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ABSTRACT

This paper addresses the face hallucination problem of con-
verting thermal infrared face images into photo-realisticones.
It is a challenging task because the two modalities are of dra-
matical difference, which makes many developed linear mod-
els inapplicable. We propose a learning-based framework syn-
thesizing the normal face from the infrared input. Compared
to the previous work, we further exploit the local linearityin
not only the image spatial domain but also the image man-
ifolds. We have also developed a measurement of the vari-
ance between an input and its prediction, thus we can apply the
Markov random field model to the predicted normal face to im-
prove the hallucination result. Experimental results showthe
advantage of our algorithm over the existing methods. Our al-
gorithm can be readily generalized to solve other multi-modal
image conversion problems as well.

Index Terms— Photosynthesis, Infrared imaging, Texture
synthesis, Image manifold, Graphical Model

1. INTRODUCTION
People identification system based on facial image are wel-
comed in practice, because they are easy to use for both the
examiner and the person being tested, and also because there
exists rich reference data for those systems. However, one
drawback is that they are easily disturbed by the variance inthe
sensory data which they are fed, particularly, by uncontrolled
illumination. One possible solution is to use thermal sensors
to catch the facial image. Long- or middle-wavelength in-
frared (LW-/MWIR) cameras catch the thermal emission from
the subject, which is invariant to external illuminating condi-
tions. Unfortunately existing identity databases mainly consist
of normal images, the advantage of rich reference data and
human friendliness no longer holds for those IR systems. For
example, in the law enforcement, being presented an IR image,
most people will feel difficult to recognize a suspect.

To bridge this gap, we develop a learning-based frame-
work, which can “hallucinate” (infer) one’s normal (visible-
spectrum, VS) looking provided his/her ghost-like thermalfa-
cial image. We train the system with pairs of facial images
of both modalities (IR and VS). Given an IR face, the system
learns what the corresponding VS image should be, by train-
ing a canonical correlation analysis (CCA) model. There are
difficulties in the way of applying the classical linear CCA on
our problem directly: the high dimensionality of the image
space and the non-linearity in the possible relations. There-
fore, we exploit the local linearity in both the image spatial
domain and the image manifolds: For the former, we adopt

a patch-based scheme, and for the latter, instead of using the
full set of the data to train one CCA, we learn the mapping
from a local neighbourhood on the image manifolds. For the
global smoothness, the Markov random field (MRF) has been
employed to organize the resultant patches as in [1]. In con-
trast to the previous usage of MRF in image processing, the
observation energy function in our MRF does not exhibit a
trivial definition. We have also proposed a novel measurement
of the dissimilarity between the hallucinated (VS) patchesand
the input (IR) patches to well-pose the objective function of
the MRF.

Following a brief review of related work, we analyze the
problem and present our framework in Section 2. We conduct
comparative experiments in Section 3. Finally, we conclude
the paper in Section 4.

1.1. Related Work

Thermal IR facial images have been used for recognition and
detection tasks [2]. The combination with VS images have also
been explored for robustness and accuracy ([3; 2]). In the pre-
vious work, the images of the two modalities are made collab-
orate in one system, however, the relationship between them
remains much unexplored. Relatively few attempts have been
made on directly converting between IR and VS faces. Reiter
et al. ([4]) have proposed an algorithm, which applies CCA to
map images between near IR and VS. However, near IR im-
ages capture reflected photons from the subjects in a similar
way that the VS images work. Thus these two kinds of images
look alike and have shared components, and the conversion is
less challenging than that between the VS and the thermal IR
images. Linear models have also been used to convert other
pair of alike modalities [5].

The relation between a thermal IR image and the corre-
sponding VS image is generally nonlinear. In our early work
[6], we exploited the locality in the image spatial domain, in
contrast to the holistic models in the previous work. The im-
ages are aligned, registered, and cut into small pieces. The
linear regression is done on each piece, and pixels in differ-
ent pieces are taken as independent, which effectively remove
much the nonlinear relation we need to consider and make the
linear CCA more applicable. In this paper, (i) we further lo-
calize our model on theimage manifolds. (ii) we also take into
consideration the relationship between adjacent patches with
an MRF. The manifold view of images have been studied ([7])
and applied ([8; 9]) in previous research. Our work can be seen
as a new application. We follow the application of graphical
model in low-level vision proposed by Freeman et al. [10; 1].



Fig. 1. Flow Chart of Patch Prediction
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Fig. 2. Predicting VS Patch
(a) Input IR; (b) VS ground truth; (c) Predicted VS; (d) IR nearest
neighbors; (e) VS nearest neighbors; (f) IR axes (YCC ); (g) VS axes
(XCC)

As we have mentioned, our adoption of the MRF is not triv-
ial, we propose a method to measure the variance between the
observations and the predictions.

2. HALLUCINATION MODEL

The thermal emissions of a subject determine its IR image.
While the reflective properties underlie its normal photo.
Given a certain subject, these two aspects do relate to each
other, however, in an obscure way. We try to discover the non-
trivial connections by learning from the training IR-VS image
pairs. The pairs of facial images have been registered and
normalized, and the illuminating conditions for the VS images
have been well controlled. This is to eliminate unnecessary
variables in the model.

2.1. Locally Linear Correlation

Given the IR patches, linear models are used to predict their
corresponding VS patches. We represent an input IR patch as
y ∈ R

D, whereD is its pixel number. Then from each training
IR-VS image pair, we cut the patches at the same position and
of the same size asy. These IR and VS patches are denoted as
Y andX respectively. We are to predicty’s VS counterpartx
by using the relations learned fromX andY.

Fig. 3. Markov random field

Following the assumption of image manifolds ([8; 9; 7]),
we takeY and X as samples drawn from two manifolds.
Therefore the neighbourhood ofy in Y can be seen as lying
on a linear subspace. We find theK nearest neighbours in
Y YN for y. Their corresponding VS patches are denoted
as XN. The linear subspaces spanned byYN and XN are
denoted asTY andTX, respectively. By introducing the use
of neighbourhoods,XN andYN, we improve the applicability
of the linear model from the previous work [6].

We use CCA to model the linear relations betweenTY and
TX. CCA finds one set of axes for each dataset, along which
these two sets of data co-vary most [11]. In the viewpoint of
learning, CCA finds the most linear predictable components
for the two sets. Formally, ify1

CC is the firstcanonical corre-
lation (CC) axis of TY, andx1

CC is that ofTX, then they are
found by maximizing:

y1
CC ,x

1
CC := argmax

u, v ∈ R
D

‖u‖2 = ‖v‖2 = 1

uTYNXT
Nv (1)

Thek-th axesykCC andxkCC are found in the same way, with
the constraint of being perpendicular to the subspace spanned
by the first(k − 1) axes. Solutions to these axes is can be
converted to an eigen-problem[12]. Having computed the CC
axesYCC = {ykCC , k = 1, . . . , DCC}, we obtain a subspace
of TY, TYCC = span{YCC}, such that by projectingYN

into TYCC , the obtained feature vectors preserves most of the
information aboutXN [13].

Then the regression matrixM is:

M = (YT
CCYN)+XN (2)

where+ represents pseudo-inverse. The prediction is:

x = MYT
CCy (3)

In Figure 1, we draw a flowchart of the procedure of the
prediction. In Figure 2, we show a concrete example: For the
IR input patchy (a), 40 nearest neighbours (d) and their cor-
responding VS patches are found (e). They areYN andXN

respectively.16 CC axes are computed for bothYN (f) and
XN (g). Then the IR samples in (d) is projected into the space
TYCC (spanned by the canonical axes showed in (f)). The
regression matrixM is then computed as Eq(2). Then the pre-
diction in (b) is computed asMYT

CCy.
Note thatXN andYN are assumed to be centered at origin.

2.2. Markov Random Field of Patches
After obtaining the predicted VS patches, we further improve
the result by adjusting the VS patches for the global smooth-



ness of the image. As in [10] we use an MRF to enforce the
“agreement” between adjacent patches on the overlapped area.

An MRF is a graphical model as shown in Figure 3, where
IR and VS patches arey• andx• respectively. Connections
are made between each pair of IR-VS patches and adjacent
predicted VS patches. The joint probability of a given set of
input IR patches and the predicted VS patches is determined
by the energy on those connections:

Observation energy: It measures the deviation of the pre-
dictedxi from the observationyi. Different from the previous
application of MRF on low-level vision tasks, in our problem,
there is no intuitive way of measuring this variance. Given a
VS patchxi at nodei, we propose to do the inverse mapping
and measure the variance inTYCC

i by:

logφi(xi) :=
‖M+

i xi −YT
iCCyi‖2

σφ
(4)

whereYT
iCCyi is the projection ofyi in TYCC

i . In optimiza-
tion, it favors adjustments that keep the VS patch related tothe
input: Consider two adjustment vectors∆x1 and∆x2 with
equal norms. Then the cost of these two adjustments in terms
of the observation energy in Eq(4) shows that the adjustment
that changes less correlated components costs less observation
energy.

Transition energy: It puts the smoothness constraint. If
(xi andxj) share pixels, and the pixels in the common area
are indexed byαij in xi andαji in xj , the transition energy is:

logψi,j(xi,xj) :=
‖xi(αij)− xj(αji)‖2

σψ
(5)

In the optimization, when one patch is updated, all other
patches are kept fixed. It is local and fast. However, we can
further lower the dimension of the space in which we search
the optimal solution. We apply principal component analysis
[14] onXiN, and limit our search within the subspace spanned
byDopt top eigenvectors. Thus in each step, it is to to find the
optimalDopt-dimensional vectorwi:

xi ← x0
i + XiPCwi (6)

in order to minimize the energy functions

LogEi = logφi(xi) +
∑

j,xi∼xj

logψi,j(xi,xj) (7)

wherex0
i is the initial CCA prediction,XiPC is the firstDopt

principle components. The optimization in subspace is not
only fast, it also limitxi within the primary varying directions
of XiN and thus is more robust.

Note that only the ratio of the normalization parameters
σφ andσψ actually counts, they are chosen according to other
experiment parameters. Our algorithm is summarized in Algo-
rithm 1 and2.

3. EXPERIMENTAL RESULTS

In our experiments, our algorithm is compared with several de-
veloped methods of regression and learning-based texture syn-
thesis. We use the publicly available database ([15]). Fromthe

Algorithm 1 Local Prediction
1: for eachi-th patchdo
2: N←K nearest samples∈ Yi of the input IR patchyi
3: ComputeYiCC andXiCC from YiN andXiN

4: ComputeM in Eq(2)
5: Initial predictionx0

i ←MYT
iCCyi

6: Compute firstDopt principle componentsXiPC for
XiN

7: end for

Algorithm 2 Optimization
1: Generate a random visiting queueQ of the patches
2: while Q 6= ∅ do
3: Remove the first patchi-th patch fromQ.
4: Optimizewi minimizingLogEnergyi as in Eq(6) and

Eq(7)
5: if wi changedthen
6: Add adjacent patches inQ, if they have not been yet.
7: end if
8: end while

database, we take20 pairs of IR and VS images for each of the
47 subjects to train our algorithm. Images are preprocessed as
abovementioned. The leave-one-out scheme is used, for each
input IR face, all the IR-VS pairs of other subjects are used as
training data.

The parameters are chosen as follows: (i) Patch size:
Larger patches are more likely to capture the local features,
while smaller ones are easier to predict. Our algorithm works
robustly in a reasonable range (Figure 4). Generally, we use
9 × 9, with 3-pixel overlapping. (ii) Neighbourhood sizeK:
LargeK allows rich samples. SmallK makes the local tan-
gent space be better linearly approximated; (iii) Number ofCC
axesDCC : SmallerDCC tends to give more robust predic-
tion. More axes, on the other side, allow finer control.K and
DCC affect the CCA prediction collaboratively. The result at
different combination is shown in Figure 5. Our algorithm is
robust in a wide range (Figure 4). Generally, we useK = 45
andDCC = 10. (iv) Dopt = 3 is used for higher optimization
speed. (v)σφ andσψ are set to1.

In Figure 6, the results of our method on middle-wavelength
IR (MWIR) images are compared to that of holistic CCA/Eigen-
Transformation [4][5], patch-based LLE [8] and the MRF
model[10]. Our method yields the most visually plausible

(a) (b) (c) (d) (e) (f) (g)
Fig. 4. Parameter Variation Test

(a) Input IR; (b) Ground truth; (c)-(g) Hallucination results with
different parameters:

K DCC PatchSize Overlap
(c) 45 10 7 2
(d) 45 10 15 5
(e) 15 8 9 3
(f) 45 10 9 3
(g) 85 15 9 3



Fig. 5. Effect ofK andDCC

K from left to the right: 10, 20, . . . , 80; DCC from top to bottom:
8, 16, 24, 32.

(a) (b) (c) (d) (e) (f)
Fig. 6. Photo-realistic Face Synthesis

(a) Input MWIR; (b) Predicted by holistic CCA; (c) LLE; (d)
MRF[1]; (e) Ours; (f) Ground-truth

results. MWIR images are used for comparison because they
are of higher quality than that of long-wavelength IR (LWIR)
images. For the comparison, we want to eliminate as much as
possible influences from irrelevant variables such as the noise.
Results of our algorithm on LWIR images are shown in Figure
7.

We conduct a simple recognition test with a “eigenface +
K-NN” [14] classifier. In each test, we compare one synthe-
sized VS face with the VS faces, and record if it has been cor-
rectly recognized. The recognition result is listed in Table 1.
Although the recognition rate is not satisfying, compared to
other algorithms, our algorithm’s resulting images are more
distinguishable.

4. CONCLUSION

In this paper, we proposed a learning based framework to
address the new problem of hallucinating facial images from
thermal infrared images. For the model’s generalization abil-
ity, our algorithm works locally both in the sense of image
spatial domain and on the image manifold. We use an MRF
model to organize the patches to put smoothness and alikeness
constraints. We also propose a metric to measure the alike-
ness between an IR patch and its VS result. At each objective

Table 1. Recognition Rates
Method D = 8 D = 16 D = 24 D = 32
CCA 6.38 4.25 4.25 6.38
LLE 17.02 19.14 25.53 31.91
MRF 14.89 23.40 23.40 23.40
Ours 19.14 40.42 44.68 50.06

D is the eigenfaces used.

Fig. 7. Hallucination from LWIR images
Left: LWIR; Middle: Hallucinated; Right: Ground-truth.

patch in the MRF, we adjust it in a subspace of its tangent
space to the manifold. Such that adjustments in optimization
robustly result in meaningful image patches. The framework
is effective and robust. It performs satisfactorily in our testing
experiments. Comparative experiments demonstrate the better
performance of our algorithm as well.

Future work should include generalizing the algorithm to
other multi-modal image conversion or synthesis tasks and
making the model more robust to ill-registered training image
pairs.
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