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Pro-inflammatory cytokines that are generated by immune system cells and mediate 
many kinds of immune responses are kinds of endogenous polypeptides. They are also 
the effectors of the autoimmune system. It is generally accepted that interleukin (IL)-4, 
IL-6, IL-9, IL-17, and tumor necrosis factor-α are pro-inflammatory cytokines; however, 
IL-6 becomes a protagonist among them since it predominately induces pro-inflamma-
tory signaling and regulates massive cellular processes. It has been ascertained that 
IL-6 is associated with a large number of diseases with inflammatory background, such 
as anemia of chronic diseases, angiogenesis acute-phase response, bone metabolism, 
cartilage metabolism, and multiple cancers. Despite great progress in the relative field, 
the targeted regulation of IL-6 response for therapeutic benefits remains incompletely to 
be understood. Therefore, it is conceivable that understanding mechanisms of IL-6 from 
the perspective of gene regulation can better facilitate to determine the pathogenesis of 
the disease, providing more solid scientific basis for clinical treatment translation. In this 
review, we summarize the candidate genes that have been implicated in clinical target 
therapy from the perspective of gene transcription regulation.

Keywords: interleukin-6, interleukin-6 gene, pro-inflammatory cytokines, transcriptional regulation, signaling 
pathway

iNTRODUCTiON

Inflammation is beneficial for pathogen clearance and protection against infection; therefore, pro-
inflammatory cytokines are regulators of host responses to infection, inflammation, and trauma, 
which can also make disease worse in pathological conditions (1, 2). These cytokines at least include 
interleukin (IL)-1, tumor necrosis factor (TNF), interferon (IFN)-γ, and the IL-6, which is the focus 
of this review (3). Albeit their biological activities widely overlap, each of them has its own biological 
properties (4–6). IL-6, which was first identified as an antigen non-specific B-cell differentiation 
factor, was then named as B-cell stimulatory factor 2. It is a glycoprotein with a molecular weight 
of 26 kDa (7, 8). Human IL-6 consists of 184 amino acids with 2 potential N-glycosylation sites and 
four cysteine residues (9).

iL-6 ReCePTOR AND iTS SiGNALiNG PATHwAY

Interleukin-6 exerts its activity mainly through binding to the cell membrane IL-6 receptor (IL-6R). 
Cell membrane IL-6R consists of two subunits, IL-6Rα (gp80 or CD126), a 80-kDa type I transmem-
brane protein, and IL-6Rβ (gp130 or CD130), a 130-kDa second signal transmembrane protein.  
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FiGURe 1 | Known molecules involve in interleukin (iL)-6 signal 
pathway cascades. Schematic representation of the functional organization 
of IL-6 receptor and its three downstream transduction. IL-6 cytokine yields 
its biological effects via two receptors: mgp130 (membrane-bound gp130) 
and mgp80 (membrane-bound gp80). Each receptor can interact with Janus 
kinase (JAK) directly. The three pathways all needed JAK and its 
phosphorylation.
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The soluble IL-6R (sIL-6R), which is cleaved from the cell mem-
brane, can still bind its ligand IL-6 (10–12). The paradigm of 
IL-6 signal transduction via the membrane bound IL-6R is called 
“classic signaling.” Conversely, when it signal goes through sIL-
6R, it is called “trans-signaling” (13–15). Generally, IL-6 binding 
with gp80 and gp130 carries on the conduction of biological 
signal through three pathways (Figure 1).

Interleukin-6 receptor α (gp80) is mainly expressed on 
immune cells and therefore immune responses. Recent studies 
have demonstrated that IL-6 affects the development and bal-
ance of Th17 and regulatory T cells, being responsible for the 
consequence of inflammatory diseases (16). IL-6Rβ is expressed 
by various cells types, such as lymphocyte, neutrophils, mono-
cytes, macrophages, hepatocytes, affecting immune systems, and 
others (17, 18).

JAK/STAT PATHwAY

Interleukin-6 and IL-6R binding initiate the activation of Janus 
kinase (JAK), one of the tyrosine kinase family members. The 
activation of these kinases in turn leads to tyrosine phospho-
rylation and activation of signal transducer and activator of tran-
scription (STAT3) (19, 20). Phosphorylation and activation of 
these kinases induced by heterodimer/homodimer gp130:gp130 
or gp130:leukemia inhibitory factor receptor (ILFR) result in the 
phosphorylation of six tyrosine residues on the gp130 and ILFR. 
Following phosphorylation, a variety of molecules at the SH-2 

domain were upregulated, such as SHP-2, Shc, and STATs. STAT3 
then forms a dimer to transmit signals from the cell membrane 
to the nucleus (19, 21). The IL-6/JAK/STAT3 canonical pathway 
regulates the expression of several genes leading to the induction 
of cell growth differentiation and survival (22).

RAS/MiTOGeN-ACTivATeD PROTeiN 
KiNASeS (MAPK) PATHwAY

Ras protein is also activated in response to IL-6 that involves in 
the formation and the activation of complex compounds:Grb2 
(growth factor receptor-binding protein) and Shc (SH2 and col-
lagen homology domain containing protein) (23). Subsequently, 
it activates downstream signaling of MAPK and leads to an 
increase in its serine/threonine kinase activity. Several substrates 
involve in the MAPK phosphorylation actions, like c-Myc, c-Jun, 
and c-Fos. It mediates diverse effects including cell growth 
stimulation acute-phase protein synthesis and immunoglobulin 
synthesis (24, 25).

PHOSPHOiNOSiTOL-3 KiNASe  
(Pi3K)/AKT PATHwAY

The PI3K–protein kinase B (PkB)/Akt pathway also plays an 
indispensable role in the transduction of IL-6 signal, especially 
in the antiapoptotic effect of IL-6 in prostate cancer cells. PI3K 
protein modifies certain phosphatidylinositides in phosphorylate 
phosphatidylinositol-4,5-bisphosphate to phosphatidylinositol- 
3,4,5-trisphosphate (PIP3). PIP3 in turn phosphorylates and 
activates serine/threonine kinase PkB/Akt which is recruited to 
the plasma membrane. Akt can be activated by phosphoinositide-
dependent kinase-1 through phosphorylation and then phospho-
rylates several downstream targets to upregulate cellular survival 
signaling pathways (24, 26).

CiS-ACTiNG eLeMeNT

The corresponding human gene of IL-6 including three transcrip-
tion start sites and three TATA like sequences (TATA boxes) is 
localized on chromosome 7p21 and consists of five exons and 
four introns (27). Several of its cis-acting elements are located in 
a 1.2-kb fragment of the 5′-flanking region (28, 29) (Figure 2).

First two pairs of glucocorticoid response elements (GREs) 
are located at the positions –557 to –552 and –466 to –461 in 
the human IL-6 gene (28). Then comes the activator protein 1 
(AP-1)-binding site. It is a consensus sequence (TGAGTCA) 
found at the position –283 to –277 (30), which is present in a 
number of phorbol-12-myristate-13-acetate (PMA)-inducible 
promoters and confers inducibility to heterologous promot-
ers (28–31). Interestingly, a similar structure is also found at 
the –55 to the –61 region (TGAGTCT) and continues to extend 
a sequence with high similarity to the human c-fos SRE that is 
present at the position –169 to –124 (32). Within the c-fos SRE 
homology, it contains an essential sequence (ACGTCA) of the 
cyclic AMP (cAMP)-response element (CRE). This CRE is also 
called multiple response element due to the characteristic that 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 2 | The human interleukin-6 gene prompter with putative cis-regulatory elements and approximate binding site relative to trans-regulatory 
factors.
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can be induced by serum, TPA, and Forskolin (33). Meanwhile, 
it is able to combine with cAMP-TPA-induced binding protein, 
namely, CRE-binding protein (CREB) (34, 35). Furthermore, 
this region contains not only a CRE motif but also the upper half 
of the 14bp NF-IL6-binding sequence that is located at the -163 
to  -145  (36,  37). All  of  these elements are conserved between 
human and mouse genes (38).

Both of the AP-1 and CRE sites have a high degree of sequence 
similarity because they have only a difference on two nucleotides 
(39). Downstream of the c-fos SRE, the presence of a putative 
binding site is located on the nuclear factor (NF)-κB transcrip-
tion factor between -75 and -64 (30), which plays a crucial role 
in immunoglobulin κ gene expression (40). In addition to the 
aforementioned important regulatory sites, RBP (also designated 
CBF1) is a negative regulator that can downregulate expression 
of the NF-κB responsive IL-6 gene. It binds within the interleukin 
response element and hinders NF-κB coactivation with C/EBP-β. 
Its repression depends on the presence and position of the RBP 
target site within the IL-6 promoter (41). The CpG oligonucleo-
tides on human IL-6 gene transcription reveal another negative 
regulator, retinoblastoma control element (RCE), which can be 
dissociated from the 3′-RCE binding site to enable the engage-
ment of the C/EBP-β enhancer (42).

TRANS-ACTiNG FACTORS

There are many trans-regulators that have been specifically iden-
tified and incorporated into the corresponding cis-regulatory ele-
ments so far. This incorporation plays a vital role on controlling 
the sequence of inflammatory response.

NUCLeAR FACTOR-κB

Nuclear factor-κB is a pleiotropic transcription factor, whose 
main function is to direct transcriptional activity of various 
promoters of pro-inflammatory cytokines, especially for trig-
gering IL-6 gene (43, 44). By using electrophoretic mobility shift 
assays, one can clearly observe that NF-κB binds specifically to 
the wild-type IL-6 promoter but not to the mutants. Libermann 
and Baltimore reported that the NF-κB-binding site is essential 
for the response of the IL-6 promoter to IL-1 and to TNF-α (45). 
It is a heterodimer consisting of two subunits: p50 and p65. p65 is 
the most frequent component of activated NF-κB and combines 
with high affinity to the consensus DNA sequences 5-GGG PuN 

NPy PyC C-3′(p65/p50) or 5′-GGG PuN PyP yCC-3′(p65/c-Rel) 
leading to the activation of transcription (46). NF-κB complexes 
were found inactive in the cells without stimulation and inhibited 
by a class of proteins called IκBa. Phosphorylation of the IκB is 
extremely responsible for dissociation of the inactive NF-κB 
dimers, which makes the latter translocate into the nucleus and 
binds to the IL-6 DNA (47). Furthermore, Palaga et al. confirmed 
that NF-κB directly involves in the positive regulation IL-6 gene 
by Notch1 signal in activated macrophages (48).

There are two major NF-κB activating signal transduction 
pathways. The classical pathway, which is initiated by pro-
inflammatory cytokines, such as TNF-α binds to specific receptor 
causing the sequential recruitment of various stimulation factors, 
which makes the rapid phosphorylation of IκBa and dissociation 
from the NF-κB (49, 50). Another signaling pathway is a much 
slower process mediated by the NF-κB-inducible kinase. It leads 
to the phosphorylation of IKKα and the dimerization of p52 
subunit and then follows through the classical pathway (49–51). 
NF-κB significantly mediates the activation of the IL-6 gene by 
a variety of IL-6 inducers such as PMA, LPS, TNF-α, poly(IC), 
and human T lymphotropic virus type I (52, 53). Nonetheless, the 
function is cell specific including U-937 monocytic cells, HeLa 
cells, and Jurkat T cells (49, 54–57). Meanwhile these inducible 
enhancer elements probably contribute to IL-6 gene induction in 
a cell-specific manner (45, 58).

NF-iL6 AND iTS C/eBP FAMiLTY

NF-IL6, also known as C/EBP-β, was identified in 1990 as it can 
bind to a 14-bp palindromic sequence (ACATTGCACAATCT) 
within an IL-1 responsive element in the human IL-6 gene (59, 
60). NF-IL6 expresses at an undetectable level in normal tissues 
but is obviously induced following the stimulation with LPS, IL-1, 
TNF-α, or IL-6 (52). It regulates a variety of genes involved in 
inflammatory cytokine (36). NF-IL6 contains a potential leucine 
zipper structure, which is highly homologous to a liver-specific 
transcriptional factor (30, 61).

The activity of NF-IL6 is regulated by several ways through 
its phosphorylation. First is the Thr-235 phosphorylated residue, 
second is within the leucine zipper, and third is the cAMP-
mediated phosphorylation that can be associated with nuclear 
translocation and gene transcription (62, 63). NF-IL6 also coop-
erates with other transcriptional factors, playing a synergistic 
role in regulating the IL-6 gene expression. For example, p65, 
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a subunit of NF-κB, results in the synergistic effect although this 
synergistic function comes to work only when NF-IL6 binds to its 
binding site of IL-6 promoter region (64, 65). In human intestinal 
epithelial cells, C/EBP-β (NF-IL6) may regulate IL-6 production 
through MAPK pathway. For example, when MAPK inhibitor 
(PD-98059) was used, it markedly attenuated the IL-6 mRNA and 
protein level, and this suppression is paralleled with the concen-
trations of PD-98059. In addition, this inhibition could involve 
in other transcription factors that can be influenced by MAPK 
signal pathways including AP-1 and NF-κB (65, 66). Although C/
EBP interacts with NF-κB synergistically, the function of C/EBP 
on the IL-6 gene expression is diminutive without the NF-κB (67). 
Furthermore, C/EBP homologous protein (CHOP) upregulates 
IL-6 promoter activity at the transcriptional level with a manner 
dependent on the leucine zipper domain (68). Moreover, in the 
human melanoma cell line A375, CHOP raises the IL-6 produc-
tion without binding to its promoter but trapping protein(s) such 
as liver-enriched inhibitory protein, an isoform of NF-IL6, which 
would otherwise inhibit IL-6 transcription (69). Within C/EBP 
family members, C/EBPζ (C/EBP heterodimers) acts as a nega-
tive regulator of IL-6 expression in B cells. Ectopic expression of 
C/EBPζ inhibited C/EBPζ-dependent IL-6 expression from both 
the endogenous IL-6 gene and the IL-6 promoter-reporter, while 
others such as C/EBPα, β, δ, and ϵ reveal the capacity of confer-
ring LPS-inducible IL-6 transcription to P388 B lymphoblast, 
which is murine B lymphoblastic cell line (70, 71).

ACTivATOR PROTeiN 1

The AP-1, which belongs to the class of basic leucine zipper 
transcription factors, has homodimeric and heterodimeric 
complexes. AP-1-binding sequence (5′TGAG/CTCA3′), also 
known as the TPA response element, mediates the regulatory 
transcription of target genes (72, 73). AP-1 can bind to the spe-
cific binding site of the IL-6 promoter, exerting a significant effect 
on the regulation of IL-6 gene expression (74, 75). Combination 
of AP-1 with other transcriptional factors such as NF-κB and 
cAMP may have a synergistic role in transcriptional regulation 
of IL-6 gene in thyroid FRTL-5 cells, and the synergistic effects 
of TSH and cAMP on IL-6 secretion stimulated by IL-1 mainly 
involves the AP-1-binding site and an increase in the expression 
of its subunits: c-Fos and Fra-2 transcription factors (76). In IM9 
cells, IL6-AP-1 is the most important cis-regulatory combination 
compared to other IL-6 promoter region: IL6–NF-κB, IL6-C/EBP, 
and IL6-CREB (77). However, there is a controversial observation 
on regulatory sites using IL-6 autocrine human prostate cancer 
cells. Xiao et al. showed that the cooperation between NF-κB and 
C/EBP-b is important for constitutively activated IL-6 promoter 
activity, while another study implicated the cooperation between 
NF-κB and AP-1 to be crucial (77, 78). Thus, the regulation of 
IL-6 gene expression is complex, and the AP-1 activation also 
works at a multilevel.

Sp-1

Sp-1 is a ubiquitous transcription factor, which belongs to the 
Sp/XKLF family (79). Sp-1 binding site lies between the NF-IL6 

and NF-κB enhancer, which is a G/C-rich sequence containing 
three repeats of the element CCACC in IL-6 gene (80). It is 
considered as an important bridge in binding between NF-κB 
and C/EBP isoforms in the IL-6 promoter (80). Sp-1 and NF-κB 
were demonstrated to have a positive cooperation in regulation of 
the human immunodeficiency virus promoter (81). In addition, 
Sp-1 may facilitate these interactions in IL-6 promoter for rapid 
response to inflammatory stimuli (82–84).

iNTeRFeRON ReGULATORY 
FACTOR (iRF)

Interferon regulatory factor could be one of other regulatory fac-
tors. By using the transient transfection of the chloramphenicol 
acetyltransferase (CAT) reporter gene linked to the IL-6 pro-
moter to analyze the function of the 5′-flanking region of the IL-6 
gene, it has demonstrated that IRF-binding site at position -267 to 
-254 is essential for induction of IL-6 gene expression following 
stimulation by IFN-γ. Transient transfection assays in HeLa cells 
demonstrated that the co-operation between IRF-1 and NF-κB 
at a low constitutive level is required for the comprehensive 
transcriptional activation of the IL-6 promoter directing CAT 
expression (85). IRF7 positively regulates IL-6 gene expression 
via enhancing IL-6 mRNA stability (86).

eSTROGeN ReCePTOR, ANDROGeN 
ReCePTOR, AND GLUCOCORTiCOiD

Apart from the positive transcriptional factors, some are also 
potent repressors involving in IL-6 gene expression. Steroid hor-
mones, important regulators of physiological homeostasis, play a 
role on endogenous IL-6 expression.

Glucocorticoid classical function is mostly based on binding 
of a glucocorticoid receptor (GR) dimer to GREs in the regulatory 
regions of target genes including IL-6 (87). GRα, the pivotal subu-
nit of GR, can repress pro-inflammatory gene by directly binding 
to a negative GRE, which involves the interactions between GRα 
and other transcription factors, particularly AP-1 and NF-κB (88, 
89). P65 interacts with the GR and leads to mutual transcriptional 
antagonism in various studies in vitro. The interaction involves 
the DNA-binding domain of GR and the Rel homology domain 
of p65 (90). However, the exact mechanism is still controversial. 
It has been evident that p65 subunit of NF-κB and GR are physi-
cally interact. Physiological antagonism between two cytokines 
is based on a mutual transcriptional antagonism. On the other 
hand, others considered that NF-κB dissociation from DNA is 
not a requirement (87). Glucocorticoids may also repress NF-κB 
activity through induction of the NF-κB inhibitor IκB. Moreover, 
GR-mediated trans-repression is also through the direct protein–
protein interactions between GRα and the c-Jun subunits (91).

Estrogens employ estrogen receptor to negatively regulate IL-6 
gene expression via inhibition of the DNA-binding activities of 
the transcription factors NF-IL6 and NF-κB, as well as disruption 
of NF-κB transactivation (92, 93). Androgens also inhibit IL-6 
gene expression via NF-κB. Using a prostate cancer cell line, 
dihydrotestosterone confirmed that it requires the androgen 
receptor to inhibit IL-6 gene promoter (94).
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SiNGLe-NUCLeOTiDe POLYMORPHiSM 
(SNP)

Polymorphisms in the promoter of IL-6 gene can result in inter-
individual variation in transcription and expression influencing 
an individual’s susceptibility to a diverse range of diseases (95). 
SNPs also play an important role in IL-6 gene expression that is 
related to common DNA sequence variations among individuals 
and associated to several human diseases. Up-to-date, four major 
polymorphisms of IL-6 have been identified where its polymor-
phism site is located at positions -572 G/C, -597 G/A, -1363 G/T, 
and -2954 G/C. These sites have a cooperative impact on the IL-6 
gene transcription (96–98). A single nucleotide change from G 
to C at position -174 in the IL-6 promoter influences its tran-
scription rate and is related to several diseases such as polycystic 
ovary syndrome (98–100). The – 174G/C SNP maps to a nega-
tive regulatory domain (−225 to −164), which approaches the 
CRE. Moreover, it is contained within a sequence bearing partial 
nucleotide homology with the Smad4-binding element and the 
“C” allele may bind Smad4 more effectively and thereby inhibit 
IL-6 transcription (100).

CONCLUSiON

Interleukin-6 acts as either a pro-inflammatory cytokine or an 
anti-inflammatory cytokine. Its role ranges from stimulating 

immune response, fighting infection, and responding to specific 
microbial molecules to changing the body’s temperature set-
point, stimulating osteoclast formation, assisting hybridoma 
growth, as well as affecting muscle contraction. Both its upstream 
and downstream signaling pathways differ obviously between 
myocytes and macrophages, which involve in several pivotal 
protein molecules. IL-6 triggers its receptors CD130 and CD126 
proteins to form a complex, thus initiating a signal transduction 
cascade through certain transcription factors like JAKs and 
STATs. Although IL-6 and its receptor are well acknowledged as a 
potential and vital target for the treatment of many diseases, there 
is still a large gap between cognization and utilization. Targeting 
the specific downstream molecular pathway may have the better 
therapeutic efficacy on inflammatory and autoimmune diseases.
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