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ABSTRACT a patch-based scheme, and for the latter, instead of using th

This paper addresses the face hallucination problem of coffl et of the data to train one CCA, we learn the mapping
verting thermal infrared face images into photo-realisties. fom a local neighbourhood on the image manifolds. For the
Itis a challenging task because the two modalities are of drglobal smoothness, the Markov random field (MRF) has been
matical difference, which makes many developed linear modMPployed to organize the resultant patches as in [1]. In con-
els inapplicable. We propose a learning-based framewark sylrast to the previous usage of MRF in image processing, the
thesizing the normal face from the infrared input. Compare@Pservation energy function in our MRF does not exhibit a

to the previous work, we further exploit the local linearity ~ trivial de_:ﬁr!ltpn..We have also proposgd a novel measurgmen
not only the image spatial domain but also the image marf the dissimilarity between the hallucinated (VS) patcaes
ifolds. We have also developed a measurement of the vaf1€ input (IR) patches to well-pose the objective functién o
ance between an input and its prediction, thus we can apely tf¢ MRF. . _ _

Markov random field model to the predicted normal face toim-  Following a brief review of related work, we analyze the
prove the hallucination result. Experimental results stioey Problem and present our framework in Section 2. We conduct
advantage of our algorithm over the existing methods. Our afomparative experiments in Section 3. Finally, we conclude
gorithm can be readily generalized to solve other multi-alod the paper in Section 4.

image conversion problems as well. 11. Related Work

Index Terms— Photosynthesis, Infrared imaging, Texture

synthesis, Image manifold, Graphical Model Thermal IR facial images have been used for recognition and
detection tasks [2]. The combination with VS images have als
1. INTRODUCTION been explored for robustness and accuracy ([3; 2]). In tee pr

People identification system based on facial image are welious work, the images of the two modalities are made collab-
comed in practice, because they are easy to use for both theate in one system, however, the relationship between them
examiner and the person being tested, and also because themains much unexplored. Relatively few attempts have been
exists rich reference data for those systems. However, omeade on directly converting between IR and VS faces. Reiter
drawback is that they are easily disturbed by the variantesn et al. ([4]) have proposed an algorithm, which applies CCA to
sensory data which they are fed, particularly, by uncotecbl map images between near IR and VS. However, near IR im-
illumination. One possible solution is to use thermal semsoages capture reflected photons from the subjects in a similar
to catch the facial image. Long- or middle-wavelength inway that the VS images work. Thus these two kinds of images
frared (LW-/MWIR) cameras catch the thermal emission frontook alike and have shared components, and the conversion is
the subject, which is invariant to external illuminatinghcld>  less challenging than that between the VS and the thermal IR
tions. Unfortunately existing identity databases maimgsist images. Linear models have also been used to convert other
of normal images, the advantage of rich reference data ameir of alike modalities [5].
human friendliness no longer holds for those IR systems. For The relation between a thermal IR image and the corre-
example, in the law enforcement, being presented an IR imagsonding VS image is generally nonlinear. In our early work
most people will feel difficult to recognize a suspect. [6], we exploited the locality in the image spatial domaim, i

To bridge this gap, we develop a learning-based frameasontrast to the holistic models in the previous work. The im-
work, which can “hallucinate” (infer) one’s normal (vis#sl ages are aligned, registered, and cut into small pieces. The
spectrum, VS) looking provided his/her ghost-like therfiaal linear regression is done on each piece, and pixels in differ
cial image. We train the system with pairs of facial imagent pieces are taken as independent, which effectively vemo
of both modalities (IR and VS). Given an IR face, the systermuch the nonlinear relation we need to consider and make the
learns what the corresponding VS image should be, by traitinear CCA more applicable. In this paper, (i) we further lo-
ing a canonical correlation analysis (CCA) model. There arealize our model on thienage manifolds. (ii) we also take into
difficulties in the way of applying the classical linear CCA o consideration the relationship between adjacent patclitss w
our problem directly: the high dimensionality of the imagean MRF. The manifold view of images have been studied ([7])
space and the non-linearity in the possible relations. &herand applied ([8; 9]) in previous research. Our work can besee
fore, we exploit the local linearity in both the image splatiaas a new application. We follow the application of graphical
domain and the image manifolds: For the former, we adophodel in low-level vision proposed by Freeman et al. [10; 1].
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Following the assumption of image manifolds ([8; 9; 7]),
we takeY and X as samples drawn from two manifolds.
Therefore the neighbourhood gfin Y can be seen as lying
on a linear subspace. We find tlié nearest neighbours in

Fig. 1. Flow Chart of Patch Prediction Y Yy for y. Their corresponding VS patches are denoted
as Xy. The linear subspaces spanned ¥y and Xy are
. denoted a§'Y andTX, respectively. By introducing the use
(b) (c) of neighbourhoodsXy andYy, we improve the applicability

of the linear model from the previous work [6].

We use CCA to modelthe linear relations betwd&yi and
TX. CCA finds one set of axes for each dataset, along which
these two sets of data co-vary most [11]. In the viewpoint of
learning, CCA finds the most linear predictable components
for the two sets. Formally, if-{. is the firstcanonical corre-
lation (CC) axisof TY, andx/ is that of TX, then they are
found by maximizing:
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Fig. 2. Predicting VS Patch
(a) Input IR; (b) VS ground truth; (c) Predicted VS; (d) IR rest  The k-th axesy?., andx%, are found in the same way, with
neighbors; (e) VS nearest neighbors; (f) IR ax¥e:¢); (9) VS axes  the constraint of being perpendicular to the subspace sghnn
(Xco) by the first(k — 1) axes. Solutions to these axes is can be
converted to an eigen-problem[12]. Having computed the CC

As we have mentioned, our adoption of the MRF is not triV'axesch = {ybo.k =1,..., Dcc}, we obtain a subspace

ial, we propose a method to measure the variance between thep~, vy CC

= Y , such that by projectin
observations and the predictions. span{ Yoo} y prol ¥x

into TY ““, the obtained feature vectors preserves most of the
information abouXy [13].

2. HALLUCINATION MODEL Then the regression matriM is:

The thermal emissions of a subject determine its IR image. M = (Y&cYn) "Xy 2)
W.h"e the ref!ectlve' properties underlie its normal phOtOWHereJr represents pseudo-inverse. The prediction is:
Given a certain subject, these two aspects do relate to eac

other, however, in an obscure way. We try to discover the non- x= MYgCy @)
triv_ial connectigns by Iea}rni_ng from the training IR'\,/S g In Figure 1, we draw a flowchart of the procedure of the
pairs. The pairs of facial images have been registered andojiction. In Figure 2, we show a concrete example: For the
normalized, and the illuminating conditions for the VS ireag |5 input patchy (a), 40 nearest neighbours (d) and their cor-
ha\{e bee_n well controlled. This is to eliminate unnecessan,snonding VS patches are found (). They ¥re and Xy
variables in the model. respectively. 16 CC axes are computed for bo¥iy (f) and

Xn (9)- Then the IR samples in (d) is projected into the space
TY““ (spanned by the canonical axes showed in (f)). The
Given the IR patches, linear models are used to predict théfggression matrid/l is then computed as Eq(2). Then the pre-
corresponding VS patches. We represent an input IR patch @i§tion in (b) is computed a¥IY ¢,y .

y € R, whereD is its pixel number. Then from each training ~ Note thaXy andY v are assumed to be centered at origin.
IR-VS image pair, we cut the patches at the same position and

of the same size as These IR and VS patches are denoted ag.2. Markov Random Field of Patches

Y andX respectively. We are to predigts VS counterpark  After obtaining the predicted VS patches, we further imgrov
by using the relations learned froK andY . the result by adjusting the VS patches for the global smooth-

2.1. Locally Linear Correlation



ness of the image. As in [10] we use an MRF to enforce thR|gorithm 1 Local Prediction
“agreement” between adjacent patches on the overlappad are for eachi-th patchdo

An MRF is a graphical model as shown in Figure 3, where ,. N _ i nearest samples Y; of the input IR patcly;
IR and VS patches arg, and_x. respectively. Connectlons . ComputeY;icc andXico from Yix andX,x
are made between each pair of IR-VS patches and adjacenjt ComputeM in Eq(2)
predicted VS patches. The joint probability of a given set of
input IR patches and the predicted VS patches is determlneg
by the energy on those connections:

Observation energy: It measures the deviation of the pre-
dictedx; from the observatiow;. Different from the previous
application of MRF on low-level vision tasks, in our problem Algorithm 2 Optimization
there is no intuitive way of measuring this variance. Given a1: Generate a random visiting queQeof the patches
VS patchx; at nodei, we propose to do the inverse mapping 2: while Q # () do
and measure the Vanance’]hch by: 3. Remove the first patchth patch fromQ.

4:  Optimizew; minimizing LogEnergy; as in Eq(6) and

Initial predictionx? «— MYZ,.y;

Compute firstD,,; principle componentX;pc for
XiN

7: end for

HM Xi — YiCCyiHQ

IOg ¢l (Xz) . & (4) Eq(?)
(o .
o _ co o 5. if w; changedhen
whereY .y is the projection ofy; in TY;“. In optimiza- . Add adjacent patches if}, if they have not been yet.
tion, it favors adjustments that keep the VS patch relatéddo 7.  end if

input: Consider two adjustment vectafsx; and Ax, with 8: end while

equal norms. Then the cost of these two adjustments in terms

of the observation energy in Eq(4) shows that the adjustmetihtabase, we tak¥® pairs of IR and VS images for each of the
that changes less correlated components costs less oli@erva47 subjects to train our algorithm. Images are preprocessed as
energy. abovementioned. The leave-one-out scheme is used, for each

Transition energy: It puts the smoothness constraint. Ifinput IR face, all the IR-VS pairs of other subjects are used a
(x; andx;) share pixels, and the pixels in the common are@aining data.

are indexed byy;; in x; anda;; in x;, the transition energyis: ~ The parameters are chosen as follows: (i) Patch size:
Larger patches are more likely to capture the local features
log ¥ ; (%, %;) 1= i (cvij) — x; (i) 2 (5) While smaller ones are easier to predict. Our algorithm work
7, ‘) . m
g

robustly in a reasonable range (Figure 4). Generally, we use
In the optimization, when one patch is updated, all othe® x 9, with 3-pixel overlapping. (ii) Neighbourhood siz&:

patches are kept fixed. It is local and fast. However, we caparge K allows rich samples. Smalk’ makes the local tan-

further lower the dimension of the space in which we searcpent space be better linearly approximated; (iii) NumbeZ Gf

the optimal solution. We apply principal component anaysiaxesDcc: Smaller Do tends to give more robust predic-

[14] on X;x, and limit our search within the subspace spannetion. More axes, on the other side, allow finer contdgl.and

by D, top eigenvectors. Thus in each step, it is to to find thé)cc affect the CCA prediction collaboratively. The result at

optimal D,,,;-dimensional vectow;: different combination is shown in Figure 5. Our algorithm is
robust in a wide range (Figure 4). Generally, we liSe= 45
X; — X0 + X, pcw; (6) i i i imizati
g i iPCWi andDcc = 10. (iv) D,y = 3 is used for higher optimization
in order to minimize the energy functions speed. (vy? ando* are set td.

In Figure 6, the results of our method on middle-wavelength
LogE; = log ¢;(x;) Z log ¥ j (xi,%;) (7) IR(MWIR)images are compared to that of holistic CCA/Eigen-
Joxinx; Transformation [4][5], patch-based LLE [8] and the MRF

wherex? is the initial CCA predictionX; pc is the firstD, . model[10]. Our method yields the most visually plausible

pr|nC|pIe components. The optimization in subspace is no
only fast, it also limitx; within the primary varying directions
of X;x and thus is more robust. i
Note that only the ratio of the normalization parameter<
(9)

¢ ando? actually counts, they are chosen according to other (a) (b) (c) (d) (e) )
experiment parameters. Our algorithm is summarized in Algo Fig. 4. Parameter Variation Test
rithm 1 and2. (a) Input IR; (b) Ground truth; (c)-(g) Hallucination resulvith
different parameters:
3. EXPERIMENTAL RESULTS 51(5 choc PatchIze Ovzerlap
C

In our experiments, our algorithm is compared with sevegal d d 45 10 15 5

. . e) 15 8 9 3
veloped methods of regression and learning-based textore s fy 45 10 9 3
thesis. We use the publicly available database ([15]). Rtwm g 8 15 9 3



Fig. 5. Effect of K and D¢
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'Fig. 7. Hallucination from LWIR images
Left: LWIR; Middle: Hallucinated; Right: Ground-truth.

patch in the MRF, we adjust it in a subspace of its tangent
space to the manifold. Such that adjustments in optiminatio
robustly result in meaningful image patches. The framework
is effective and robust. It performs satisfactorily in oesting
experiments. Comparative experiments demonstrate therbet

(b) () (d (e (f)

Fig. 6. Photo-realistic Face Synthesis
(a) Input MWIR; (b) Predicted by holistic CCA; (c) LLE; (d)
MRF[1]; (e) Ours; (f) Ground-truth

results. MWIR images are used for comparison because th

performance of our algorithm as well.

Future work should include generalizing the algorithm to
other multi-modal image conversion or synthesis tasks and
making the model more robust to ill-registered training gaa
pairs.

are of higher quality than that of long-wavelength IR (LW|R)F¥eferences

images. For the comparison, we want to eliminate as much as
possible influences from irrelevant variables such as tlgeno
Results of our algorithm on LWIR images are shown in Figure [2]
7.

We conduct a simple recognition test with a “eigenface + [3]
K-NN” [14] classifier. In each test, we compare one synthe-
sized VS face with the VS faces, and record if it has been cor-4
rectly recognized. The recognition result is listed in Eabl
Although the recognition rate is not satisfying, compared t
other algorithms, our algorithm’s resulting images are enor
distinguishable.

(5]
(6]

4. CONCLUSION (71

In this paper, we proposed a learning based framework to[8]
address the new problem of hallucinating facial images from (9]
thermal infrared images. For the model’s generalizatiaf ab

ity, our algorithm works locally both in the sense of image [10]
spatial domain and on the image manifold. We use an MRy
model to organize the patches to put smoothness and al&enes
constraints. We also propose a metric to measure the alikd!?
ness between an IR patch and its VS result. At each objective3)

Table 1. Recognition Rates [14]

Method D=8 D=16 D=24 D=32 [15]
CCA 6.38 4.25 4.25 6.38
LLE 17.02 19.14 25.53 31.91
MRF 14.89 23.40 23.40 23.40
Ours 19.14 40.42 44.68 50.06

D is the eigenfaces used.
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