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INTRODUCTION 
 
Population aging is a key social, economic, and medical 
challenge on a global scale, which has created a major, 
growing need to develop interventions that target the 
aging process. Because age-associated changes in 
homeostasis are the major risk factors for the most 
prevalent human diseases (such as neurological, 
metabolic, fibrotic, and inflammatory conditions), 

developing interventions that target aging would also 
impact multiple age-related diseases and result in 
unprecedented health benefits [1, 2]. Importantly, the 
stated goal of geroscience is to extend not only lifespan 
but also health life expectancy, or healthspan [2], 
enabling wellbeing in older age, the so-called “healthy 
aging”. Research into longevity pharmacology has 
exploded in recent years with hundreds of compounds 
now known to extend lifespan in model organisms [3–7]. 
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ABSTRACT 
 
Aging biology is a promising and burgeoning research area that can yield dual-purpose pathways and protein 
targets that may impact multiple diseases, while retarding or possibly even reversing age-associated processes. 
One widely used approach to classify a multiplicity of mechanisms driving the aging process is the hallmarks of 
aging. In addition to the classic nine hallmarks of aging, processes such as extracellular matrix stiffness, chronic 
inflammation and activation of retrotransposons are also often considered, given their strong association with 
aging. In this study, we used a variety of target identification and prioritization techniques offered by the 
AI-powered PandaOmics platform, to propose a list of promising novel aging-associated targets that may be 
used for drug discovery. We also propose a list of more classical targets that may be used for drug repurposing 
within each hallmark of aging. Most of the top targets generated by this comprehensive analysis play a role in 
inflammation and extracellular matrix stiffness, highlighting the relevance of these processes as therapeutic 
targets in aging and age-related diseases. Overall, our study reveals both high confidence and novel targets 
associated with multiple hallmarks of aging and demonstrates application of the PandaOmics platform to target 
discovery across multiple disease areas. 
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Major challenges remain, however, in translating these 
findings into humans, and ultimately extending lifespan 
and healthspan by targeting aging mechanisms.  
 
Although the underlying molecular mechanisms of 
aging remain the subject of debate, several key 
pathways and processes have been associated with 
aging processes. These have been conceptualized in the 
hallmarks of aging composed of: Altered intercellular 
communications, Cellular senescence, Deregulated 
nutrient signaling, Epigenetic shift, Genomic instability, 
Impaired proteostasis, Mitochondrial dysfunction, Stem 
cell exhaustion, Telomere attrition [8]. The hallmarks of 
aging have been widely used in the field as a starting 
point for studies, although they are not perfect, and 
arguably other mechanisms such as extracellular matrix 
stiffness [9], retrotranspositions [10] and inflammation 
[11] have also been reported to play an important role in 
aging. These heterogeneous processes have in turn been 
associated with age-related diseases. For example, 
cellular senescence has been associated with 
pathologies such as cancer, type 2 diabetes, and 
atherosclerosis [12], as well as pulmonary, neurological, 
renal, hepatic, infectious, musculoskeletal, and 
endocrine diseases [13]. At the genetic level, there is a 
substantial overlap between the genetics of aging and 
age-associated diseases (AADs) [14]. For example, 
some known aging-related targets, such as mTOR, 
AMPK, IGFR, NF-kB, S6K, TGF-β, AT1, Fgf21, 
FOXO3a, SIRT1, HIF-1, NRF2, and Klotho, may also 
impact multiple age-associated diseases [1, 8, 15]. 
Therefore, given that aging is associated with 
mechanisms that ultimately lead to age-related 
comorbidities, drugs that act on targets implicated in 
aging may potentially reduce the severity of gerolavic 
(from Greek, géros “old man” and epilavís, “harmful”) 
diseases and preventing multimorbidity [16]. 
 
A substantial percentage of the human clinical trials, 
including those evaluating investigational anti-aging 
drugs, fail in Phase II, a phase where efficacy of the 
drug is tested [17, 18]. This poor success is in part due 
to inadequate target choice and the inability to identify a 
group of patients who will most likely respond to 
specific agents. This challenge is further complicated by 
the differences in biological age of the patients, as 
importance of therapeutic targets varies between the age 
groups. Hence, identifying potential targets that are 
implicated in multiple age-associated diseases, and also 
play a role in the basic biology of aging, may have 
substantial benefits. 
 
Given the large number of datasets being generated, 
data-driven approaches (such as artificial intelligence 
[AI] and machine learning) are becoming instrumental 
across various fields in biology, including biomarker 

discovery and target prediction in aging [19]. Indeed, a 
number of studies by our group and others have 
employed computational and machine learning analysis 
to identify new candidates in the context of aging and 
AADs. These approaches have led to the detection of 
disease-related genes, caloric restriction genes, and 
longevity drugs [20–24]. The application of AI in the 
pharmaceutical industry also aims to reduce the 
tremendous amount of cost and time conventionally 
needed to discover new therapeutic targets in various 
diseases. There are multiple philosophies for the 
formulation of disease hypothesis, prioritization of 
pathways implicated in a disease, and selection of 
promising therapeutic targets. Multiple data types can 
be used for target discovery including text, imaging, and 
omics. In recent years, machine learning, and especially 
deep learning technologies, are rapidly increasing in 
popularity for target discovery. Advanced signaling 
pathway modeling such as iPANDA [25] and deep 
neural networks were used to identify promising protein 
targets driving complex biological processes implicated 
in cancer and other diseases [26], drug repurposing [27], 
and geroprotector discovery [28, 29]. Many of these 
approaches were implemented in PandaOmics, an 
industrial target discovery engine. Recently, 
PandaOmics, has successfully identified and nominated 
novel targets for idiopathic pulmonary fibrosis (IPF) 
and kidney fibrosis [30–32]. 
 
This platform utilizes advanced deep learning models 
and AI approaches to predict the target genes associated 
with a given disease through a combination of Omics 
AI scores, Text-based AI scores, Finance scores, and 
Key opinion leader (KOL) scores (Figure 1), and is 
currently being employed in both academic and industry 
settings. The algorithm also allows the prioritization of 
protein targets for novelty, confidence, commercial 
tractability, druggability, safety, and other key 
properties that drive target selection decisions. The 
integrated omics database consists of a vast amount of 
published systems biology data, spanning over 1,500 
diseases and 10,000 disease subtypes. The database 
includes approximately 1.9 trillion data points derived 
from over 10 million samples with microarrays, RNA 
sequencing, proteomes, and methylomes, among other 
data types. PandaOmics’ text database embeds 
information from over 40 million documents, including 
patents, grants (that amount to over $2 trillion in 
funding), publications, clinical trial results, and 
company reports, among other text-based sources.  
 
In this study, we used PandaOmics to identify a list of 
potential aging-associated therapeutic targets across 
various AADs that may be used for drug discovery. 
We successfully established and validated our unique 
approach with the application of varied target 
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identification and prioritization techniques offered by 
PandaOmics and downstream analyses, yielding a list 
of dual-purpose targets associated with both the aging 
process and AADs. First, a list of 145 aging-related 
targets was generated upon the hallmarks of aging 
assessment. Subsequently, we further narrowed down 
the number of potential candidates to a total of 9 
highly promising therapeutic targets associated with 
the aging process and AADs based on multiple 
selection criteria.  

RESULTS 
 
Discovery of targets implicated in multiple age-
associated diseases 
 
A combined list of 484 high confidence, 448 medium 
novel, and 381 highly novel targets were generated from 
the lists of top-100 targets prioritized by PandaOmics in 
each of the AADs (Supplementary Figure 1). The top-
100 targets for three levels of novelty settings 

 

 
 

Figure 1. Workflow of the present study. Thirty-three diseases were separated into either age-associated diseases (AADs) or non-age-
associated diseases (NAADs) based on the impact of age on the risk of the disease’s onset. Their corresponding transcriptomic datasets 
were retrieved from public repositories and processed by PandaOmics. Age bias between case and control groups has been considered 
during dataset selection. With multiple levels of novelty settings, targets implicated in AADs and NAADs were identified by ‘PandaOmics - 
target identification’. PandaOmics prioritized targets for one disease and refined the targets based on several flexible druggability filters. 
The target-disease associations were ranked according to over 20 artificial intelligence and bioinformatics models ranging from Omics AI 
scores, Text-based AI scores, Finance scores to KOL scores. Target identification was performed independently for each disease. Top-ranked 
targets shared by both disease categories were regarded as common targets, while targets unique to AADs were defined as age-associated 
targets (AAD targets). All common targets and AAD targets were subjected to the hallmarks of aging assessment by searching the literature 
for their evidence in modulating longevity or longevity pathways. To propose potential targets with a dual role in anti-aging and disease 
treatment, hallmark-associated targets were further evaluated based on their expression profiles across AADs, mechanism of action, and 
safety. A total of 9 targets were selected, with three levels of novelty. Abbreviation: KOL: Key opinion leader. 
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Table 1. List of diseases and datasets employed. 

Disease Disease class Number of comparisons 
Age-associated diseases (14 diseases, 87 comparisons) 
Alzheimer's disease Neurological 12 
Amyotrophic lateral sclerosis Neurological 10 
Chronic kidney disease Metabolic 7 
Chronic obstructive pulmonary disease Inflammatory 6 
Cirrhosis of liver Fibrotic 5 
Idiopathic Pulmonary Fibrosis Fibrotic 11 
Obesity Metabolic 10 
Osteoarthritis Inflammatory 5 
Osteoporosis Metabolic 2 
Parkinson's disease Neurological 4 
Primary myelofibrosis Fibrotic 2 
Pulmonary arterial hypertension Metabolic 5 
Rheumatoid Arthritis Inflammatory 4 
Type II diabetes mellitus Metabolic 4 
Non-age-associated diseases (19 diseases, 126 comparisons) 
Acromegaly Metabolic 2 
Asthma Inflammatory 13 
Bipolar disorder Neurological 4 
Celiac disease Inflammatory 3 
Crohn's disease Inflammatory 8 
Cystic fibrosis Fibrotic 5 
Hepatitis, alcoholic Metabolic 3 
Hepatitis C virus infection Infectious 2 
Huntington's disease Neurological 5 
Infectious meningitis Infectious 3 
Influenza Infectious 5 
Multiple sclerosis Inflammatory 11 
Psoriasis Inflammatory 11 
Pulmonary tuberculosis Infectious 7 
Schizophrenia Neurological 4 
Systemic lupus erythematosus Inflammatory 9 
Systemic scleroderma Fibrotic 6 
Type I diabetes mellitus Metabolic 12 
Ulcerative colitis Inflammatory 13 

 
were selected by (1) the occurrence of the target genes in 
14 AADs (Supplementary Figure 2) and (2) the average 
ranking of the target gene in its corresponding disease 
(Supplementary Table 1). The same approach was 
applied to non-age-associated diseases (NAADs). 
Diseases selected for this study and their corresponding 
disease classes were listed in Table 1. Only the top-100 
genes of this combined list from AADs were subjected to 
the hallmarks of aging assessment by finding their 
corresponding evidence in modulating longevity or aging 
pathways in literature and expression analysis. Under 
high confidence settings, the top genes identified were 

CASP3, VEGFA, and MMP9, which were highly ranked 
in all of the 14 AADs (Figure 2 and Supplementary 
Figure 2A). LYN was the top gene identified under 
medium novelty settings, which was also highly 
implicated in all AADs (Supplementary Figures 2B and 
3). For high novelty settings, PPP2CB, CDC34, FES, 
RHOF, and RAB24 were the top-ranked genes in 12 out 
of 14 AADs (Supplementary Figures 2C and 4). The top-
ranked genes shared by both AADs and NAADs were 
regarded as common targets, while those genes unique to 
AADs were defined as age-associated targets, or AAD 
targets (Venn diagram, Figure 1). Intersecting the two 
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lists of genes obtained from AADs and NAADs resulted 
in 42 AAD targets in high confidence setting 
(Supplementary Figure 5A). The remaining 58 genes 
were considered as common targets. For medium and 
high novelty settings, 37 and 29 AAD targets were 
identified, respectively (Supplementary Figure 5B–5C).  

Genes implicated in AADs are associated with the 
hallmarks of aging 
 
In our analysis, 300 genes identified under three 
different novelty settings were subjected to a literature 
review (see Materials and Methods) for their association 

 

 
 

Figure 2. Ranking of the top-100 gene set for AADs under high confidence settings. The ranking of the targets in AADs and 
NAADs are colored in blue-white and red-white thermal scales respectively. High color intensity stands for high ranking. The lowest ranking 
was capped at 100. Targets associated with the hallmark(s) of aging are labeled in green. Abbreviation: COPD: Chronic obstructive 
pulmonary disease. 
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with the hallmarks of aging. Their corresponding  
roles in aging processes were summarized in 
Supplementary Table 2. In total, 145 genes (69 high 
confidence, 48 medium, and 28 highly novel targets) 
were linked to at least one aging hallmark (Figure 3, 
Supplementary Table 2). The most frequently 

associated aging hallmark was inflammation (n = 48), 
followed by genomic instability (n = 35), altered 
intercellular communications (n = 33), mitochondrial 
dysfunction (n = 32), impaired proteostasis (n = 31) and 
extracellular matrix stiffness (n = 30). Eighty-six genes 
(including several well-known aging-associated genes)

 

 
 

Figure 3. Targets associated with hallmarks of aging. Age-associated targets and common targets (n = 145) were mapped to the 
corresponding hallmark(s) of aging based on the literature. For novel targets, their participating pathways were also used for the 
assessment of their association with the hallmark(s) of aging. The four targets connected to all hallmarks (AKT1, MTOR, SIRT1 and IGF1) are 
shown in the inner circle of the plot. The target names are labeled in blue for age-associated targets, and black for common targets. Targets 
annotated as cancer driver genes in the NCG7.0 database are underlined. 
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were found to be associated with more than one 
hallmark. In particular, MTOR, SIRT1, IGF1, and AKT1 
were associated with all hallmarks of aging, due to their 
wide range of interactions with aging-associated 
pathways. In addition, IGF1R was linked to deregulated 
nutrient signaling, genomic instability, inflammation, 
mitochondrial dysfunction, retrotranspositions, and stem 
cell exhaustion. Whereas HGF was associated with all 
hallmarks except epigenetic shift, retrotranspositions, 
and telomere attrition. Moreover, some novel targets 
were also identified to be associated with multiple 
hallmarks of aging. For example, MYSM1 was 
associated with cellular senescence, inflammation, and 
stem cell exhaustion; KAT6A was associated with 
cellular senescence, epigenetic shift, and stem cell 
exhaustion; UBE2E3 was linked to cellular senescence, 
impaired proteostasis, and stem cell exhaustion; RAB7B 
was linked to impaired proteostasis, inflammation, and 
mitochondrial dysfunction; whereas RAB8B and USP2 
were related to altered intercellular communications, 
impaired proteostasis, and mitochondrial dysfunction. 
Furthermore, a recently proposed hallmark of aging, 
extracellular matrix stiffness, was associated with 30 
target genes identified by PandaOmics in this study, 
consisting of 18 high confidence (AKT1, CHUK, 
CASP3, DNMT1, EGFR, FGF2, HGF, IGF1, ITGAV, 
LOX, MMP1, MMP2, MMP7, MMP9, MTOR, SIRT1, 
SPP1, TRAF6), 8 medium novel (FAM20C, GALNT1, 
ITGB5, MMP25, PLOD1, PLOD3, RAB14, TNIK), and 
4 highly novel targets (ADAMTS14, ITGA11, RAP2C, 
RNF14). Among the 145 genes associated with 
hallmarks of aging, 55 genes are known cancer drivers 
(Figure 3) [33], pointing to the aging components 
underlying cancer pathogenesis.  
  
Genes consistently dysregulated in multiple AADs 
were implicated as potential dual-purpose targets 
 
To study the dysregulation state of genes identified 
under three different novelty settings, their consistency 
of expression change in each AAD class was 
summarized in Figure 4. Genes that were consistently 
dysregulated in two or more disease classes in a 
unidirectional manner were selected for further analysis. 
For high confidence targets, 52 genes were selected, of 
which 10 (CASP3, CXCL10, CXCL12, CYBA, HGF, 
ITGAM, ITGAV, PLAU, SPP1, and TGFB1) were 
consistently upregulated while MAPK8 was the only 
gene that was downregulated in all disease classes; 24 
genes were upregulated and 8 were downregulated in 3 
disease classes. Forty-four medium novel targets were 
selected, with 4 genes (CLEC5A, FPR3, ITGB5, and 
RAB31) and PPM1A being upregulated and 
downregulated in all disease classes, respectively; 15 
genes were upregulated and 10 were downregulated in 
3 disease classes. For highly novel targets, 5 of the 

45 genes (MX2, P2RX1, PRSS23, RAB7B, and RNASE6) 
were upregulated in all classes; 6 genes were 
upregulated while 21 were downregulated in 3 disease 
classes. As described above, upon the hallmarks of 
aging assessment, 145 genes were considered as 
potential aging-related targets. Here, these genes were 
further selected with reference to their expression 
patterns, and a subset of the candidates was considered 
as potential dual-purpose targets for subsequent analysis 
(Supplementary Figure 1). 
  
Validation by intersecting the AI-derived targets 
with well-known aging-associated genes 
 
The significance of the mTOR, the insulin/IGF, and the 
sirtuin pathways in longevity has been extensively 
reported, delineating their critical roles in counteracting 
multiple hallmarks of aging to delay the aging process 
or to extend lifespan [8, 34, 35]. Remarkedly, Food and 
Drug Administration (FDA)-approved mTOR inhibitor, 
rapamycin, was demonstrated to slow down aging and 
AADs in both preclinical settings and clinical trials [36, 
37]. mTOR regulates several hallmarks of aging 
including nutrient sensing, stem cell exhaustion, 
proteostasis, and cellular senescence [38]. Upon 
insulin/IGF receptor activation following the 
insulin/IGF1 binding, mTOR, a nutrient sensor, 
regulates cellular functions linked to proliferation, 
growth, and survival via Akt-mediated activation. 
Increased insulin sensitivity favored lifespan extension. 
For example, growth hormone receptor (GHR)-
knockout mice showed higher sensitivity to insulin, 
decelerated senescence, and displayed more phenotypic 
features related to anti-aging [39]. In addition, 
activation of SIRT1 suppressed aging by ensuring 
telomere integrity [40, 41], antagonizing oxidative 
stress [42, 43], regulating nutrient signaling [8] and 
maintaining proteostasis [44, 45]. 
  
Our approach utilizing PandaOmics identified a set of 
well-known aging-associated genes that are part of the 
mTOR, insulin/IGF and sirtuin family signaling 
(including IGF1, IGF1R, AKT1, MTOR, and SIRT1), 
strongly supporting the validity of this promising method 
for the identification of aging-associated genes. The 
aging-associated genes listed above were identified as 
common targets, suggesting their relevance in both aging 
and other diseases as well as their involvement in multiple 
signaling networks. It is worth noting that aging genes 
such as FOXO that did not meet the criteria for 
druggability (see Materials and Methods) were filtered 
out. To further evaluate whether our approach could 
identify aging-related targets with potential clinical 
relevance, the 100 high confidence targets were compared 
with a pool of well-known aging-associated genes curated 
from http://ClinicalTrials.gov (focusing on the treatment 

http://clinicaltrials.gov/
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of aging), publication, http://Geroprotectors.org [46] 
(Supplementary Tables 3–5) and aging gene database, 
GenAge [47]. Fourteen high confidence targets (ABL1, 
AR, ESR1, GHR, IGF1, IGF1R, KIT, MAPK14, 

MTOR, NR3C1, PDGFRB, SIRT1, SRC and VDR) 
were identified in the pool of 62 genes procured from 
the aging trials (expected [Exp] = 1.10, fold = 12.70, p 
= 1.79E-12, Supplementary Table 3). Twenty- 

 

 
 

Figure 4. Expression of target genes in 4 AAD classes. The consistency of gene dysregulation in each disease class is indicated by the 
thermal scale, with red standing for upregulation and blue for downregulation. The color intensity indicates the level of consistency. Target 
genes consistently dysregulated (≥60% of comparisons) in 4 AAD classes in a unidirectional manner are shown in the black boxes. 

http://geroprotectors.org/
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four high confidence targets (AKT1, CASP3, CAT, 
CHUK, DNMT1, EGFR, HDAC9, IGF1, IGF1R, IL1B, 
IL6, JAK2, MAPK8, MMP1, MMP2, MMP9, MTOR, 
PPARA, PTEN, SIRT1, SOD2, TGFB1, TGFBR2 and TNF) 
were identified in the pool of 48 genes procured from 
publications (Exp = 0.85, fold = 28.13, p = 1.21E-30, 
Supplementary Table 4). While seven high confidence 
targets (CASP1, CASP3, CHUK, ESR1, HSPA5, IKBKB 
and MTOR) were further identified in the pool of 52 
genes procured from geroprotectors (Exp = 0.92, fold = 
7.57, p = 3.15E-5, Supplementary Table 5). This 
significant enrichment might indicate the potential 
clinical relevance of our AI-derived targets in treating 
aging-related processes and AADs. Moreover, 
significant overrepresentation was also observed in 38 
high confidence targets that were overlapped with 149 
aging-associated genes obtained from the benchmark 
aging gene database, GenAge (Exp = 2.65, fold = 14.35, 
p = 1.28E-35), further validating the approach used in 
this study.  

Linking the AI-derived targets to aging-associated 
pathways by pathway enrichment analysis 
 
Pathway enrichment analysis was performed on 145 
AI-derived targets using Kyoto Encyclopedia of 
Genes and Genomes (KEGG) PATHWAY Database 
[48]. Genes were mapped to 225 KEGG pathways, of 
which 151 were significantly enriched (p < 0.05) 
(Supplementary Table 6) with 110 of the 145 potential 
targets. PI3K-AKT signaling pathway (hsa04151), 
MAPK signaling pathway (hsa04010) and FOXO 
signaling pathway (hsa04068) were in the top 10 
enriched signaling axes known to be associated with 
aging. Notably, the AI-derived targets crosstalk with 
multiple key aging-associated pathways, such as those 
regulated by MAPK, PI3K-AKT and FOXO signaling 
networks (Figure 5), consequently contributing to 
modulating apoptosis, autophagy, cell proliferation, 
cell survival, DNA repair, epigenetic alteration, 
extracellular matrix organization, inflammation,

 

 
 

Figure 5. AI-derived targets crosstalk to aging-associated signaling pathways. Pathway enrichment analysis was performed on our 
145 AI-derived targets based on KEGG PATHWAY Database. (A) MAPK signaling pathway (hsa04010), (B) PI3K-AKT signaling pathway 
(hsa04151) and (C) FOXO signaling pathway (hsa04068) were among the top 10 enriched pathways that were known to be associated with 
aging. Forty-six AI-derived targets were involved. Target-target interactions were identified in the contexts of pathways and networks 
retrieved from KEGG PATHWAY Database and literature (Supplementary Table 8). Abbreviation: PAMPs: Pathogen-associated molecular 
patterns. 
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mitochondrial maintenance, stemness and telomere 
maintenance (Supplementary Table 2). 
 
AI-derived targets demonstrate dual roles in aging 
and AADs 
 
The dual-purpose candidates were selected under the 
considerations of hallmarks of aging assessment 
(Supplementary Table 2), expression analysis (Figure 4), 
ranking calculated by PandaOmics, safety assessment, 
clinical trial status and druggability, yielding a list of 9 
potential candidates (Table 2). Selected promising high 
confidence targets and novel targets are discussed below.  
 
CXCL12 
 
Aging was associated with elevated levels of 
proinflammatory cytokines, consequently leading to a 
decrease in mesenchymal stem cell (MSC) ability to 
regenerate and differentiate in inflammatory conditions 
[49]. Despite rescuing oxidative stress-induced 
hematopoietic stem cell (HSC) damage at the 
mitochondrial level, C-X-C motif chemokine ligand 12 
(CXCL12) acted as a proinflammatory cytokine [50]. 
CXCL12 was uniformly upregulated in more than 70% 
comparisons in all four AAD classes i.e., neurological, 
metabolic, inflammatory, and fibrotic diseases (Figure 
6A). In general, the log-fold change (logFC) of CXCL12 in 
AADs was significantly higher than in NAADs (p < 0.001, 
Figure 6A). Accumulating evidence demonstrates that 
CXCL12 upregulation was implicated in AADs including 
IPF [51], rheumatoid arthritis (RA) [52], and amyotrophic 
lateral sclerosis (ALS) [53]. Consistent with our findings, 
upregulation of CXCL12 was suggested to promote 
migration and proliferation of human lung fibroblast in IPF 
as well as to enhance monocytes infiltration into the 
synovial tissue in RA [51, 52]. Treatment with an 
antagonist of CXCR4, the receptor for CXCL12, extended 
lifespan, improved motor function, and led to weight loss 
in ALS in vivo [54]. Aging-associated degenerative 
diseases such as osteoporosis were linked to dysfunctional 
stem cell differentiation and a decline in the regenerative 
capacity of musculoskeletal stem cells, resulting from the 
secretion of pro-inflammatory cytokines such as CXCL12 
[49]. Tinzaparin, a CXCL12 inhibitor, is an FDA-
approved drug for the treatment of deep vein thrombosis 
and pulmonary embolism, which are considered as AADs. 
Taken together, suppression of CXCL12 is one of the 
potential therapeutic approaches that may be considered 
towards slowing down aging-associated processes and 
preventing the onset of AADs. 
 
SPP1 
 
Secreted phosphoprotein 1 (SPP1) functions as Th1 
cytokine and is a secreted matrix glycoprotein located in 

bone and produced by osteoblasts, osteocytes, other 
hematopoietic cells, or immune cells [55]. SPP1 was 
uniformly upregulated in more than 80% comparisons 
in all four AAD classes, with significantly higher logFC 
in AADs than in NAADs (p < 0.001, Figure 6B). It was 
suggested that SPP1 may aggravate neurodegenerative, 
auto-immune, and inflammatory conditions. For 
example, SPP1 expressed by fast fatigue-resistant or 
slow motor neurons contributed to the second-wave 
neurodegeneration in ALS in vivo [56]. In addition, 
elevated levels of SPP1 in cerebrospinal fluid of 
subjects with Parkinson’s disease were associated with 
more severe motor symptoms. Importantly, SPP1-null 
mice demonstrated reduced neurodegeneration [57]. 
Besides, SPP1 upregulated lysyl oxidase, an enzyme 
involved in cross-linking insoluble collagen in 
fibroblasts. An excess of SPP1 was associated with left-
ventricular stiffness and systolic dysfunction in patients 
with chronic heart failure and hypertensive heart disease 
[58]. The levels of active TGF-beta and MMP-2, two 
essential fibrogenic signaling mediators, as well as 
type I collagen expression were significantly attenuated 
in SPP1-null mice treated with bleomycin, fibrosis 
inducer, compared to wild-type controls [59]. Taken 
together, these findings strongly suggest that 
suppression of SPP1 is a highly potential therapeutic 
approach for aging and AADs. 
 
ITGB5 
 
Integrin alpha V beta 5 (ITGB5) encodes a subunit of 
integrin that can interact with several alpha chains to 
form a variety of integrin heterodimers. ITGB5 was 
consistently upregulated in more than 60% comparisons 
in all four AAD classes, and the logFC of ITGB5 in 
AADs was significantly higher than NAADs (p < 0.05, 
Figure 6C). Consistently, ITGB5 was also found to be 
upregulated in chronic kidney disease and psoriatic 
arthritis [60, 61]. In particular, ITGB5 was significantly 
increased in the serum of patients with psoriatic 
arthritis, a distinct inflammatory arthritis occurring in 
30% of psoriasis patients [60]. ITGB5 was suggested as 
a biomarker for both nonprogressive and progressive 
kidney diseases [61], and was also one of the genes 
strongly associated with ischemic heart disease [62]. 
Moreover, ITGB5 served as a ligand for Cyr61, a 
molecule stimulating the production of IL-6, which is 
considered an aging biomarker, via itgav/itgb5/Akt/ 
NF-κB signaling pathway in RA [63, 64], further 
supporting its role in various mechanisms underlying 
multiple AADs. 
 
ADAMTS14 
 
A disintegrin and metalloproteinase with thrombospondin 
motifs 14 (ADAMTS14) cleaves the amino-propeptides 
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Table 2. List of prioritized targets. 

Target1 Protein family Hallmarks 
of aging 

Dysregulation 
in AAD classes Role in aging Drugs in 

clinical trials 
Severe 
toxicity3 Reference 

High confidence 

CXCL12 Cytokine Inflammation, 
Stem cell 
exhaustion 

ALL 
Upregulated 

CXCL12 is an aging-upregulated 
gene and a mediator of the crosstalk 
between vascular cells and many 
brain cell types (pro-aging; therapy 
approach: antagonist) 

Tinzaparin 
(phase 4) 

No 
evidence 

[94] 

SPP1 Chemokine Extracellular 
matrix stiffness, 
Inflammation, 
Stem cell 
exhaustion 

ALL 
Upregulated 

Age-dependent increase in SPP1 
levels inhibited skeletal muscle 
regeneration (pro-aging; therapy 
approach: antagonist) 

ASK-8007 
(phase 1/2) 

No 
evidence 

[95, 96] 
NCT00411424 

Medium novel 

ITGB5 Receptor Altered 
intercellular 
communications, 
Extracellular 
matrix stiffness 

ALL 
Upregulated 

ITGB5 is a TGF-β activator. TGF-β 
signaling, being downstream of 
other signals, was shown to repress 
body size as well as lifespan in vivo 
(pro-aging; therapy approach: 
antagonist) 

Cilengitide 
(phase 3) 

No 
evidence 

[97] 
NCT00689221 

PPM1A Esterase Deregulated 
nutrient signaling, 
Inflammation 

ALL 
Downregulated 

PPM1A stimulated macrophages 
to produce TNF through TLR4 
(anti-aging; therapy approach: 
agonist) 

No No 
evidence; 
absence 
in DEG 

[98] 

Highly novel 

RAB7B Hydrolase Impaired 
proteostasis, 
Inflammation, 
Mitochondrial 
dysfunction 

ALL 
Upregulated 

RAB7B negatively regulated TLR4 
signaling in macrophages and 
autophagic flux as well as prevented 
inflammation and autophagy upon 
damage (anti-aging2; therapy 
approach: agonist) 

No No 
evidence; 
absence 
in DEG 

[99] 

ADAMTS
14 

Peptidase Extracellular 
matrix stiffness 

Upregulated in 
neurological and 
fibrotic diseases 

ADAMTS14 is responsible for the 
degradation of ECM collagen. 
During aging, fibroblast-ECM 
interactions become disrupted due to 
the fragmentation of collagen fibrils. 
Fibroblasts synthesized fewer ECM 
proteins and more matrix-degrading 
metalloproteinases (pro-aging; 
therapy approach: antagonist) 

No No 
evidence, 
absence 
in DEG 

[100] 

KDM7A Oxidoreductase Altered 
intercellular 
communications, 
Genome instability 

Downregulated 
in neurological 
and fibrotic 
diseases 

Age-related neural dedifferentiation 
might contribute to many cognitive 
abilities decline with age. KDM7A 
regulated neural differentiation 
through FGF4, and was associated 
with Wnt signaling (anti-aging; 
therapy approach: agonist) 

No No 
evidence 

[101, 102] 

MYSM1 Peptidase Cellular 
senescence, 
Inflammation, 
Stem cell 
exhaustion 

Downregulated 
in neurological, 
fibrotic and 
metabolic 
diseases 

MYSM1 functionally reduced 
cellular senescence and the aging 
process. MYSM1 deficiency 
promoted the aging process and 
decreased lifespan while its 
overexpression inhibited the aging 
process and increased lifespan 
in vivo. (anti-aging; therapy 
approach: agonist) 

No No 
evidence 

[103] 

MTMR4 Esterase Altered 
intercellular 
communications 

Downregulated 
in neurological, 
fibrotic and 
metabolic 
diseases 

Skeletal muscle atrophy 
accompanies many chronic disease 
states and normal aging (anti-aging; 
therapy approach: agonist) 

No No 
evidence 

[104] 

Note: 1Targets selected for comprehensive target review are in BOLD. 2Based on its mechanism of action i.e., protective role. 
3Database of Essential Gene (DEG) is freely accessible from the website http://tubic.tju.edu.cn/deg. 

http://tubic.tju.edu.cn/deg
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of fibrillar collagens, enabling collagen fibril formation 
prior to assembly of collagen, a major extracellular 
matrix (ECM) protein. ADAMTS14 was uniformly 
upregulated in more than 65% comparisons in 
neurological and fibrotic diseases. The logFC of 
ADAMTS14 in AADs was also significantly higher 
than in NAADs (p < 0.01, Figure 6D). Significant 
upregulation of ADAMTS14 was observed in human 
osteoarthritis (OA) cartilage, suggesting its involvement 
in cartilage matrix anabolism [65]. ADAMTS14 was 
also linked to the susceptibility to aging-related 
Alzheimer's disease as well as the regulation of immune 
functions via TGF-beta signaling [66]. ADAMTS14-

deficient mice remained healthy, fertile, and displayed 
normal amino-procollagen processing [67], suggesting 
that antagonizing ADAMTS14 is unlikely to result in 
severe toxicity. As such, pharmaceutical inhibition of 
ADAMTS14 may provide a promising therapeutic 
approach for aging and AADs. 
 
DISCUSSION 
 
In recent years, extensive efforts have been applied to 
generating a wide range of transcriptomic, genomic, 
proteomic, imaging, methylation, and metagenomic 
aging-related data. However, analysis of such a massive

 

 
 

Figure 6. Expression of target genes in different diseases. The logFC of gene expression were shown for (A) CXCL12, (B) SPP1, 
(C) ITGB5, or (D) ADAMTS14 in AADs and NAADs. For each gene, comparisons of the logFC value were conducted between NAAD and each 
of the AAD classes, with significant difference indicated by asterisks (two-tailed t-test, *p < 0.05, **p < 0.01, ***p < 0.001). 
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amount of data requires tailored computational 
approaches, capable of providing a detailed overview of 
the aging process as well as identifying promising 
targets for delaying aging and treating age-associated 
diseases. PandaOmics has several unique advantages 
with respect to user experience, integrated deep 
learning-based algorithms, the comprehensive database, 
and the time machine validation approach [19]. In 
contrast to other alternatives, PandaOmics platform 
consists of a diverse set of validated AI analytical 
models (such as text mining, entity recognition, target 
ranking, and trend prediction), coupled with the ability 
to discover novel targets automatically, making this 
platform unique in the community. 
 
While we acknowledge that inclusion and exclusion of 
AADs can impact the outcome of our analyses, 
unfortunately, we could not include all AADs into our 
study due to limited publicly available datasets for some 
diseases. Given this limitation, the selection of 14 
AADs was based on the consideration of whether age is 
a strong risk factor for the disease’s onset, as well as the 
availability of public datasets. Cardiovascular diseases 
were not included in this study due to their common 
mechanistic root contributing to the insufficient blood 
supply to multiple organs [68, 69]. Cancers were also 
excluded, as some of the pathways and mechanisms 
implicated in tumorigenesis are contradictory to those 
typically implicated in aging, such as increased cell 
proliferation [70]. Regarding target selection, some of 
the aging-associated genes were filtered out due to 
target family consideration, for example, transcription 
factors and generic proteins were not included. 
Furthermore, the current analysis only retrieved 
transcriptomics data, which, in turn, restricted the depth 
of analysis. The incorporation of genomic data could 
bring deeper insights into the shared genetics between 
aging and aging-associated disorders. Moreover, as 
aimed to identify dual-purpose targets across aging and 
multiple AADs, genes that did not meet the dual-
purpose were not selected by this approach. It is also 
worthy to note the trade-off between target novelty and 
the evidence connecting a target to a disease. The 
degree of novelty is defined by the volume of related 
publications, and thus increasing the novelty level will 
sacrifice the evidence supporting the target’s 
participation in the disease. Therefore, some of the 
highly novel targets selected by PandaOmics, were not 
mapped to any aging hallmarks due to the lack of 
literature support. Nevertheless, they could be potential 
aging-related target candidates worthy of further 
investigation. 
 
By combining genes derived from a variety of AADs, 
we were able to establish potential targets at different 
levels of novelty. The subsequent association of these 

targets with pathways known to be involved in aging 
such as MTOR, SIRT1, IGF1, and AKT1. Interestingly, 
the well-known aging-related genes were often the top-
ranked targets in both AADs and NAADs, possibly due 
to their involvement in a wide spectrum of pathways. 
Among high confidence targets with the most 
associated hallmarks were IGF1R, HGF, IL6, MMP1, 
PARP1, SPP1, and ROCK1. Whereas in terms of novel 
targets, we found MYSM1, KAT6A, UBE2E3, RAB7B, 
RAB8B, and USP2. The most frequently associated 
hallmark of our targets is inflammation. Each proposed 
target is associated with distinct patterns of aging 
hallmarks, suggesting complex mechanisms underlying 
the aging process. Nonetheless, targets associated with 
multiple hallmarks of aging should be considered for 
further studies. Notably, while some of the targets 
revealed by our analysis (such as IGF1R, HGF, and 
KAT6A), are well-characterized drivers of 
tumorigenesis, others are known tumor suppressors e.g., 
PTEN, EP300. While these targets may have a theoretic 
therapeutic potential in AADs setting, modulating these 
molecules may elevate the risk of cancer development, 
and they should be excluded from further consideration.  
 
By further evaluating targets linked to the aging 
hallmarks and expression changes in AADs, 9 potential 
candidates were revealed. Many of these targets play 
roles in inflammation, which is in line with the view 
that inflammation is associated with multiple age-
related diseases and is an intrinsic and major component 
of the aging processes [71]. As previous studies have 
also reported strong overlaps of inflammation-related 
genes between aging and age-related diseases [14], 
targeting the immune dysfunction in aging could be a 
powerful approach for improving healthspan [72]. In 
addition, several strong candidate targets play roles in 
ECM remodeling. While this signaling network is not a 
hallmark of aging, it clearly plays an important role 
during aging [73]. As such, our findings support the 
view that ECM can be considered as a hallmark of 
aging and a promising therapeutic target for developing 
interventions [9]. 
 
Considering the potential targets we selected in the 
present study, the clinical relevance of CXCL12, SPP1, 
ITGB5 and ADAMTS14 in neurodegenerative, auto-
immune, and inflammatory conditions was 
demonstrated in AADs. Thus, targeting these genes may 
have major health and clinical benefits for both aging 
and AADs. Stromal aging fibroblasts expressed and 
secreted a higher level of CXCL12 than the young cell 
[74]. In addition, CXCL12 demonstrated an activating 
role on mature osteoclast by promoting bone-resorbing 
activity [75], supporting the observation that CXCL12 
plasma level was inversely correlated with bone mineral 
density [76]. Consistently, with age, the rate of bone 
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resorption exceeded that of bone formation, leading to 
bone loss. SPP1 modulated osteoclast differentiation 
[77], and its levels in the plasma of aged human donors 
were significantly higher than in young individuals, 
both in a normal state or upon muscle injury [78]. SPP1 
was demonstrated to attenuate the regenerative 
responses of old muscle stem cells. Neutralization of 
SPP1 recovered and enhanced the myogenic responses 
of old muscle stem cells, but failed to induce significant 
effect in young muscle stem cells, revealing the 
inhibitory effects of the age-dependent increase in SPP1 
level on skeletal muscle regeneration [79]. Besides the 
age-dependent inflammation and bone loss, with age, 
collagen fibers became fragmented and stiff [73], 
disrupting various aspects of homeostasis and affecting 
healthy function. For example, aged fibroblast-ECM 
interactions were disrupted due to the fragmentation of 
collagen fibrils. Such fibroblasts synthesized fewer 
ECM proteins and more matrix-degrading 
metalloproteinases [80]. ADAMTS14 participates in 
degradation of ECM collagen. Aging-related increase in 
ECM stiffness leads to an imbalance in matrix 
components as well as deposition and cross-linking of 
collagen [81]. Other than collagen, fibronectin is also a 
component of the ECM, where ITGAV:ITGB5 is one of 
the receptors for fibronectin. Aging is associated with 
increased stretching of fibronectin fibrils and ECM 
maturation. ITGB5 was reported as a putative 
physiologic activator of TGF-β, leading to activation of 
ECM-bound latent TGF-β1 by traction. Consistently, 
ITGB5 knockout demonstrated the absence of TGF-β-
related phenotype. The most putative TGF-β activators 
are functionally associated with the ECM [82]. TGF-β 
signaling, being downstream of other signals, was 
shown to repress body size as well as lifespan in vivo 
[83]. Notably, ITGB5 knockdown did not affect the 
proliferation of human adipose-derived stem cells [84], 
suggesting minimal cell toxicity induced. Therefore, 
suppressing ITGB5 may provide new insights for 
aging treatment. Taken together, inhibition of 
CXCL12, SPP1, ITGB5 and ADAMTS14 may provide 
a promising therapeutic approach for aging and AADs.  
 
Epigenetic reprogramming is one of the most promising 
areas in longevity [85]. In line with this notion, 13 of 
our targets (HDAC1, HDAC9, EP300, KAT6A, KAT8, 
KDM7A, EZH2, DNMT1, SIRT1, MTOR, IGF1, AKT1, 
and MYO1C) were associated with the epigenetic shift 
aging hallmark (Figure 3). Histone modification and 
DNA methylation are the most studied epigenetic 
phenomena, and these modifications are accumulating 
over the life course. Histone deacetylases HDAC1 and 
HDAC9 are markers of epigenetic transcriptional 
repression. Whereas histone acetyltransferases EP300, 
KAT6A, and KAT8 enhance epigenetic transcriptional 
activation [86–89]. Histone demethylase KDM7A 

specifically demethylates H3K9me2, H3K27me2 and 
H4K20me1. Histone-lysine N-methyltransferase EZH2 
methylates H3K9me and H3K27me, leading to 
epigenetic transcriptional repression of the affected 
gene. Some of these epigenetic regulatory enzyme 
targets were also involved in modulating aging 
processes. For example, it was reported that KAT8 
might alter the function of ATM, which plays a pro-
longevity role [90, 91]. In addition, the activities of 
DNMT1 and SIRT1 were found to be attenuated during 
aging, leading to alterations of epigenetic landscape, 
thereby changing gene expression and promoting aging 
processes [3]. In aging livers, C/EBPβ-HDAC1 
complexes repress E2F-dependent promoters and 
occupy the promoter of GSK3B, resulting in epigenetic 
silencing of cell cycle genes and altered GSKβ-cyclin 
D3 pathways, respectively [92]. Collectively, the above 
evidence reveals the involvement of our target in 
epigenetic regulation of cellular proliferation and 
development, and suggests the potential mechanism for 
the involvement of these targets in aging and AADs. 
Targeting epigenetic regulation may be one of the 
promising approaches for healthspan-promotion and 
life-extension [93]. 
 
In conclusion, we successfully established an approach 
to identify potential dual-purpose targets for aging and 
AADs, enabling biologists and clinicians to further 
investigate their therapeutic potential in a cost-saving 
and time-efficient manner for drug discovery. These 
promising results underscore the ability of PandaOmics 
to identify novel targets not only for specific disorders, 
but across multiple types of diseases. 
 
MATERIALS AND METHODS 
 
Disease and dataset selection 
 
Diseases were selected and classified into either AADs 
or NAADs based on the consideration of whether age is 
a strong risk factor for the disease’s onset. To obtain a 
more aging-oriented result, 14 AADs and 19 NAADs 
were selected (Table 1). 
 
Microarray and RNA-seq datasets for the selected 
diseases containing case and control samples were 
retrieved from public repositories and processed by 
PandaOmics (Supplementary Table 7). A total of 79 and 
113 datasets were selected for AADs and NAADs, 
respectively. For AADs, age information was available in 
29 datasets, with 1,223 cases and 819 control samples. 
For NAADs, age information was available in 35 datasets 
containing 1,161 cases and 713 control samples. The 
mean age of cases and controls in AADs was 67.9 (s.d. = 
17.50) and 60.91 (s.d. = 21.01), and in NAADs 36.87 
(s.d. = 18.29) and 37.20 (s.d. = 19.15), respectively. 
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Meta-analysis 
 
For each dataset, case and control samples from the 
same tissue source were selected and compared, 
resulting in a total of 87 and 126 case-control 
comparisons for 14 AADs and 19 NAADs, respectively 
(Table 1). All the case-control comparisons performed 
for each disease were pooled into a single meta-
analysis, yielding a total of 33 meta-analyses for all 
selected diseases subjected to target identification. 
 
Filter settings for target identification 
 
Targets were prioritized by PandaOmics (available at 
https://pandaomics.com/) using its AI hypothesis 
generation models based on 21 scores from Omics, 
Text-based, Financial, and KOL categories. Additional 
filters including Druggability (small molecules, 
antibodies, safety, novelty), Tissue specificity, Target 
family, and Development filters were applied to refine 
the list to satisfy the user’s research goals. In this study, 
only the genes belonging to the druggable protein class 
were included. The loss of novelty would be a trade-off 
for the abundance of evidence connecting a target to a 
disease. In view of this, a list of target genes in high 
confidence, medium novelty, and high novelty settings 
based on the volume of related publications proposed by 
PandaOmics’ proprietary AI engine, as well as the 
number of clinical trials they have been involved in was 
identified. A customized set of scores and filters was 
applied to obtain a list of genes with the associated final 
ranking, which represents the strength of association 
between a gene and the disease, for each novelty 
setting. 
 
Identification of targets implicated in multiple 
diseases 
 
For each novelty setting, a list of 100 genes with the 
highest ranking calculated by PandaOmics was 
extracted from each disease, generating a combined list 
of genes from 14 AADs, and another from 19 NAADs. 
The genes were then prioritized by their (1) descending 
occurrence, and (2) ascending average ranking across 
multiple diseases, and those top-100 genes were 
selected for further analysis. Consequently, these 
selected genes from AADs were overlapped with those 
from NAADs to classify the genes into AAD targets 
and common targets, as exemplified in the Venn 
diagram (Figure 1). 
 
Hallmarks of aging assessment 
 
The 300 genes obtained from the three novelty settings 
consisting of both AAD targets and common targets 
were subjected to literature review on PubMed for their 

association with hallmarks of aging (search terms 
included in Supplementary Table 2). Studies that 
matched our search terms composed of all hallmarks 
and keywords of the corresponding pathways were 
selected for review. Their association with hallmarks of 
aging was decided based on their biological functions, 
pathways, and roles in regulating important pathways or 
genes associated with aging. All genes associated with 
hallmarks of aging were included, along with their 
literature evidence and PubMed ID (Supplementary 
Table 2). Among the genes included, those that are 
known cancer drivers were annotated by the data of the 
NCG7.0 database [33]. 
 
Expression levels in age-associated diseases 
 
The values of logFC for the genes in each of the 87 
case-control comparisons performed for AADs were 
calculated. Considering the diverse complexity of 
mechanisms and pathologies in different diseases, we 
computed the consistency of each gene’s dysregulation 
state in each of the four disease classes (fibrotic, 
inflammatory, metabolic, and neurological diseases). 
Genes that were upregulated or downregulated in 60% 
or more of case-control comparisons in the disease class 
were considered as consistently dysregulated. Genes 
were further investigated provided that they were 
consistently dysregulated in the same trend in 2 or more 
disease classes. 
 
Pathway enrichment analysis for identified targets 
 
The 145 genes identified from hallmarks of aging 
assessment were input to perform pathway enrichment 
analysis based on the KEGG PATHWAY Database [48] 
by clusterProfiler in R. Pathways with p < 0.05 were 
considered significantly enriched. Aging-associated 
pathways were further selected for visualization.  
 
Curation of known aging-associated genes 
 
The curation of well-known genes associated with aging 
was based on the genes targeted by the investigated 
drugs that entered clinical trials with either aging or 
healthy aging as one of the disease conditions 
(http://ClinicalTrials.gov, accessed on 30-DEC-2021), 
publication and geroprotectors 
(http://Geroprotectors.org, accessed on 17-FEB-2022) 
[46]. The curated genes were further refined to 
druggable genes in PandaOmics by (1) applying the 
filter of a druggable protein class and (2) adjusting the 
druggability filter (small molecule score ≥1 and safety 
score ≥1), yielding the final list of 62, 48 and 52 known 
aging-associated genes from clinical trials 
(Supplementary Table 3), publication (Supplementary 
Table 4) and geroprotectors (Supplementary Table 5), 

https://pandaomics.com/
http://clinicaltrials.gov/
http://geroprotectors.org/
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respectively. In addition, 307 genes associated with 
aging suggested by the database, GenAge (build 20) 
[47], were also retrieved and filtered based on the above 
settings, resulting in 149 genes included for analysis. 
 
Statistical analysis 
 
T-test analysis was performed to compare the logFC 
(two-tailed) for each gene calculated by PandaOmics 
between AADs and NAADs. The significant level of 
target enrichment in the pool of curated aging-
associated genes or GenAge genes was estimated using 
the hypergeometric test as: 
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where N equals 5,626 which stands for the total 
number of druggable genes defined in PandaOmics, K 
represents the number of aging-associated genes in the 
interested pool, n is the number of identified targets, 
and r represents the number of genes shared between 
the interested pool of aging-associated genes and the list 
of identified targets. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 

Supplementary Figure 1. Flowchart of the selection of dual-purpose targets from the 14 AADs. Upon target identifications 
from the 14 AADs, 484 high confidence (HC) targets, 448 medium novel (MN) targets and 381 highly novel (HN) targets were identified 
by PandaOmics. Targets ranked as top 100 for each novelty (total 300 targets) were subjected to the hallmarks of aging assessment by 
searching the literature for their evidence in modulating longevity or longevity pathways, and consistency in dysregulated expression 
across disease classes. A total of 145 targets including 69 HC targets, 48 MN targets and 28 HN targets were associated with aging 
hallmarks whereas 52 HC targets, 44 MN targets and 45 HN targets were consistently dysregulated in two or more disease classes in a 
unidirectional manner. Potential dual-purpose candidates were selected with reference to both the hallmarks of aging assessment and 
expression analysis. 
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Supplementary Figure 2. Occurrence of the top-100 targets in the 14 AADs. The y-axis indicates the percentage of diseases in 
which the target was highly ranked (≤100) under (A) high confidence, (B) medium novel, and (C) highly novel filter settings. The targets with 
the highest percentages are exemplified above the horizontal dashed lines with their occurrence percentages shown in brackets. AADs are 
colored according to their disease classes. 
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Supplementary Figure 3. Ranking of the top-100 gene set for AADs under medium novelty settings. The ranking of the targets 
in AADs or NAADs were colored in blue-white and red-white thermal scales respectively. High color intensity stands for high rankings. The 
lowest ranking was capped at 100. Targets associated with the hallmark(s) of aging are labeled in green. AADs and NAADs are colored 
according to their disease classes. 
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Supplementary Figure 4. Ranking of the top-100 gene set for AADs under high novelty settings. The ranking of the targets in 
AADs or NAADs were colored blue-white and red-white thermal scales respectively. High color intensity stands for high rankings. The 
lowest ranking was capped at 100. Targets associated with the hallmark(s) of aging are labeled in green. AADs and NAADs are colored 
according to their disease classes. 
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Supplementary Figure 5. Overlapping between the two sets of top-100 genes from AADs and NAADs. Top-ranked targets 
shared by both AAD and NAAD categories were regarded as common targets, while targets unique to AADs were defined as AAD targets 
under (A) high confidence, (B) medium novelty, and (C) high novelty filter settings. 

 
  



www.aging-us.com 2502 AGING 

Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 1, 2, 6 and 7. 
 
Supplementary Table 1. Top-100 genes for each filter setting. 

 
Supplementary Table 2. Genes associated with hallmarks of aging. 

 
Supplementary Table 3. Overlapping of high confidence targets with the pool of curated aging-associated genes 
from clinical trials. 

Gene1 Aging clinical trial2 Druggability3 Target family4 Top-100 
target5 

ABL1 DASATINIB (NCT04994561, NCT04946383) 2,0,2,0 Tyrosine kinase ✓ 
AR TESTOSTERONE (NCT00182871, NCT00309855, 

NCT00680797, NCT02203656, NCT02679274, NCT02990533) 
2,0,2,0 Nuclear receptor ✓ 

ESR1 CLIMARA (NCT00220454, NCT02042196) 2,2,2,0 Nuclear receptor ✓ 
GHR GROWTH HORMONE RELEASING HORMONE (GHRH) 

(NCT01410799) 
2,2,2,0 Immunoglobulin ✓ 

IGF1 ORALLY ACTIVE GROWTH HORMONE SECRETAGOGUE 
(MK-677) (NCT00474279) 

2,2,2,0 Growth factor ✓ 

IGF1R INSULIN-LIKE GROWTH FACTOR 1 (NCT03932162) 2,2,2,0 Receptor kinase ✓ 
KIT DASATINIB (NCT04994561, NCT04946383) 2,2,2,0 Receptor kinase ✓ 
MAPK14 DASATINIB (NCT04994561, NCT04946383) 2,0,1,0 CMGC kinase ✓ 
MTOR RAPAMYCIN (NCT02874924, NCT04488601, NCT04742777) 2,0,2,0 Protein kinase ✓ 
NR3C1 METHYLPREDNISOLONE (NCT03529929) 2,0,2,0 Nuclear receptor ✓ 
PDGFRB DASATINIB (NCT04994561, NCT04946383) 2,2,2,0 Receptor kinase ✓ 
SIRT1 RESVERATROL (NCT02523274) 2,0,2,0 Acyltransferase ✓ 
SRC DASATINIB (NCT04994561, NCT04946383) 2,2,2,0 Tyrosine kinase ✓ 
VDR NT-020 (NCT01963767) 2,0,2,0 Nuclear receptor ✓ 
ACE PERINDOPRIL (NCT03295734) 2,2,2,0 Glycosylase 

 

AGTR1 CANDESARTAN (NCT00605072) 2,2,2,0 GPCR 
 

AMY2A ACARBOSE (NCT02865499, NCT02953093) 2,0,2,0 Glycosylase 
 

BCR DASATINIB (NCT04994561, NCT04946383) 2,2,1,0 Protein kinase 
 

BST1 NICOTINAMIDE MONONUCLEOTIDE (NCT04823260) 2,2,2,0 Glycosylase 
 

BTK DASATINIB (NCT04994561, NCT04946383) 2,2,2,0 Tyrosine kinase 
 

CHRNA3 NICOTINE PATCH, ORAL MECAMYLAMINE, PLACEBO 
(NCT03408574) 

2,0,1,0 Ion channel 
 

CHRNA4 NICOTINE PATCH, ORAL MECAMYLAMINE, PLACEBO 
(NCT03408574) 

2,0,2,0 Ion channel 
 

CSK DASATINIB (NCT04994561, NCT04946383) 2,0,2,0 Tyrosine kinase 
 

EPHA2 DASATINIB (NCT04994561, NCT04946383) 2,2,2,0 Receptor kinase 
 

EPHA5 DASATINIB (NCT04994561, NCT04946383) 2,2,1,0 Receptor kinase 
 

EPHB4 DASATINIB (NCT04994561, NCT04946383) 2,2,2,0 Receptor kinase 
 

ETFDH METFORMIN (NCT01765946, NCT02308228, NCT02432287, 
NCT03072485, NCT03309007, NCT03451006, NCT03713801, 
NCT04264897) 

2,0,1,0 Oxidoreductase 
 

FGR DASATINIB (NCT04994561, NCT04946383) 2,1,2,2 Tyrosine kinase 
 

FKBP1A RAPAMYCIN (NCT02874924, NCT04488601, NCT04742777) 2,0,2,0 Isomerase 
 

FRK DASATINIB (NCT04994561, NCT04946383) 2,0,1,2 Tyrosine kinase 
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FYN DASATINIB (NCT04994561, NCT04946383) 2,2,2,0 Tyrosine kinase 
 

GAA ACARBOSE (NCT02865499, NCT02953093) 2,0,2,0 Glycosylase 
 

GABRA1 ZOLPIDEM (NCT00383357, NCT03657212) 2,0,2,0 Ion channel 
 

GABRA2 ZOLPIDEM (NCT00383357, NCT03657212) 2,0,2,0 Ion channel 
 

GABRA3 ZOLPIDEM (NCT00383357, NCT03657212) 2,0,2,1 Ion channel 
 

GABRB1 ZOLPIDEM (NCT00383357, NCT03657212) 2,0,1,1 Ion channel 
 

GABRG2 ZOLPIDEM (NCT00383357, NCT03657212) 2,0,2,0 Ion channel 
 

GHSR ORALLY ACTIVE GROWTH HORMONE SECRETAGOGUE 
(MK-677) (NCT00474279) 

2,0,2,0 GPCR 
 

GPD1 METFORMIN (NCT01765946, NCT02308228, NCT02432287, 
NCT03072485, NCT03309007, NCT03451006, NCT03713801, 
NCT04264897) 

1,0,1,0 Oxidoreductase 
 

GPD2 METFORMIN (NCT01765946, NCT02308228, NCT02432287, 
NCT03072485, NCT03309007, NCT03451006, NCT03713801, 
NCT04264897) 

2,0,1,0 Oxidoreductase 
 

LCK DASATINIB (NCT04994561, NCT04946383) 2,2,2,0 Tyrosine kinase 
 

MGAM ACARBOSE (NCT02865499, NCT02953093) 2,0,2,0 Glycosylase 
 

NR3C2 TESTOSTERONE (NCT00182871) 2,0,2,0 Nuclear receptor 
 

NR4A3 DASATINIB (NCT04994561, NCT04946383) 1,0,1,0 Nuclear receptor 
 

OXTR OXYTOCIN NASAL SPRAY (NCT03119610) 2,2,2,0 GPCR 
 

PPAT DASATINIB (NCT04994561, NCT04946383) 2,0,2,0 Glycosyltransferase 
 

PTGS1 DICLOFENAC (NCT03072485) 2,0,2,0 Oxidoreductase 
 

PTGS2 DICLOFENAC (NCT03072485) 2,2,2,0 Oxidoreductase 
 

SI ACARBOSE (NCT02865499, NCT02953093) 2,0,1,0 Glycosylase 
 

SRD5A1 DUTASTERIDE (NCT00309855) 2,0,2,0 Oxidoreductase 
 

SRD5A2 DUTASTERIDE (NCT00309855) 2,0,1,0 Oxidoreductase 
 

SRMS DASATINIB (NCT04994561, NCT04946383) 2,0,1,0 Tyrosine kinase 
 

TERT AAV-HTERT (NCT04133649) 2,2,2,0 Transferase 
 

YES1 DASATINIB (NCT04994561, NCT04946383) 2,2,2,0 Tyrosine kinase 
 

ABL2 DASATINIB (NCT04994561, NCT04946383) 1,0,1,1 Tyrosine kinase 
 

CHRNB2 NICOTINE PATCH, ORAL MECAMYLAMINE, PLACEBO 
(NCT03408574) 

2,0,2,1 Ion channel 
 

CHRNB4 NICOTINE PATCH, ORAL MECAMYLAMINE, PLACEBO 
(NCT03408574) 

2,0,2,1 Ion channel 
 

SRD5A3 DUTASTERIDE (NCT00309855) 2,2,1,1 Oxidoreductase 
 

BLK* DASATINIB (NCT04994561, NCT04946383) 2,0,2,1 Tyrosine kinase 
 

HCK* DASATINIB (NCT04994561, NCT04946383) 2,2,2,1 Tyrosine kinase 
 

LYN* DASATINIB (NCT04994561, NCT04946383) 2,2,2,1 Tyrosine kinase 
 

PRKAB1^ METFORMIN (NCT01765946, NCT02308228, NCT02432287, 
NCT03072485, NCT03309007, NCT03451006, NCT03713801, 
NCT04264897) 

2,0,1,2 Protein kinase 
 

1Curated pool of aging-associated genes (genes identified as medium novel targets were marked with asterisks, and highly novel targets 
with arrow heads) Sources of curation was http://ClinicalTrials.gov aging drug targets. 2Example of drug investigated in aging clinical trials 
with clinical trial ID shown in parenthesis. Target-drug association were manually curated. 3Druggability scores defined in PandaOmics 
(small molecules, antibodies, safety, novelty). 4Druggable gene classes defined in PandaOmics. 5Genes identified as top-100 high-
confidence targets are marked with ticks. 
 
  

http://clinicaltrials.gov/
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Supplementary Table 4. Overlapping of high confidence targets with the pool of curated aging-associated genes 
from publication. 

Genes1 Gene Name2 Druggability3 Target family4 Top-100 
target5 

AKT1 AKT serine/threonine kinase 1 2,0,2,0 AGC kinase ✓ 
CASP3 caspase 3 2,0,2,0 Peptidase ✓ 
CAT catalase 2,0,2,0 Oxidoreductase ✓ 

CHUK component of inhibitor of nuclear factor kappa B kinase 
complex 2,0,2,0 Protein kinase ✓ 

DNMT1 DNA methyltransferase 1 2,0,1,0 Methyltransferase ✓ 
EGFR epidermal growth factor receptor 2,2,2,0 Receptor kinase ✓ 
HDAC9 histone deacetylase 9 2,0,1,0 Hydrolase ✓ 
IGF1 insulin like growth factor 1 2,2,2,0 Growth factor ✓ 
IGF1R insulin like growth factor 1 receptor 2,2,2,0 Receptor kinase ✓ 
IL1B interleukin 1 beta 2,2,2,0 Interleukin ✓ 
IL6 interleukin 6 2,2,2,0 Interleukin ✓ 
JAK2 Janus kinase 2 2,0,2,0 Tyrosine kinase ✓ 
MAPK8 mitogen-activated protein kinase 8 2,0,2,0 CMGC kinase ✓ 
MMP1 matrix metallopeptidase 1 2,2,2,0 Peptidase ✓ 
MMP2 matrix metallopeptidase 2 2,2,2,0 Peptidase ✓ 
MMP9 matrix metallopeptidase 9 2,2,2,0 Peptidase ✓ 
MTOR mechanistic target of rapamycin kinase 2,0,2,0 Protein kinase ✓ 
PPARA peroxisome proliferator activated receptor alpha 2,0,2,0 Nuclear receptor ✓ 
PTEN phosphatase and tensin homolog 1,1,1,0 Esterase ✓ 
SIRT1 sirtuin 1 2,0,2,0 Acyltransferase ✓ 
SOD2 superoxide dismutase 2 1,0,1,0 Oxidoreductase ✓ 
TGFB1 transforming growth factor beta 1 2,2,2,0 Growth factor ✓ 
TGFBR2 transforming growth factor beta receptor 2 2,2,2,0 Receptor kinase ✓ 
TNF tumor necrosis factor 2,2,2,0 Tumor necrosis factor ✓ 

ABO ABO, alpha 1-3-N-acetylgalactosaminyltransferase and 
alpha 1-3-galactosyltransferase 1,0,1,0 Glycosyltransferase  

AKT2 AKT serine/threonine kinase 2 2,0,2,0 AGC kinase  

BMP1 bone morphogenetic protein 1 1,0,1,0 Peptidase  

GZMB granzyme B 2,0,2,0 Peptidase  

HAS1 hyaluronan synthase 1 1,2,1,0 Glycosyltransferase  

HAS2 hyaluronan synthase 2 1,0,1,0 Glycosyltransferase  

HDAC11 histone deacetylase 11 2,2,2,0 Hydrolase  

HDAC4 histone deacetylase 4 2,0,2,0 Hydrolase  

IL15 interleukin 15 2,2,2,0 Interleukin  

MME membrane metalloendopeptidase 2,2,2,0 Peptidase  

MMP13 matrix metallopeptidase 13 2,2,2,0 Peptidase  

MT-ND2 mitochondrially encoded NADH:ubiquinone 
oxidoreductase core subunit 2 2,0,1,0 Translocase  

NOX4 NADPH oxidase 4 2,0,2,0 Oxidoreductase  

PPIA peptidylprolyl isomerase A 2,0,2,0 Isomerase  

PRDX2 peroxiredoxin 2 1,0,1,0 Oxidoreductase  

PRKCD protein kinase C delta 2,0,2,0 AGC kinase  
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PTGS2 prostaglandin-endoperoxide synthase 2 2,2,2,0 Oxidoreductase  

SIRT6 sirtuin 6 2,0,1,0 Acyltransferase  

SOD1 superoxide dismutase 1 2,2,2,0 Oxidoreductase  

TYR tyrosinase 2,0,2,0 Oxidoreductase  

WNK2 WNK lysine deficient protein kinase 2 1,0,1,0 Protein kinase  

XDH xanthine dehydrogenase 2,0,2,0 Oxidoreductase  

AOPEP aminopeptidase O (putative) 2,0,1,2 Peptidase  

CLOCK^ clock circadian regulator 1,0,1,2 Acyltransferase  

1Curated pool of aging-associated genes (genes identified as medium novel targets are marked with asterisks, and highly novel targets with 
arrow heads). 2These genes were associated with aging or skin aging with reference to a publicity database. 3Druggability scores defined in 
PandaOmics (small molecules, antibodies, safety, novelty). 4Druggable gene classes defined in PandaOmics. 5Genes identified as top-100 
high confidence targets were marked with ticks.  
 

Supplementary Table 5. Overlapping of high confidence targets with the pool of curated aging-associated genes 
from geroprotectors. 

Genes1 Geroprotectors2 Druggability3 Target family4 Top-100 target5 

CASP1 Aspirin 2,0,2,0 Peptidase ✓ 
CASP3 Aspirin 2,0,2,0 Peptidase ✓ 
CHUK N-acetyl-L-cysteine 2,0,2,0 Protein kinase  ✓ 
ESR1 17-A-Estradiol; Melatonin 2,2,2,0 Nuclear receptor ✓ 
HSPA5 Aspirin 2,2,2,0 Hydrolase ✓ 
IKBKB Aspirin; N-acetyl-L-cysteine 2,0,2,0 Protein kinase ✓ 
MTOR Rapamycin 2,0,2,0 Protein kinase  ✓ 
ACE Enalapril 2,2,2,0 Glycosylase  

ACY1 N-acetyl-L-cysteine 2,0,2,0 Hydrolase   

ADRB1 Metoprolol; Nebivolol 2,2,2,0 GPCR  

ADRB2 Metoprolol; Nebivolol 2,0,2,0 GPCR  

ADRB3 Nebivolol 2,2,2,0 GPCR  

AKR1C1 Aspirin 1,0,1,0 Oxidoreductase  

ALOX5 Nordihydroguaiaretic Acid 2,0,2,0 Oxidoreductase  

AMY2A Acarbose 2,0,2,0 Glycosylase  

ASMT Melatonin 1,0,1,0 Methyltransferase  

CHRNA4 17-A-Estradiol 2,0,2,0 Ion channel  

CKB Creatine 2,0,1,0 Unclassified kinase  

CKM Creatine 2,0,1,0 Non-protein kinase  

EDNRA Aspirin 2,2,2,0 GPCR  

EPX Melatonin 1,0,1,0 Oxidoreductase  

ESR2 17-A-Estradiol 2,0,2,0 Nuclear receptor  

ETFDH Metformin 2,0,1,0 Oxidoreductase  

GAA Acarbose 2,0,2,0 Glycosylase  

GAMT Creatine 2,0,1,0 Methyltransferase  

GPD1 Metformin 1,0,1,0 Oxidoreductase  

GPER1 17-A-Estradiol 1,0,1,0 GPCR  

GRIN1 N-acetyl-L-cysteine 2,0,1,0 Ion channel  

GRIN2A N-acetyl-L-cysteine 2,0,1,0 Ion channel  

GRIN2B N-acetyl-L-cysteine 2,0,2,0 Ion channel  
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GRIN2D N-acetyl-L-cysteine 2,0,1,0 Ion channel  

GRIN3A N-acetyl-L-cysteine 2,0,1,0 Ion channel  

GSS N-acetyl-L-cysteine 2,0,1,0 Ligase  

IFNG D-Glucosamine 2,2,2,0 Interferon  

MAOA Deprenyl or Selegiline 2,0,2,0 Oxidoreductase  

MAOB Deprenyl or Selegiline 2,0,2,0 Oxidoreductase  

MGAM Acarbose 2,0,2,0 Glycosylase  

MPO Melatonin 2,0,2,0 Oxidoreductase  

MTNR1A Melatonin 2,0,2,0 GPCR  

MTNR1B Melatonin 2,0,2,0 GPCR  

NEU1 Aspirin 1,0,1,0 Glycosylase  

NPY2R Cysteamine 2,0,2,0 GPCR  

NQO2 Melatonin 2,0,2,0 Oxidoreductase  

NR1I2 17-A-Estradiol 2,0,2,0 Nuclear receptor  

PTGS1 Aspirin 2,0,2,0 Oxidoreductase  

PTGS2 Aspirin 2,2,2,0 Oxidoreductase  

RPS6KA3 Aspirin 2,0,2,0 AGC kinase  

SI Acarbose 2,0,1,0 Glycosylase  

CKMT1A Creatine 2,0,1,1 Unclassified kinase  

CKMT2 Creatine 2,0,1,1 Unclassified kinase  

RORB  Melatonin 2,0,2,1 Nuclear receptor  

PRKAB1^ Metformin 2,0,1,2 Protein kinase  

1Curated pool of geroprotector-associated genes (genes identified as medium novel targets are marked with asterisks, and highly novel 
targets with arrow heads). 2These geroprotectors were (1) approved drugs for human use and (2) investigated for antiaging effects using 
human or animal models (with reference to http://geroprotectors.org). Target-drug association were manually curated. 3Druggability 
scores defined in PandaOmics (small molecules, antibodies, safety, novelty). 4Druggable gene classes defined in PandaOmics. 5Genes 
identified as top-100 high confidence targets were marked with ticks. 
 
Supplementary Table 6. Pathway enrichment analysis based on 145 targets associated with the hallmarks of aging. 

 
Supplementary Table 7. List of AAD and NAAD datasets analyzed. 

 
Supplementary Table 8. The identification of target-target interactions. 

Targets interactions1 Reference (PMID) 
ROCK1-c-Myc 30613282 
FOXO-SIRT3 27686535 
mTOR-STAT3 26697523 
mTOR-TFEB 30120233 
mTOR-PPARG 27901044 
MAPK14-c-Myc 10623602 
MAPK8-c-Myc 10623602 
MAPK-CREB 30214393 
MAPK-NRF2 31221142 
KDM7A-Catenin beta-1 30614617 
KDM7A-Catenin beta-1 32214833 

1Targets interactions were identified outside the context of pathways with KEGG pathway database. 

http://geroprotectors.org/

