq) = U'i=iiQ)m/il -qT' Im> HI.(2.1)]. From this definition it is also
clear that Pfx ; 0) is the Schur function sfx).

The principal source from which we intend to derive ^-series identities de-
velops from the following pair of Hall-Littlewood function expansions:

(1.4)

(1.5)

<t>(x;q) =   E  PM>Q)>
f(X)<n

Vix;q)=   E  Pk(*■><!)>
f(X)<n

where <S>(x ; q) and *¥(x ; q) are the zz-variate symmetric formal power series
defined by

-r-r       1       TT ! _ Qxixi

l '   KJ '    J

-n-     1     -r-r ! _ qx¡x¡

Proofs may be found in Examples III.5.1, 2 of [M].
Starting with identity (1.4), Macdonald developed a generalization in which

sums analogous to (1.4) were restricted to those partitions X whose diagrams
fit inside an n x k rectangle (i.e., Xx < k and f(X) < n ; see Example III.5.5,
op. cit.). This generalization led to Macdonald's proof of the plane partition
conjectures and Hecke series calculations mentioned in the introduction.

To describe this result, let us define 6 = (I, ... , I) e Z" , and use Z" to
denote the elementary abelian group of order 2" acting on Z" via sign changes
and on the variables x¡ by inversions. Thus, for a given element s e Z2, sd
is obtained by negating certain entries of 8 and sx is obtained by replacing
certain variables x¡ with l/x¡. By convention, Pfx ; q) = 0 for f(X) > n , so
the constraint f(X) < n need not be explictly imposed in what follows.

Theorem 1.1 (Macdonald). We have

kE" Hpxix'>Q) = E°(jx;4) i
sez; 1 - ux (6-s8)/2-

The following result is an analogous generalization of (1.5). The proof we
give is quite similar to Macdonald's proof of Theorem 1.1.
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Theorem 1.2. We have

E^E'y^HE^*;*) l-uxe-se'

Proof. Define

tp(u) = E u E Puix ; q) = YZAZ T, m"'p2a(^ ; q) >
k>0      Xt<k X

and observe that (1.5) implies

(1-6) ip(u)(l-u)\u=x=V(x;q).
Using (1.2), we may rewrite the definition of y/(u) in the form

^) = T^E/.2/"---^'^^/'
ß,f

summed over all partitions p = (px > p2 > ■ ■ ■ > p¡ > 0) and all surjective
functions /: x —> {1, ... , /} with 1=1,2,3,....

If we set Vj = Pj+X (i < I) and u¡ = p¡, then ux, ... , u¡_x > 0, u¡ >0 and
thus

E/Í"1 ■ • ■ J?V' = E*f' • "/fV^ = (t^2) - - - (uF2_f—L^,
„ „ 1 - MX

where (z) := z/(l - z) and F; := fxf2 ••• f¡. We therefore have

(1.7) ip(u) = ^— E<mF.2) ■ • ' (uFi2-i>t   ^ 20-
1 - u  f 1 - ux

This expansion shows that (z/(w) is a rational function of u with simple poles
occurring at u = x~2a (a € {0, 1}"). Since y/(u) vanishes at infinity, there
must be a partial fraction decomposition of the form

*(")=   E   7Z^'
ae{o,i}" *     MX

where ca is the limit of ^(zz)(l - ux a) as u —► x~ a .
From (1.6), we see that cQ = ^(x; q), and therefore (cf. (1.7)),

2, .„2    .       nf(1-8) V(x;q) = J2iFÏ)--iPi-i)-
-x26'f l    x

Note that nfx    ) = n~(x), where f(xf = I + 1 - fi(xf . Hence,

-I *—■»       -2 -2    Jr/-(X_   )v{x 1;«)=e^. >-^/-í>rr-=¿
(1.9)

V^,    -26P.2. ,   -20 £2    .

l-x-26
A
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HALL-LITTLEWOOD FUNCTIONS 475

and therefore (cf. (1.7)), ce = *¥(x~ ; q). More generally, a typical summand
of (1.7) will contribute to ca iff xa occurs among the partial products F¡ (0 <
i < I). Restricting our attention to the maps / with this property, we find

ca = E<*"2^>2> • • • <*"2a^2-i>^-^^2+>> • • • <*-2^2-,>-   *'
l-JC" 1 -X

V_
2(8-a)

where j denotes the index (depending on / ) for which F = xa . Let s denote
the member of Z" for which 2a = 6 - s 6, and let x+, x_ denote the sets of
noninverted and inverted variables in sx, respectively. Using the fact that

nf = nf\x_ '/l*+ n qXjX¡

■*,€X_ ,X.ÇiX, 1 XjXj

an application of (1.8) and (1.9) therefore yields

(1.10) ca = V(x_X;qmx+;q)       J]
1 - qx¡x¡

J I,  = *¥{sx;q).
xiex_,xj€x+   1      XjXj

This determines the partial fraction expansion of ip(u), and so the result fol-
lows.   D

We remark that there are other Hall-Littlewood function identities similar to
(1.4) and (1.5) (see Examples 111.5.3,4 of [M]) to which the above techniques
may be applied. However, in these other cases there arise complications which
render doubtful the existence of expansions as explicit as those of Theorems
1.1 and 1.2.

We now consider the effect of the substitution x¡ = zq'~ (1 < i < n) on
the identities of Theorems 1.1 and 1.2. Using the notation introduced in §0, we
claim that the following ^-series identities are the result.

Theorem 1.3.

(a)

(b)

E
/(X)<k

z\X\qn(X) = (-z)nf2(-l)rz{k+X)rq{k+2}^
r=0

. 2   2r-l1 - z q

n+\

E
f(X)<k

zwq2nm = J2{_lyfk+l)r(](2k + i)(r2)
r=0

1 - zq 2r-l

izQr~X+i

George Andrews [private communication] also obtained these identities as
limiting cases of a generalization of Watson's Theorem [A4, Theorem 4].

Proof. If w is any nontrivial permutation of I, ... , n, then the expression
n,-<i-(*i _ QXj) will vanish under the substitution x¡ —► zqw(,)~x .  It follows
that when x¡ = zq'~ , the only part of (1.3) that survives is the term indexed
by the trivial permutation. After routine simplication of this single term (cf.
Example III.2.1 of [M]), one finds

(1.11) PAz, zq, ... , zq ■x) = z%nW
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Therefore, the coefficient of u   on the left in Theorem 1.2 becomes

f(X)<k

z2Wq2n(X)

Now consider the right side of Theorem 1.2. From the factorization in (1.10), it
is clear that *¥(sx ; q) will vanish under the substitution xt. —► zq'~x if xr e x_
and xr_x 6 x+ for some r > 0. Hence, ^(sx; q) will be nonzero only if x_
is of the form (xx, ... , xr) for some r. In that case, it is easy to verify that

n*:' ; Q) - i-lYz2rq3^/(z2qr-x)r, V(x+ ; q) -» l/(z2q2r)n_r, and

n 1 - qx.x]
-i

x,€x_ ,Xj€x+   *      XjXj

-Í-1

-1

under the substitution x¡ —► zq     . We therefore have (cf. (1.10))

i,(jx;0)-»(-iyVV^ 1 - z q
j (zV-1: n+l

It follows that the coefficient of «   on the right in Theorem 1.2 becomes

J2(-l)rz(2k+2)rq{2k+3)^
r=0

, 2   2r-l1 - z q
I A2 „r— \\

J   (Z   ̂         )»+l

Identity (b) can now be obtained by substituting z for z" throughout. Identity
(a) follows similarly from Theorem 1.1.   a

Taking the limit zz -+ oo, we obtain

Corollary 1.4.

,\x\q
n(X) ,r    (k + \)r   (k+2){r2 )     1 -Z  q

2   2r-\

E *whr = (-)ooE(-i)r^T"V— (^v-r)c
/(A)<Zc (í)í r=0

2/!(A) OO /r\       1 _„2r-'
(b) y   zWQ=J2(-lfz{k+l)rq{2M)(2)   l~z« ,

For both (a) and (b), there are two special values of z for which the infinite
series can be summed in closed form via Jacobi's Triple Product (0.1). For (b),
the special values are z = q and z = q .In the former case, the right side of
(b) becomes

1
(«)c

l+g(_l)V/C+,)f+(2fc+3)(2)(l+^
r=l

and thus, aside from a multiplicative factor, it is of the form (0.3) with the
qk+x  and q -> q2k+2>. In the latter case, the right side ofidentifications a
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(b) becomes

iQ)^ti-^Q(lk+1)r+[2M){2)i^-Q2r+X),

r=0

and thus is of the form (0.4) with a —► q2 +2 and q —► q2 +3. Aside from
multiplicative factors, one similarly finds that in case z = qx>1, the right side
of (a) assumes the form of (0.3) with a -* q ' , q —► q + , and in case
z = q, it assumes the form of (0.4) with a —> q +x , q —> q +2.

The four ^-series identities that these specializations produce are recorded
below. The two that are consequences of Corollary 1.4(a) (and ultimately The-
orem 1.1) are labeled (a) and (b); the two that are consequences of Corollary
1.4(b) and Theorem 1.2 are labeled (c) and (d). In one exceptional case (the
second), we have substituted q for q to avoid fractional exponents. In each
case, the infinite product is taken over all positive integers n satisfying the
indicated congruence.

Corollary 1.5

q
iQ)x iQ)

n(X)+\X\        ,       ,
(a) E   ^7^ = 7^ lit1-<?")'     « = 0,±l(modzc + 2);

f(X)<k

2n(X)+\X\ t_a.a2)
(b)   E      2    2.   - ,  V \,"W-q"),    n = 0,±(k+l)(mod2k + 4);

/w<k fo ; 9 )x   íq ; q )c1 oo

2n(X)+2\X\ .
(°) ESü-= 7vr^(1-«',)'     " = 0,±l(mod2zc + 3);

/(X)<k     {q>* {q,°°

2n(X) + \X\ j

W        E      tn\      ^7^Y-ri(1-gW)'     " = 0,±(zc + l)(mod2zc + 3).
nx)<k   (q)*       [q)™

Note that the Rogers-Ramanujan identities are special cases of (c) and (d).
(Take k = 1.) Furthermore, (c) and (d) are themselves special cases of the
following more general result due to Andrews [A2]:

/1n2(X)+Xi+--+Xk .

(M2)     z-iï)—-Tir   n  (i-o,
/(X)<k v   n ^J°° n=0,±i (2k+3)

where n2(X) := 2n(X) + \X\ = J2Xj, and i and zc are any pair of integers
satisfying I < i < k + I . (Take i = 1 and i = k + 1 to obtain identities (c)
and (d).)

In the special case k = 1, identities (a) and (b) are equivalent to the special
1IIcases z = q and z = q '   of the following well-known result due to Euler [A5,
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(2.2.6)]:
oo      n    {")T.zq

n=0 («).

For general k , it seems that neither (a) nor (b) has previously appeared in the
literature of ^-series.

2. Elementary proofs

The #-series identities of the previous section were proved by starting with
the Hall-Littlewood function identities (1.4) and (1.5), computing a partial frac-
tion expansion à la Macdonald, and then specializing the variables. In this
section, we will give a more elementary proof of the same identities by first
specializing the variables, and then extracting partial fractions. We will also
show that the specialized versions of (1.4) and (1.5) can be given elementary
proofs, thus removing the need for the theory of Hall-Littlewood functions.
In fact, it should be emphasized that the proof of Theorem 1.3 we give here,
which includes Corollary 1.5 and the Rogers-Ramanujan identities among its
consequences, is completely self-contained (aside from use of the easy-to-prove
^-Binomial Identity (0.2)).

First, we record the identities obtained from (1.4) and (1.5) via the substitu-
tion x¡ —> zq'~ . With the aid of (1.11), it is easy to check that (1.4) becomes

(2.11 E zWqn(X)

and similarly, after replacing z   with z, (1.5) becomes

1
(2.2) E zWq2n(X)

(*),

It is interesting to note that (2.2) is equivalent to an identity recently used by
Stanton and Zeilberger to prove a conjecture of Odlyzko about the behavior of
the formal power series (1 - (?) /(q)^ [SZ, (JS)].

Elementary proof of '(2.1). An application of the ^-Binomial Identity (0.2) yields

(~z)„(zV)c = (-*)„ B-z
/ /!\

A~ZQ   )r
iQ)r

("*),-Ei-'W-'A
iQ)r

Using (0.5) to expand (-zqr)n , we obtain

-z)„u2A B-u'^B*«')**^íq)r k

= Ez 9.*„(!) E, k.r{-z)r
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HALL-LITTLEWOOD FUNCTIONS 479

The inner sum on the right is of the form (0.2) with the identifications a
and z —> -zq , so it follows that

*)ni*
i-z)

i-z)njz2qn) = EZ qy2>
k

i   2   k,
iz Q )o

By cancelling the factor (z )00/(-z)     from both sides we find

J-Z)n
i*X

V-   *   (*)= Ez «2
(z\ '

If we iterate this identity (and relabel the indices of summation), we obtain

-Z)n

(A ,ft)z«2   x  Ez ^ 2
j L   l J    ,

A,
(z\

and if iterate the identity / times, we obtain

iz2ï      '   ^

The limit / -+ oo yields (2.1).    D

rIAI9»W J   (A

Elementary proof of (2.2). The following is a combinatorial argument; to find a
similar proof of (2.1) appears to be a more difficult problem.

Recall that l/(qz)n is the generating function for partitions of length at most
zz, with the partition p being assigned the weight z^'q'^'. By substituting qz
for z, it follows that (2.2) is equivalent to the identity

£2iV«> = £
/(p)<n

zV1

where zz2(A) = Xx + X2 + ■ ■ ■ , as in §1.
Let p be a partition as above, identified with its Ferrers diagram; i.e., we

identify p with the set of lattice points (i, j) e Z2 satisfying 1 < i < f(p),
1 < j < P¡- Let A, denote the length of the main diagonal of p. If we delete the
Xx x A, square subdiagram of p, the remainder will consist (modulo translation)
of a partition pL ( L for "leg") contained in an (zz - Xx) x A, rectangle, and a
partition pA ( A for "arm") of length at most A, . Continuing this process, let
A2 denote the length of the main diagonal of pA , with pAL and pAA denoting
the partitions that remain after deletion of the A2 x A2 square subdiagram from
pA . Note that pAL is contained in a (A, - Xf) x A2 rectangle, and //.^ has
length at most A2.

If we repeat this process indefinitely, we obtain a partition X = (Xx > A2 > • • • )
and a sequence of partitions pL, /^,L, /*^L, ... contained in rectangles of
dimension (X¡ - X¡+x) x X¡+x (i = 0, 1, 2,... ; X0 = n), respectively. The
process is clearly invertible. An example appears in Figure 1.
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PL

M

Pal

V-aal

A

Figure 1

Observe that px = \X\ and \p\ = n2(X) + \pL\+\pAL\-\— . Since the generating
function for partitions contained in a k x / rectangle is [k£l] [A5, 3.2], it
follows that the generating function for the partitions p corresponding to a
fixed A is of the form

2WqnlW

lXf l3J
zWqn2(X)

Identity (2.2) follows upon summation over the choices for A. We remark that
a similar proof technique appeared in [A6],    D

Elementary proof of Theorem 1.3. By analogy with the proof of Theorem 1.2,
we define

(2.3)        v(u) = J2»    E   z   a
k>0       f(X)<k

\X\2n(X) 1       v^    W    MX)   f(X)-,->   z1 'q       u1 - u ¿-^

For any partition X with terms < n , let vx, ... ,v¡ denote the set of distinct
parts other than zz occurring in X, ordered so that n > vx > ■ ■ ■ > u¡ > 0.
Whether or not n actually occurs as a part of A, it is convenient to define
v0 = zz. Let mt denote the multiplicity of v¡ in A, with the convention that
mQ = 0 if zz does not occur in A. In terms of these parameters, we have
["] = ["] and

m0 + + m,,     \X\ = uQm, + vimi '

n(X) = m0 + m¡.
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Therefore, (2.3) can be rewritten in the form (cf. (1.7))

(2.4)

wiu) = -,— y^1 - u  ¿-"

l-u¿-*>

(m),v L

Z2

V

(z °q ° °     u) °---(z '<? ' '     w) '

(z 'q '   '     «)•■•(z 'q ' '     u)V,   _«/|("|-l 1
1 - ÍZZ"(?

n   n(n — \) '

This expansion shows that \p is a rational function of « with simple poles
occurring at u = z~rq~r(r~X) (0 < r < n). Since \p(u) vanishes at infinity,
there must be a partial fraction decomposition of the form

n

r^fj 1 - uz qK
1) '

A»)where cr = cr  (z, q) denotes the limit of

ip(u)(l-uzrqr(r~X))

-r   -r(r-l)as u —» z   (7 ',
From the definition of ip(u) and (2.2), we have c0 = l/(z)„ , so in view of

(2.4), one may deduce

(2.5)
1 J_y

zV<»-»
,I/i„'/i(i/|-1

(Z)„        1 -

Substituting z~lq~2{n~l) for z, it follows that

(zV'*"'    ')-"<2V'1'    ')vtnvAvt~vi

1

(2.6)
(z-^-^-D^ i-,-v^? " ^ "i/,-2",('i-i)+«'i(«',-i;

l - z" V
J_v^  "   TT/r/ii-"/i/ií('i'-1)~',("-1H
n„-n(n-\)2L,    u    11^ * ''U „      Lr*J      ;

where p¡ = n - vl+x_¡ (1 </</). This latter calculation, together with (2.4),
shows that c„ = l/(i"Ijf~2(,l~I))||.

Finally, to compute cr (0 < r < n), note that a generic term of (2.4) will
contribute to cr only if r is one of the terms of v ; say u. = r. For each such
sequence v , define p¡ — v¡ — r (0 < i < j) and a¡ = u¡+¡ (0 < i < l - j), and
observe that the terms of the sequences p and o are bounded by n - r and
r, respectively. Rewriting the contributions in terms of these new parameters,
we see that (2.4) implies
(2.7)

1-1

j _ zn-r   n(n-\)-r(r-\) Zw [     p    J 11
•Pin(p,+r)(p¡+r-\)-(r-\;

{_z-r   -r(r-l)22[a\U
a,—r   a-(a, — 1)—r(r— 1)z '   q ' ' ),
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and therefore, by (2.5) and (2.6),

c. =
1

,2/
zQ¿r)n_riz"q — 1   —2(r—i;

),
= (-l)V« 3(5) 1 - zq 2r-\

izQr-\+i

This completes the calculation of the partial fractions, so we now have

¥iu) = ^2i-l)r zrq
r=0

'(5) 1 - zq 2r-\ 1
izqr X)n+X 1 -uzrq r   r(r—\) '

Theorem 1.3(b) now follows upon comparison with (2.3).
A proof of Theorem 1.3(a) can be obtained by a similar argument. We define

\X\n(X)<p(u) = j2u E z *
k>0      /(X)<k

= —E \X\   n(X)   /(X)z   q     u

and note that in terms of the parameter v , we have

(2.8) rM-j^EÍZlnt*"1«^"» i
l-wz"^)

This expansion shows that q> is a rational function of « with a partial fraction
decomposition of the form

?>(") = E
r=0  1 - UZrqÍ2>

where br = b{-"\z, q) denotes the limit of tp(u)(l-uzrq^2') as u—* z~rq~i2' .
Note that (2.1) implies b0 = (-z)J(z )n. If we use (2.8) to calculate the

-n    -(")residue at u = z    q   ^21 ) we find (cf. (2.6)):

!_(«)/ N l(«)/     "I      — (b\\z,q) = b\\z    q

and more generally (cf. (2.7)),

-X\q) = (-l)"z"q2^ -¿¿fc-,
iz2q{-\

b{;\z,q) = blr\z,q)b{0n-r)(zq',q) = (
.2   2r-l,'■.)-(-iry,'«>'-'M't-,'v  ».

(z «     )«+i

We therefore have

fGO-Êi-ov«2^)
r=0

(-Z),
. 2   2r-l1 - z #

(zV-')„+1  1-^(2)'

and hence we obtain Theorem 1.3(a) by examining the coefficient of u  .   D

3. Generalizations

In the previous section we reproved the identities of Theorem 1.3 by applying
Macdonald's partial fraction method directly to the (/--series (2.1) and (2.2),
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rather than the Hall-Littlewood function identities they arose from. In this
section, we will prove some more general Hall-Littlewood identities, specialize
the variables to obtain <¡r-series, and then follow the partial fraction method as
before. In this more general context, the partial fraction expansions analogous
to those in Theorems 1.1 and 1.2 do not have a simple form; it is only after
specialization that explicit results become feasible.

Let x = (xx, ... , xn) and y = (yx, ... , ym) be two (distinct) collections of
independent indeterminates. If / is a symmetric function of n + m variables,
we use the notation f(x, y) as an abbreviation for f(xx, ... , xn,yx, ... ,ym).
Since Px(x, y ; q) can be viewed as a function independently symmetric with
respect to x and y , it follows that the coefficient of P (x ; q) in Pfx, y; q) is
a symmetric function of y. This coefficient is the skew Hall-Littlewood function
Px/uiy '■> Q) [M» III.5], and is thus characterized by the expansion

(3.1) Px(x,y;q) = TPu(x;q)Px/u(y;q).
p

We remark that it can be shown that Px, = 0 unless p ç A ; i.e., the diagram
of A must Contain the diagram of p [M, 111.(5.3)].

Let Qx and Qx,   denote the following scalar multiples of Px and Px, :

Qfx;q) = (q)x,Pk(x;q),

Qx/pix;Q) = ^Px,pix;Q),

and note that (3.1) also holds with Q in place of P. These " Q-functions"
appear conveniently in the following generating function due to Littlewood [M,
III.4]:

(3.2) yiPfx;q)Qx(y; q) -¡jiZ^i.
x i,j  l    X'yJ

In case q = 0, this specializes to the Cauchy identity for Schur functions [M,
1.4].

The following pair of Hall-Littlewood function identities will be used to de-
rive (via the usual specialization) ^-series identities that generalize (2.1) and
(2.2).
Lemma 3.1. Let a and ß denote fixed partitions.

1     T-r 1 - qx¡Xj
x¡x¡

KJ '    J
(a)        £fy-(*;«) = E<W*;«)IlT33fU-rr

X P- i ' i<j

w   E*V.(*;v)Qx/ßiy>Q) = Epß,M^)Qa/piy^)Ul-r^v--
X ß i,j iyJ

We remark that these identities (and their proofs) are well known, but except
for special cases, they do not seem to have appeared in the literature of symmet-
ric functions. A proof of the special case q = 0 (i.e., the corresponding Schur
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function identities) can be found in A. V. Zelevinsky's Russian translation of
[M], and combinatorial proofs of the special cases q = 0 and q = -1 can be
found in [SS]. Note that identities (1.4) and (3.2) are also special cases of this
result.

Proof. For each partition ß , define

Fßix » y) = E pxix ; Q)Qx/ßiy ; q)-
X

By introducing a third indeterminate set z = (zx, ... , zm), an application of
(3.2) and the Q version of (3.1) will yield

yFß(x,y)Qß(z;q) = Y^Px(x;q)Qx(z,y;q)
ß A

n'- g*/?; 1 - Qxizj
11 l-xtyj   l-xtzj-

Therefore, a second application of (3.2) in the variables x and z implies

^Fß(x,y)Qß(z;q) = YjPy(x; q)Qy(z; q)^-^*1
y ',j

After comparing coefficients of Qß(z ; q), we conclude that

(3.3) Epxix>«)Qx/ßiy>Q) = pßix^)Ul-r^f-
x i,j ,yJ

This may be recognized as the special case a = 0 of (b).
Now consider the more general series

paßix,y) = T,px/M^)Qx/ßiy^)-
X

An application of (3.1) and (3.3) yields

E paiz)paßi* >y) = T, pxiz. x)Qx,ßiy)

x,yj

= pßiz,x)\-[-

x
1 - qz¡yj 1 - qx¡yj

11    l-z¡yj     X-x.y.

A further application of (3.1) to Pfz, x; q) therefore shows that Faß(x, y)
is the coefficient of P (z) in

*-^ T-T 1 - Qz¡y ¡ 1 - qx,y :

p i,j '  J '   J

However, (3.3) shows that the coefficient of Pa(z) in

P(z)Y[i\-qziyj)li\-ziyj)
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is Qa,Jy), and so we have

paßix ,y) = E pß,M ■'tiQ.ffi :«) II TZ^ffAi.j x,yj

thus completing the proof of (b).
To prove (a), define Ga(x) = £)A Px,a(x ; q), and observe that ( 1.4) and (3.1 )

imply

a X

= Tt_J_1     n 1 - qXjXj 1 - gyp.       1 - qxjj
i l~xA- y 11¿ l - xixj » - wj f j » - *^ "

Therefore, C7a(x) is the coefficient of Paiy) in

ß l,J '    J        l '   KJ '    J

However, (3.3) shows that the coefficient of Paiy) m

P^Ylil-qxyyil-xyA)
is Qa/fx), and so we have

Gaix)=e ßa/„(* ' «) n irr n VîS? '
which completes the proof of (a).   D

In order to use Lemma 3.1 to prove q-series identities, we need information
about the specializations xt■ —► q'~ of PÁ/aix; q). In general, these special-
izations do not factor into a simple closed form. However, the following result
shows that in case a = V (the partition consisting of r 1 's), there is a simple
factorization in the limit zz —► co .

Lemma 3.2.

(a) Qxlxfl,q,q2,...;q) = qn(k']-^ /(A)
r «T1).

(b) ^2zrQx/V(l,q,q2,...;q) = qn{À)(-z;q   X)/{X).
r

We remark that this result can be obtained as a corollary of Example III.3.1
of [M], although the proof given there relies on the deep connection between
Hall-Littlewood functions and the structure of modules over discrete valuation
rings with finite residue field. The following proof does not require this extra
apparatus.
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Proof. Note that (0.5) shows that (a) and (b) are equivalent, so it suffices
to establish (b).   We next observe that in the limit n —> co, (1.11) implies
Pß(l, q, q2, ... ; q) = q"^/(q)ß> , and therefore Qß{\, q, q2, ... ; q) = qn{^ .
It follows that
(3.4) E *'<M! ,Q,Q2,--.;q) = Qn(k'] E zY^-^Û ,(q),

r r,p

where f* x,(q)  denotes the coefficient of Q    in  Qk/V .   According to [M,
111.(3.2)], we have f v(q) = 0 unless p can be obtained by reducing r of
the parts of A by 1. In that case, assuming that (1) the distinct terms of A are
ux > ■■■ > uk > 0, i2) the multiplicity of v¡ in A is m¡, and (3) r¡ of the
terms v¡ in A need to be reduced by 1 to obtain p , then we have (loc. cit.):

r,.(/*,-r,.) \m<jí,aíq)=u m' =n* iQ   )•

If we define s¡ = mx-\-h m¡_x, then

•ùo-.»')-z:(,k+"'"r')-(,i+2"')-Çr'*'+r'(,"'-r')+(3)
and so we can rewrite the form of (3.4) and apply (0.5) to deduce

y/zrQx/xfl,q,q2,...;q) = qn{X')l\y/zr-q-^-^

n(X')

i=\   r,

k

m¡
r. iQ-1)

n(X ) TT/ -s,      -1, , -1.= Q       [[i~zQ     >Q    )m=i-z\q    )/(xy
i=\

We now specialize the identities in Lemma 3.1 to obtain generalizations of
the limiting case n —► oo of (2.1) and (2.2).
Lemma 3.3.

(a)

(b)

Ez'A|«
x

\nWia^\     (-z)oo(az2)i

iQ)x

z1 '<7
à

\X\2n(X)
{a;q-x)x(b;q-x

(Z'U-«Z)c

\      (*ZW¿'oo'-       'oo

iQ)x (Z)oo(^Z)oo'

Proof. In the special case a = Y , ß = Y , Lemma 3.1(b) implies

EPx/pix^)Qx/piy>Q) = Ul-r^T>pi^/ß(x^)Qp/ltiy;Q),
X i, i ,yJ     ß

and therefore, since Pk.   = 0 unless p ç A,

E7^ßi7i'<*;«>ßi7i'^^rw> i .j iVj   ,iQ)s
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If we set x¡ = zq'  ' and y¡ = q'  ', then we may apply Lemma 3.2 to each of
the four Q-functions appearing above, and thereby deduce

Ez' W-r-lnwAÜAtiWr x,
iQ)x L r J iQ'1) iQ'

1      v—»    s-t

'oo     t

(<?U(V)g(r2')

iQ), iq)s_t  («),_, '

in the limit zz —> oo. Finally, rescale this identity by (-az)r(-b)s/(q)r, sum
over r, s > 0, and apply the ^-Binomial Identities (0.2) and (0.5) to obtain

Ez'^
X

\X\2n(X)
(a;q  l)x(b;q  '),

iQ)x
-<a(S2l)<-,(abz)' (-bz)s-'q\ 2 > (-az)r~'q^ 2= — r

iz)oor%     iQ), iQ)s-t iQ)r-,

_ iaz)00(bz)oo_y^(abz)t _ (az)oo(bz)oo

A?)

(Z)c (q)t       (z)00(abzf

as desired. (To obtain the second equality, apply the limiting case zz —» co of
(0.5).)

To prove (a), start with the special case a = Y of Lemma 3.1(a), specialize
the variables, and proceed as above.   D

We remark that it is possible to prove Lemma 3.3 via elementary meth-
ods analogous to those of §2. For example, to prove (a), let k = A, , p =
(X2 , A3,...), so that p is a partition with px < k . We then have

\X\n(X)Ez'X|«
ia;q~

iQ)x E2*«
kJk^)ia'Q      )fcN

iQ)k
E^1?'

E(-flz) kia \i-z)k
iQ)kiz\

after an application of (2.1). This latter expression is in the standard form
of a 2(px basic hypergeometric series; by applying Heine's transformation [A9,
(2.11)], one easily obtains the desired result.

We are now ready to prove a generalization of Theorem 1.3 in the limit
n —► co (cf. Corollary 1.4). George Andrews [private communication] also
obtained these two results as limiting cases of a generalization of Watson's
Theorem [A4, Theorem 4].
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Theorem 3.4.

\„n(X)ia>Q     \

iQ)x
(a) E  *'"*

f(X)<k
i       \ oo /   \ t —1\/2/-\/, 2   2r—1,(-1 y,   ,/Jfr+Pr (fc+2)(7)(fl;<7    )r(az g )00(l-z q      )

- i-az)„¿¿-l) Z        q (*L(zy-')oo

(b) e  z%2^^^^
/(X)<k (q'k

= yi-i)rzik+X)rq{2k+3)(2ï

r=0

ia;q-X)rib;q'X)riazqr)ooibzqr)ooil-zq2r-X)

iQ)rizQr~i)ooi^z)00

Proof. Following the methods of §2, we define

^zJ(") = E" E z <?
Zc>0       /(/l)<Zc

i 2/,w(fl;g )a,(¿;<? )¿,

(«)l

=       1      y^Jll   2n(X)u/(X)ia'Q     \ib ^     \

Let z^[, ... , z^ denote the distinct parts occurring in A, ordered so that vx >
v2 > ■ ■ ■ > 0, and let m¡ denote the multiplicity of v¡ in A. In terms of these
parameters, we have (cf. (2.4)):
(3.5)

-In     /l -li

(m),v

.   . 1        v-^   V"><7      )v\r>,q      ) v,(v,-l)   sm. ,   v.   uÁu.-l)   ,m,^(") = T3^E -(¿)-liz'q'[i    >u)  l---(z'q'(l    >u)

■K     /L      _-l>
1       ^-^(a;^      )v\b',q      )„       „    v,(v.-l)   , ,   v.   vAv.-l)   .= —— E-lb,--iz  Q 'u)---(z'q*'    'u).

1       U    „ \Q>v

Each of the terms in this sum, as a rational function of u, has a finite set of
simple poles. These poles may occur only at the points u = z~rq (r =
0,1,2,...). Therefore, each term is a linear combination of partial fractions
of the form 1/(1 - uz qr(r~X)). Moreover, it is easy to check that the sum of
these partial fraction expansions converges coefficientwise (either analytically
in a neighborhood of 0, or in a formal power series ring), so that ipab has an
expansion of the form

c.
^(") = §1-Mz'>- i) '
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where cr denotes the (formal) sum of the partial fraction coefficients con-
tributed by the terms of (3.5). By extracting the coefficient of u , note that we
therefore have

(3.6)       e zl\2nw{a''q~lyb',q~l)x> = ezVr(r_1V
/(X)<k ^'* r=0

Treating u as an analytic variable, the coefficient c0 may be computed by
means of Lemma 3.3:

iaz)   ibz)

Hence, (3.5) implies

r3 7) (^z)oo(^z)oo _ y- la'*~\(b>«~\ U(zv-av'(v--X))

To compute the general coefficient cr (r > 0), we may restrict our attention to
those terms in (3.5) that include a pole at u = z~rq , i.e., to those terms
with v¡ = r for some j. For each such partition v , we define pl, = za, — r ( 1 <
z < j) and <r( = i/j+. (0 < i < I — j), and observe that the parts of o are
bounded by r. In terms of these parameters, we may use (3.5) to write the
series cr in the form

1 V ia > Q    l)pl+rib>Q    \+r
,-r„-r(r-\) 2-*t

p,al-z-'q-r{r-l)fl (*),(«),
. rTi-PiglPt+ryiPi+r-O-rir-l). TT/zÍT'~''í7cr'(flr'_1)_''(''_1)\

i i

The CT-dependence of this series can be eliminated via (2.6), yielding

ia;q-X)rib;q-X)r ^ («<T ; Q^),,^'> g~'),, tt       2/ ,   ,,,(,,-„
'      iz-Xq-*-\iq)rY M, lr

Therefore, if we apply (3.7) (with a —» aq~r, b —► /3<?_r, z —► z#2r), we obtain

c _ (a; q~X)r(b; q-x)r(azqr)oo(bzqr)oo

iz-xq-2(r-\{q)r  iabz)ooizq2r)oo

3(5)n _ ^2/-!^^; g"')r(¿; g~')f(flzgr)oo(¿zzar)c

(aèz)oo(z/-')oo
= (-i)rzVv2;(1_zí-')

In view of (3.6), this completes the proof of (b). A proof of (a) follows simi-
larly.   D

In §1, we showed that for special values of the parameter z, the series of
Corollary 1.4 were "Jacobi-summable", i.e., of the form (0.3) or (0.4), aside
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from multiplicative factors. These special values led to the four generalized
identities of Rogers-Ramanujan type in Corollary 1.5. We now consider similar
ramifications of Theorem 3.4. That is, we will determine specializations of
(as well as certain other operations involving) the parameters a, b, and z for
which the series of Theorem 3.4 are Jacobi-summable.

As an example of the "other" operations cited above, note that one may
regard Theorem 3.4(b) as an identity in the formal power series ring iv[[/3]],
where R = Z[[a, z, q]\. In particular, one may then treat the coefficients of
b , b , b , ... as formal power series identities in R. For each such identity
(or Z[<5f]-linear combination thereof), one may then look for specializations
of a and z that are Jacobi-summable. However, one should be aware that,
depending on the Z[#]-linear combination involved, the Ath term of the infinite
series might not be expressible as a quotient of cyclotomic polynomials, and thus
not likely to be an interesting ^-series identity.

Including the four cases already determined in Corollary 1.5, there are a total
of 16 distinct families of Rogers-Ramanujan-type identities that can be obtained
by some combination of specialization and/or coefficient extraction applied to
Theorem 3.4. In some cases, there may be more than one combination of
operations that lead to the same identity, but in the list below, we have given
only one means of derivation for each identity.

The notation [br] will be used as an abbreviation for the coefficient-of- br-
operator.

Proposition 3.5. Each of the following operations, when applied to the identities
of Theorem 3.4, will produce infinite series that are Jacobi-summable.

(a) Operations to be applied to Theorem 3.4(a):

(1) z = qx'2, a = 0; (2) z = q, a = 0;

(3) z = q, a = -q-x'2;     (4) z = q,  (l-x-)[a}.

(b) Operations to be applied to Theorem 3.4(b):

(5) z = q, a = b = 0;     (6) z = q2, a = b = 0;
(7) z = q, a = -q~X/2,  b = 0;     (8) z = q2,  a = -q~X/2,  b = 0;

(9) z = q2, a = -q~X, b = 0;    (10) z = q2, a =-q~X/2,  b = -q~l ;

(11) z = q, a = 0,(l-l)[b1];    (12) z = q, a = -l,  (1 - $)[b1];
(13) z = q2, a = 0,  [bl] + (1 - ±)[b1];

(14) z = q2,  a = 0,  [bX] + (1 - ±)[Z>2];

(15) z = q2, a = -q~l/2,  [b°] + (1 - \)[bX};

(16) z = q2, a = -q~X ,  (1 - \)[b\

Proof. Consider case (16).   By substituting z = q2,  a - q~x  into Theorem
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3.4(b), we obtain
-i,

V       2nW+2WAX^-q^Sb'q~\
^ (q)i

/(X)<k ^n

A,       ,r   (2/:+l)/+(2Z:+2)(?)(-g)00(¿>;g~')r(¿>gr+2)00(l-g2r+')

~h     )q (^U-^)oo
and so the operation (1 - l/q)[b ] produces the identity

E2n(X)+2\X\-X, (X, +3)/2 ("^a/1 ~Q ')
/(X)<k w¿

= íz*k¿(_i)Vfer+(U+2)(2)(i_^2).
v^oo    r=0

Aside from the multiplicative factors, the right side is of the form (0.4), with
the identifications q —► q   + , a —> q    , and so we deduce

E2n(X)+2\X\-X¡(X,+J)/2Í~a)x¡il ~Q ') _ iziloo TTn - n"\(q), (Q)      u
/(A)<Zc ^^ VV;°°      «

with the product taken over positive integers zz = 0,  ±2 mod 2k + 2.  The
details for the remaining cases are substantially similar and equally easy.   D

We now review the 16 families of identities produced by the above list. Of
course, four of these (case (1), (2), (5), and (6)) appear already in Corollary 1.5,
and a fifth (case (13)) reproduces the special case i = 2 of Andrews' identity
(1.12). Another three (cases (7), (8), and (15)) are equivalent to the special
cases i = 1,2, k+ I of the following identity due to Bressoud [B2, (3.8)]:

(3.8) E  g^WrV^H'^/A = {-q>ql)~T\(\-qn),
/(X)<k {q>* iQ 'Q )oo

with the product taken over positive integers zz = 0, ±(2z - 1) mod4zc + 4.
The remaining eight cases not previously accounted for appear to be new,

although it is possible that some of them are analytic counterparts of combina-
torial generalizations of the Rogers-Ramanujan identities due to Andrews [Al,
A3], and Bressoud [Bl, B2]. We list these eight identities below. The notation
I«) is used to refer to the identity corresponding to case (n). In (13) and (110)
we have substituted q   for q to avoid fractional exponents. In addition to the

2parameter zi2(A) = 2JA(., we will also use

«(A) = zz(A) + |A| = E(Ai^1)
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as an abbreviation in what follows.

/(A)<zc yQ  ' Q h KHI°°   n>0

n = 0,±l (2k + 2);

zz = 0, ±2 (k + 2) ;
/(A)<Zc '^ ^°°   «>o

m £«ÄH,-<1,")^=ykno-^.
zz = 0,±l (2k+ 2);

/(X)<k yq'x ^q'°°  /»o

dio) e ^-^+i)/^=y^n(i-*n)>
/(A)</t iQ 'Q )x      w°° «>o

zz = 0,±l (4zc + 2);

(m) e ^(AWiii7#i=7^-n(1-^)'
/(A)<Zc ^ W°° «>0

zî = 0, ±zc (2zc + 3);

(I12)   St^^)t'-^-.)^..Hfl,ri(|_<,)i
>o
zi = 0, ±zc (2zc + 2) ;

/(A)</c ^ ^°°   «>0

.2A,
pu) E^nw"2Xiii7^=7i-n(i-^'

/(A)<Zc VV^ Wy°° «>0

2«(A)-2A, ( 1 - q    ' ) 1

»   /!>0

« = 0,±3 (2zc + 3);

(116) e g2"w-^'+3)/2(1 "f'?("g)ii=y^no -o.
/(A)<Zc ^^ W°°    «>0

zi = 0,±2(2zc + 2).

The simplest special cases of these identities are obtained by setting k = 1.
In this context, we noted in §1 that identities (15) and (16) are the Rogers-
Ramanujan identities. It is also not hard to check that (111), (113), and (114)
specialize to the Rogers-Ramanjan identities as well, although in the case of
(114), one must rearrange the terms of the series to verify the coincidence.
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A pair of identities derive from (17), (18), and (115) (or equivalently, from
(3.8)) in the case k = 1 ; namely,

("> ti"'[^$f- n ¿7.„=0 \Q   > Q  )„        «=±1,4 (8) H

tl in\ ^ y+2nj-Q\ Q  )„ tt 1
(3-10) ^g    77vT =   n   ry-n=0 W   > H   )n        /i=±3,4 (8) *

It is easy to interpret both of these as combinatorial identities; for example,
the series in (3.9) can be viewed as the generating function for pairs of self-
conjugate partitions (a, t) in which the largest part of a is at most the length
of the main diagonal of t .

Next, recall from §1 that when k = 1, identities (II) and (12) are well-
known results of Euler. It is also easy to verify that (14) and (12) are equivalent
in this case. The remaining cases are (13), (19), (110), (112), and (116); the
corresponding identities are:

00 I     /, •  n2\ 1(in) £«"tji«2i= n n 1

« '

„=o     ÍQ ' Q )«     /!=¡éo (4)      q

(3.12) E,(2)yk= n r^r.
n=0 KH'n „=éo (4) H

„14) If^-^-ufP-
n=0 KHI" n=0 l ~Q

Only four identities appear in this list since (19) and (112) are equivalent when
k = 1.

We remark that (3.11) is a special case of the ^-Binomial Identity (take
1/2 1/2z -* q ' and a —► -q in (0.2)), (3.12) can be found listed eighth among

Slater's catalogue of 130 g-series identities [SI], and (3.14) is a special case of
a result due to Gauss [A5, Corollary 2.7]. The remaining identity (3.13) does
not seem to have explicitly appeared in the literature of ^-series before.

4. Plane partitions

As mentioned in the introduction, we can rederive Proctor's recent plane par-
tition generating functions via Theorem 1.2 in roughly the same way Macdonald
proved the MacMahon and Bender-Knuth conjectures via Theorem 1.1. The
first step in the derivation of Proctor's identities is to set q = 0 in Theorem
1.2 and rewrite the result in terms of the root system Cn .

We may realize Cn as the set of vectors {±2e¡, ±e¡±e¡: I < i < j < n} and
C* = {2e¡, e¡ ± e¡: 1 < / < j < n} as a set of positive roots, where ex, ... ,en
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denotes the standard basis of R" . The Weyl group Wn of Cn is the semidirect
product Z" x Sn, where Sn acts by permuting coordinates, and Z2 acts by
changing the signs of coordinates. Note that p = (n, n - I, ... , I) is half the
sum of C*.

For any a e R\ let Aa(x) = Aa(xx,... ,xn) = Ewewn sgn(w)xwa , so that
if q is a highest weight vector for Cn , then spa(x) = Aa+ (x)/A (x) is the
character of the corresponding representation of Sp(2n, C). Note that 6 =
( 1, ... , 1 ) is the highest weight vector corresponding to the zzth fundamental
weight of Cn , and recall that sk denotes the Schur function indexed by A [M,
1.3].
Theorem 4.1. For any nonnegative integer k, we have

x   spke(xx, ... , xn) = 2_^ s2k(xx, ... , xn).
xt<k

Proof. From the definition of *F in § 1, we have

«P(x;0) =   n  (l-xa) Y\(l-xa)-1,

where Afn_x = {e¡ - e.: 1 < i < j < n} denotes a set of positive roots for the
subsystem An_x. Using the Weyl denominator formulas for An_x and Cn, it
follows that

rLc<+ (x~a/2 - xa/2)    YpA-p

*(x •0) ■ x"~ nif-» *"! " fr^ E sgn{w)x~"" •iLec^ix       -x    )      Afx    ) W€S^

where pA denotes half the sum of A*_x. Since pA - p = -l/2(n + 1)0 is
Sn -invariant, it follows that

(4.1) «P(x; 0) = A~X(x-X) E sgn(w)x-wp.
wesn

Substituting q = 0 into Theorem 1.2, we obtain

E"*Ej2a(*i >•••»*»)= ET(sx;°)77-ff=ïë-
k>0     A,<Zc sez^ ux

Therefore, since iuA = sgn(it;)A for all w e Wn, an application of (4.1)
yields
E, . 1 V^     kB  v^ /       \    -sw(kd+p) kd ,   — K

s2X(xx,...,xn)=        _,   >   x    ¿^ sgn(stzj)* =x   spfce(x    ).
A,<* *VX    J iez;      t«es„

Since the characters of Sp(2n, C) are self-dual (spk6(x) = spke(x~ )), the
result follows.    D

We remark that this result is essentially equivalent to the "CY" case of The-
orem 2 in [P2], the only difference being that Proctor expressed the character
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spke as a quotient of determinants. However, the proofs are substantially differ-
ent; Proctor's proof relies on a construction of representations of the symplectic
group due to DeConcini, Lakshmibai, and Seshadri [D]. We also note that the
proof given here need not involve the theory of Hall-Littlewood functions (via
Theorem 1.2), since the partial fraction method could also have been employed
after setting q = 0.

There are two ways to specialize the variables x¡ so that the character spke
can be factored in closed form. We have included details of the proof for the
sake of completeness, even though this calculation can also be found in [P2]
(cf. also Examples 1.5.17, 19 in [M]).

Proposition 4.2.

(a) spke(q", q"~l, ... , q)
/    ,n , 2k+2i .       „2k+i+j

l-<72'    JJ¡<.    l-Q,+J!<;</!      í       * \<i<j<n

(b) spke(q2"'X ,q2"'\ ... ,q)
, ,       „2Zc+2; , 4k+2i+2j

-kn1    -T-w    I - q TT       1 - q11        ,        _2i 11= Q
l<i<«     1 ~ Q        l<i<j<n        ~ Q

Proof. For any ß e R", consider the effect of the substitution x¡ -> qßi in
^■kd+p

(4.2) Ake+p(x) - E swiw)Q{ß'W{k6+P)) = E W(w)qi(ß,w(k8+p)) _   y*  „„„/„.^Jwßikß+p)

wÇW w€W,

where ( , ) denotes the standard Euclidean inner product. It follows that
if ß = p, then Ake+p becomes the Weyl denominator Ap in the variables
x. = qk+». = qk+"~i+l. Hence,

.   n                 -       \ÍQ        ,---,Q       )
spke(q  ,...,q)=    " -r—

àp(q  ,...,q)

_ /+' _ g-(fc+') g*+(«+J)/2 _ g-k-(i+j)/2"V      q'-q-1      I]     q^2-q-^     '

from which (a) follows.
To prove (b), note that Wn is also the Weyl group of the root system Bn , so

if we choose ß = (2n-1, 2n-3, ... , 1) (i.e., the sum of Bfn in the standard
coordinates), then (4.2) will imply that Ake+   becomes the Weyl denominator
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A' for Bn in the variables x¡ = q2k+2Pi = q2k+2"-2l+2. We therefore have

,   2/1—1       2/1 — 3 ,
spkeiq       ,q       ,...,q) =

A'(q2k+2",...,q2k+2)

A'(q2"-X,...,qx)

_ n Qk+i - Q'(k+i) tt q2k+'+J - g-(2k+i+»

"   i       i'"«"'      tí      qi+j-q-(i+j)      '

from which (b) follows.   G

Finally, we consider the combinatorial consequences of Theorem 4.1 and
Proposition 4.2. Recal that a plane partition of r is a matrix-style array P =
iPidi j>\ °f nonnegative integers with weakly decreasing rows and columns
(i.e., p¡ j > PiJ+x, P¡j > PMj) such that £py = r. A shifted plane
partition S = (s¡f is defined similarly, except that the entries are restricted to
a domain on or above the main diagonal (i.e., s¡¡ is defined only for I < i < j ).
Let ¿Pm n denote the set of plane partitions whose nonzero entries are bounded
by m and are restricted to lie in the first zz rows and columns, and let 5^m n
denote the corresponding set of shifted plane partitions (so that s¡¡ < m, and
s¡j ¿ 0 only if 1 < i < j < n).

Proctor's pair of plane partition generating functions (see the "CYI" and
"CYH" cases in Theorem 1 of [P2]) are the following.

Corollary 4.3.
,       „2Zc+2; , 2k+i+j oo

m        n -jfrr n i^^-sr=£%»*'.
\<i<n      l       Q 1 <i<j<n      l       Q r=0

where s2k n(r) is the number of shifted plane partitions of r in A?^ n with even
entries on the main diagonal.

, 2Zc+2; , 4k+2i+2j oo

w      n ifV n  :\v+v =E^,n(^,
\<i<n      L       Q \<i<j<n      L       Q r=0

where p2k n(r) is the number of symmetric (i.e., p¡j = Pjf plane partitions of r
in AAP2k n with even entries on the main diagonal.
Proof. By Theorem 4.1 and Proposition 4.2(a), we have

, 2/c+2i , 2/c+f+j"<«>     n!TVnTV=Erf.«)■
i     l    Q      i<j    l    Q xt<k

The right side may be interpreted as the generating function for column-strict
(i.e., p. > Pi+X ) plane partitions P that ( 1 ) fit inside an nx2k rectangle, (2)
have entries bounded by n , and (3) have an even number of nonzero entries in
each row. (This is an immediate consequence of the well-known combinatorial
interpretation of Schur functions; see [M, 1.5], for example.) Corresponding to
P, let us associate a shifted plane partition S = (stj ) defined so that s( is the
number of entries in the z'th row of P that are at least j -i+l. Note that for
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each i, the zth rows of P and 5 are conjugate linear partitions, so P and
S have the same sum-of-entries. The diagonal s¡¡ is the number of nonzero
entries in the zth row of P (and therefore even), and the largest entry sxx is
clearly at most 2k . Since the entries of P are at most zz, it also follows that
the first row of S has at most zz nonzero entries, and thus, S1 e S^2k n. It is
easy to check that the map P >-»• S is a bijection, and thus (a) follows.

For (b), we apply Theorem 4.1 and Proposition 4.2(b) to obtain
i 2/C+2; , 4k+2i+2j(■»•")   nifVntV ■ £s"{q  • "  ■■•••«>■

i     l    Q     ¡<j   L    Q xx<k

Interpret the right side as the generating function for column-strict plane parti-
tions P as above, except that in place of condition (2), we instead require that
the positive entries be odd integers of size at most 2zz - 1 . If we associate with
P the shifted plane partition S = (s¡A) obtained by defining s¡. as the number
of entries in the zth row of P that are at least 2j -2i+l, then P i-» S is still
a bijection, but no longer preserves the sum-of-entries; an odd entry 2m - 1
in P will contribute m to the weight of S. Since the sum-of-entries on the
main diagonal of S is the number of positive entries in P, it follows that if
we extend 5 to a symmetric plane partition S' by defining s'¡¡ = s'¡¡ = stj for
i < j, then the bijection P h-> S' will preserve weight, and thus (b) follows.   G

Additional notes. I would like to thank the referee for pointing out that most
of the results in §4 were also proved by J. Désarménien in the Proceedings
of the 15th Séminaire Lotharingien de Combinatoire (1987). To be precise,
Theorem 4.1 and the pair of generating functions (4.3) and (4.4) were also
proved by Désarménien, and in essentially the same way as the proofs given
here. However, the particular interpretations of (4.3) and (4.4) as generating
functions of shifted or symmetric plane partitions (Corollary 4.3), rather than
the more obvious column-strict interpretations, are due to Proctor. The special
cases of (4.3) and (4.4) corresponding to q = 1 were also proved by Desainte-
Catherine and Viennot (Lecture Notes in Math., vol. 1234, Springer, New
York).

It is also interesting to note that identity (2.2) first appeared in a paper by
Philip Hall (Comment. Math. Helv. 11 (1938), 126-129), in connection with
the enumeration of automorphisms of abelian p-groups.
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