
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 129, Number 10, Pages 3129–3131
S 0002-9939(01)06215-3
Article electronically published on May 6, 2001

HALL’S THEOREM REVISITED

ZHI-WEI SUN

(Communicated by John R. Stembridge)

Abstract. Let A1, · · · , An (n > 1) be sets. By a simple graph-theoretic

argument we show that any set of distinct representatives of {Ai}n−1
i=1 can

be extended to a set of distinct representatives of {Ai}ni=1 in more than
minn∈I⊆{1,··· ,n}(|

⋃
i∈I Ai| − |I|) ways. This yields a natural induction proof

of the well-known theorem of P. Hall.

Let A1, · · · , An be sets. If a1 ∈ A1, · · · , an ∈ An, and a1, · · · , an are distinct,
then we say that the sequence

{Ai}ni=1(1)

has a system of distinct representatives (abbreviated to SDR) {ai}ni=1.
A classical theorem of P. Hall [Ha] asserts that (1) has an SDR if and only if∣∣∣∣ ⋃

i∈I
Ai

∣∣∣∣ > |I| for all I ⊆ {1, · · · , n}.(2)

Hall’s theorem and its restatements in other contexts have many applications
throughout discrete mathematics; it is in some sense the fundamental combina-
torial min-max relation. (For its connection with transversal matroids, the reader
may see M. Aigner [A].) Many textbooks on combinatorics contain the proof given
by P. R. Halmos and H. E. Vaughan [HV], who deduced the sufficiency by handling
separately the case where |

⋃
i∈I Ai| > |I| for all nonempty I ⊂ {1, · · · , n} and the

remaining case where strong induction on n is used. Surprisingly, it seems that no
one has provided a proof of Hall’s theorem by passing from n− 1 sets to n sets.

Now we give

Theorem. Let A1, · · · , An (n > 1) be subsets of a set X. Suppose that {ai}n−1
i=1

forms an SDR of {Ai}n−1
i=1 . Then for some J ⊆ {1, · · · , n} containing n there are

exactly |
⋃
j∈J Aj | − |J |+ 1 elements of X that combine with a1, · · · , an−1 to form

an SDR of (1) with ai representing Ai for i 6∈ J .

Proof. Consider a directed graph G with vertices 1, · · · , n, which has an edge from
i to j if and only if i 6= n and ai ∈ Aj . Let

J = {1 6 j 6 n : there exists a path in G from j to n}
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and put A =
⋃
j∈J Aj . For any i = 1, · · · , n− 1,

ai ∈ A ⇐⇒ ai ∈ Aj for some j ∈ J
⇐⇒ there is an edge in G from i to some j ∈ J
⇐⇒ G contains a path from i to n
⇐⇒ i ∈ J.

Thus {1 6 i < n : ai ∈ A} = J \ {n}.
Set B = A\{ai : i ∈ J\{n}}. ThenB∩{a1, · · · , an−1} = ∅ and |B| = |A|−|J |+1.
Let a ∈ X . If a and those ai with 1 6 i < n can be rearranged to form an SDR

of (1) with ai representing Ai for i 6∈ J , then a ∈ B since a represents Aj for some
j ∈ J .

Conversely, if a ∈ B, then a ∈ Aj for some j ∈ J . If j = n, then an = a ∈ An
and hence {ai}ni=1 forms an SDR of {Ai}ni=1. If j 6= n, then G contains a path from
j to n, say j0, j1, · · · , jl where j0 = j and jl = n. Note that I = {j0, · · · , jl} ⊆ J .
Let bj0 , bj1 , · · · , bjl be a, aj0 , · · · , ajl−1 respectively. Evidently bi ∈ Ai for all i ∈ I.
Thus {bi}ni=1 is an SDR of (1) where we set bi = ai for i 6∈ I. This concludes the
proof.

Let A1, · · · , An be finite sets. Concerning the number of SDR’s of (1), in 1948
M. Hall [H] obtained the following lower bound providing (1) has an SDR:

f(m,n) = (m)min{m,n} =

{
m! if m 6 n,
m(m− 1) · · · (m− n+ 1) if m > n,

(3)

where m = min{|A1|, · · · , |An|}. We emphasize that this bound can be used only
if one has verified that

d = min
∅6=I⊆{1,··· ,n}

(∣∣∣∣ ⋃
i∈I

Ai

∣∣∣∣− |I|) > 0.

For any SDR {ai}ni=1 of (1) we call the set {a1, · · · , an} of cardinality n a set of
distinct representatives (abbreviated to s.d.r.) of (1). Distinct SDR’s of (1) may
yield the same set of distinct representatives. Obviously (1) has an s.d.r. if and only
if (1) has an SDR. Our theorem shows that any s.d.r. of {Ai}n−1

i=1 can be extended
to an s.d.r. of (1) in at least 1 + d(n) ways where

d(n) = min
n∈I⊆{1,··· ,n}

(∣∣∣∣ ⋃
i∈I

Ai

∣∣∣∣− |I|).(4)

This immediately yields a proof of Hall’s theorem by ordinary induction on the
number of sets.
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