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Abstract

Identifying a suspect wearing a mask (where only the

suspect’s periocular region is visible) is one of the tough-

est real-world challenges in biometrics that exist. In this

paper, we present a practical method to hallucinate the full

frontal face given only the periocular region of a face. This

is an important problem faced in many law-enforcement ap-

plications on almost a daily basis. In such real-world situa-

tions, we only have access to the periocular region of a per-

son’s face. Unfortunately commercial matchers are unable

to process these images successfully. We propose in this pa-

per, an approach that will reconstruct the entire frontal face

using just the periocular region. We empirically show that

our reconstruction technique, based on a modified sparsi-

fying dictionary learning algorithm, can effectively recon-

struct faces which we show are actually very similar to the

original ground-truth faces. Further, our method is open

set, thus can reconstruct any face not seen in training. We

show the real-world applicability of method by benchmark-

ing face verification results using the reconstructed faces

to show that they still match competitively compared to the

original faces when evaluated under a large-scale face veri-

fication protocol such as NIST’s FRGC protocol where over

256 million face matches are made.

1. Introduction

Over the past decades, biometric identification and ver-

ification using facial features has gained a lot of promi-

nence both in traditional video surveillance/access control

systems and in hand-held devices for daily use. Most of

these approaches work under the implicit assumption that

we are able to capture the entire face of the subject with de-

cent quality. However, there are many real-world scenarios

where only a partial face is captured or instances when only

the eye region of a face is visible, especially for the cases of

uncooperative and non-cooperative subjects. Therefore, the

problem of looking into the capabilities of matching sub-

jects using only the periocular region has developed con-

siderable interest. Specifically, we consider the periocular

region of the face, which is rich in textural information -

eyebrows, eye folds, eyelid contours, etc., which could all

vary in shape, size and color. Biologically and genetically

speaking, more complex structure means more “coding pro-

cessing" going on during fetal development, and therefore

more proteins and genes involved in the determination of

appearance. One can speculate that this is why the peri-

ocular region should be the most important facial area for

distinguishing people. Robust periocular based biometric

recognition can lead to very useful applications, for exam-

ple, identifying criminals wearing masks, where only the

eye region is exposed, or in videos containing many oc-

cluded faces with the eye region un-occluded, or in other

cases as shown in Figure 1.

In addition, commercial matchers, and law enforcement

agencies who rely on commercial matchers to perform face

matching for identification will run into problems in the

case where only the periocular region is available. This is

due to the fact that commercial matching algorithms are de-

veloped using the entire human face and typically simply

cannot deal with partial faces.

In this work, we develop a novel approach that hallu-

cinates the full face from just the periocular region of a

subject with high fidelity devoted to the known periocular

region. The approach is based on the modification of the

problem formulated for sparsely coded dictionary learning.

It explicitly focuses on reconstructing the periocular region

faithfully while providing a good visual approximation of

facial features that can be used for further processing. In

hallucinating the rest of the face, our method capitalizes on

weak correlations between periocular features and other fa-

cial features. These correlations might exist due to specific

gender, ethnicity or age, which are soft-biometric in nature.

Our approach finds these relations in an unsupervised man-

ner from a large corpus of frontal training images.

Rest of this paper is organized as follows: Section 2 lists
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Figure 1. Examples of scenarios where only periocular region

is accessible. (a1) A suspect in an ATM robbery wearing a mask,

(a2) A masked Taliban militant, and (a3) a masked bank robber.

(b1)-(b3) Many people in crowds only have their eyes visible from

the camera’s perspective. (c1) Veiled women, (c2) masked doctors

and nurses, and (c3-c4) masked fire fighter and policeman.

several prior work on periocular region recognition. Sec-

tion 3 details related algorithms and the proposed method.

Section 4 discusses in detail the experimental setup and re-

sults. Finally we conclude our work in Section 5. Through-

out the paper, the term “hallucination" and “reconstruction"

are used interchangeably.

2. Related Work

In 2009, Park et al. [17] has carried out one of the ear-

liest studies on periocular biometrics identification where

the feasibility of using periocular region of an individual as

a biometric trait were claimed. They showed 77% rank-1

identification rate on a rather small database (958 images

from 30 subjects). In the following year, more studies were

carried out on periocular region. Juefei-Xu et al. [5] eval-

uated the performance of periocular biometrics on a large

scale FRGC ver2.0 database. They proposed various lo-

cal feature sets and showed that even without any subspace

training, periocular region with their proposed feature sets

can still outperform NIST’s baseline using PCA on full face

on the FRGC Experiment 4 protocol. More detailed anal-

ysis were shown in [6, 11]. Also the discriminability of

eyebrow was also looked into [8]. Lyle et al. [14] stud-

ied gender and ethnicity classification based on the perioc-

ular features. They used a subset of FRGC and obtained a

high classification accuracy for gender and ethnicity. The

effect of the quality of the periocular images on recogni-

tion performance was studies in [15] where they analyzed

the uniqueness of texture between different color channels,

and texture information present in different color channels.

Woodard et al. [19] utilized periocular region appearance

cues for biometric identification both on images captured in

visible and NIR spectrum while Park et al. [16] studied pe-

riocular biometrics in the visible spectrum. Hollingsworth

et al. [3] used NIR periocular images to identify useful fea-

tures for recognition, while others fused periocular with iris

images for recognition [18]. Some more recent work us-

ing periocular region include age invariant face recognition

[7] and expression tolerance [9] based on periocular region

and twin identification using periocular region [10]. To the

best of our knowledge, the problem of hallucinating the en-

tire face using only the periocular region has not been ap-

proached yet.

3. Algorithmic Approach

In this section we describe our proposed approach to the

problem of hallucinating a complete face based on purely

the periocular region. However, before we introduce our

method, it would helpful to briefly look at the PCA based re-

construction in the context of this problem. Throughout the

paper, the data matrix Y ∈ Rd×n is assumed with dimen-

sion d. All matrices have their elements arranged column-

wise.

3.1. PCA Based Hallucination

PCA has proved to be a hugely popular subspace learn-

ing method over the years. It has also found many appli-

cations in denoising. In our application, to hallucinate the

entire face based on the periocular region, PCA can be ap-

plied in a straight forward way. Assume that D is the global

PCA basis of the full face data. We now assume that the

periocular region can be obtained by using a mask Λ which

is the set of particular dimensions from an image belong-

ing to that region. Given an unseen periocular image of a

subject yΛ, our goal is to obtain y. We obtain the PCA pro-

jection coefficients x = (DT
ΛDΛ)

−1DΛyΛ. Here, DΛ is

the dictionary restricted to dimensions or rows of the ma-

trix in the set Λ. Finally we obtain the reconstruction y

using y = Dx. Note that during reconstruction, we use

all dimensions of D. Even though PCA provides a simple

approach to this problem, since it learns a single global sub-

space, each testing sample would tend to have a very sim-

ilar reconstruction. Thus, very little biometric information

is preserved in the reconstruction rendering the problem un-

solved.

3.2. KSVD Based Hallucination

Dictionary learning methods have gained much popular-

ity in the recent decade. One relatively recent such algo-

rithm is the K-SVD [1]. K-SVD aims to be a natural exten-

sion of K-means with the analogy that the cluster centers are

the elements of the learned dictionary and the memberships

are defined by the sparse approximations of the signals in

that dictionary. Formally, it provides a solution to the prob-

lem minimizeD,X ‖Y − DX‖2F such that ∀i, ‖xi‖0 < K,

where Y, D and X are the data, the learned dictionary and

the sparse approximation matrix respectively. Here ‖.‖0 is

the pseudo-norm measuring sparsity. The sparse approxi-

mations of the data elements are allowed to have some max-

imum sparsity ‖x‖0 ≤ K.
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K-SVD has found multiple practical applications such

as image denoising [2] and inpainting [12]. However, these

applications are ones in which the number of missing or

corrupted pixels is not significant and does not contain any

explicit spatial structure. In such a scenario, patch based re-

constructions using the learned dictionary would be useful.

In our application however, where majority of the pixels are

missing in a structured manner, patch-based reconstruction

does not make sense. Rather, we would have to apply an

approach similar in spirit to the PCA based reconstruction.

One method for hallucination using K-SVD is to train a

generative dictionary D using a large number of full faces.

Each of the dictionary elements is now the first eigenface of

its member training samples. Unlike PCA, K-SVD avoids

learning a global subspace and in turn approximates using

multiple local subspaces. Given a novel periocular image of

an unseen subject yΛ , we would obtain the sparse coding x

in the dimensionally restricted DΛ using any sparse coding

algorithm such as OMP (Orthogonal Matching Pursuit). For

reconstruction, we simply use x with the original dictionary

D to obtain y = Dx.

However, one assumes a critical fact in this method that

the sparse representation of the periocular region alone in

DΛ is very similar to the representation of the entire face

in D. This is a questionable assumption since the dictio-

nary learning procedure K-SVD does not explicit optimize

in that regard. Indeed, faces can be considered as an ensem-

ble of features, with multiple individuals sharing a particu-

lar feature. The assumption of common approximation co-

efficients between the periocular region and the entire face

in a dictionary learning full faces would imply that there ex-

ists a one-to-one relationship between the eye features and

the other features of a face. Even though the algorithm for

our hallucination problem would have to find weak corre-

lations between periocular and facial features, a one-to-one

correspondence is too strong an assumption and is unrea-

sonable.

Recall that our problem is to hallucinate, for the sake of

visual and practical purposes, the entire face from only the

periocular region. Thus, the only true biometric that we ob-

serve is the given cropped periocular image. In this light,

it is vital that our reconstructed face be faithful in the pe-

riocular region. However, standard methods of generating

dictionaries, such as the typical use of K-SVD, do not focus

on representing particular dimensions or parts of the signal

better. A method which weighs errors due to the periocular

region more than the rest of the face would tend to generate

a reconstruction more faithful (higher PSNR) to that region.

Here one might argue that a simple get-around to this

problem would be to train two dictionaries separately, one

representing the full face Df and the other trained specifi-

cally for the periocular region Dp. Thereby, we can specif-

ically optimize for a low reconstruction error in the perioc-

ular region. We could then follow a similar protocol for re-

construction by obtaining the sparse representation x of yΛ

in Dp and then reconstruct using y = Dfx. However, since

the training of the two dictionaries is independent, there is

no reason to hope that the K-sparse representation x of yΛ

in Dp is close to the that of y in Df . This is the same prob-

lem that we highlighted previously. Reconstruction using

such a procedure is not expected to give good and visually

appealing results.

This problem can be addressed by designing a dictionary

learning procedure which tries to have a consistent sparse

representation across the two dictionaries Dp and Df while

weighting errors in Dp more. Such a method would also

address the problems that have been brought to light in pre-

vious paragraphs. In the next section, we present a simple

reformulation of the objective function to arrive at one such

procedure.

3.3. Dimensionally Weighted KSVD Based Hallu
cination

Our goal is to reconstruct or hallucinate the rest of the

face given the periocular region. Keeping in mind the is-

sues related to the dictionary learning, we arrive at the prob-

lem of jointly optimizing the learning procedure for the two

goals. The first is to learn a dictionary of whole faces so as

to include prior knowledge about the spatial relationships

between the facial features and the periocular features. The

second is to obtain a dictionary in which the reconstruction

error for the periocular region is penalized more than the en-

tire face and both are jointly minimized for the same sparse

coefficients.

We propose a simple approach which promotes the ap-

proximation coefficients to be jointly shared for the perioc-

ular region and the entire face. Our first objective is to learn

a dictionary by solving

minimize
D,X

‖Y −DX‖2F such that ∀i, ‖xi‖0 < K (1)

However, we would also like to have a low reconstruc-

tion error using the same sparse coefficients restricted to the

periocular region set Λ. Thus we also desire to solve

minimize
DΛ,X

‖YΛ −DΛX‖2F such that ∀i, ‖xi‖0 < K (2)

Combining the two objectives to solve them jointly al-

lows us to force a common K-sparse representation and

also provides a trade-off between errors with an efficient

algorithmic solution. Our primary problem is therefore

argmin
D,X,DΛ

‖Y −DX‖2F + β‖YΛ −DΛX‖2F (3)

such that ∀i, ‖xi‖0 < K

Here β provides a trade-off between the reconstruction

error of the periocular dimensions versus the entire face.

3



Obtaining a consistent sparse encoding between the two sets

of dimensions allows for a more meaningful reconstruction.

This is apparent if one considers the reconstruction proce-

dure. Given a novel periocular image, we would first obtain

the sparse representation x in DΛ. We then obtain the re-

construction using Dx. Using the original K-SVD training

method, there was no reason to expect a low reconstruction

error in obtaining the entire face. Thus, relationships be-

tween periocular and other facial features are not explicitly

learned. However, by forcing consistent sparse representa-

tions x during training, we optimize for a low reconstruc-

tion error for both regions jointly and simultaneously.

Solving the formulation is achieved by a simple rear-

rangement before using the standard K-SVD as previously

observed [4]:

argmin
D,DΛ,X

∥

∥

∥

∥

(

Y√
βYΛ

)

−
(

D√
βDΛ

)

X

∥

∥

∥

∥

2

F

(4)

such that ∀i, ‖xi‖0 ≤ K

This translates to the standard K-SVD problem where

we minimizeD′,X′ ‖Y′ −D′X‖2 under ‖xi‖0 ≤ K. with

Y′ = (YT ,YT
Λ)

T and D′ = (DT ,DT
Λ)

T . In effect the

formulation is equivalent to re-weighting dimensions be-

longing to Λ by (1 +
√
β). Note that one can easily gen-

eralize this framework to include multiple subsets of other

dimensions with different weights. Further, this method

along with PCA based and K-SVD based methods, is open

set thereby enabling reconstruction of any face that is not

present in the training set. For convenience, we call this

method Dimensionally Weighted K-SVD or DW-KSVD.

4. Experimental Results

4.1. Database

All test experiments were performed on the NIST’s Face

Recognition Grand Challenge (FRGC) ver2.0 database. It

has three components, the first is the generic training set

which contains both controlled and uncontrolled images of

222 subjects, and a total of 12, 776 images. Second, the

target set containing 466 different subjects with a total of

16, 028 images. Lastly, the probe set containing the same

466 subjects as in target set, with half as many images for

each person as in the target set, bringing the total number

of probe images to 8, 014. Image examples from the FRGC

database are shown in Figure 2.

4.2. Dictionary Learning and Reconstruction

To learn the dictionary used for reconstruction, we

trained using Dimensionally Weighted K-SVD (DW-

KSVD) on 500, 000 frontal mugshot images resized to 32

by 32 pixels. A large number of images are necessary to

obtain a comprehensive dictionary of weak periocular-to-

facial feature relationships. For all experiments, we set the

(a1) (b1) (a2) (b2)

Figure 2. Example image from the FRGC database: (a1,a2)

controlled and uncontrolled still of the same subject, (b1,b2)

cropped full face and periocular region. [11]

number of dictionary elements to 5, 000 and the maximum

allowed sparsity K as 10 to force the dictionary elements

to span a smaller local subspace to account for high vari-

ation between subjects. We set β = 100 to strongly em-

phasize periocular reconstruction. The dictionary was ini-

tialized using randomly chosen data elements and K-SVD

was run for 20 iterations for learning all dictionaries. We

define the periocular region in 32 by 32 images as the top

13 by 32 part of the image. In order to focus our efforts on

the reconstruction performance itself, we restrict ourselves

from exploring other templates. Our method can handle in

a straight-forward way, cases in which the periocular region

varies from our defined template.

For reconstruction using DW-KSVD, we first obtain

the sparse representation of the periocular image using

OMP in the periocular component of the DW-KSVD dic-

tionary. We then reconstruct using the face component

of the DW-KSVD dictionary and the same sparse coeffi-

cients. Note that we would have a trade-off in choosing

sparsity K while using OMP for sparse representation dur-

ing reconstruction. The reason is that as we increase K,

we would keep achieving a lower periocular reconstruction

error, however, the full face reconstruction error might in-

crease after a point. This is because OMP is only opti-

mizing for the periocular representation error and not the

full face reconstruction error. To learn the optimal recon-

struction sparsity for the task, we conduct a pilot experi-

ment in which we measure the PSNR between the unseen

original face and the reconstructed face while increasing

sparsity. We adopt the peak signal-to-noise ratio (PSNR)

as the measurement of reconstruction fidelity between im-

ages I and I ′ as follows: PSNR = 10 log10

(

2552

MSE

)

=

10 log10

(

2552

1

mn

∑m−1

i=0

∑n−1

j=0
[I(i,j)−I′(i,j)]2

)

.

For the experiment we use 1000 randomly chosen faces

from FRGC and compute the PSNR of the reconstruction

error for each using DW-KSVD. Figure 3 shows the mean

PSNR varying with sparsity. We find that the best full face

reconstruction occurs at using K = 40 which is what we

use for all further experiments. It is also worth noted that the

more training samples presented to the dictionary learning

algorithm, the higher PSNR it can achieve in hallucinating
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Figure 3. Mean PSNR versus reconstruction sparsity K using DW-

KSVD trained dictionaries.

Figure 4. Left: K-SVD dictionary. Right: PCA dictionary. Only

the first 200 dictionary elements are shown.

the full face from the periocular region. Figure 4 showcases

the first 200 dictionary elements of the K-SVD and PCA

dictionaries. In the PCA dictionary, after the first 40 eigen-

faces, the dictionary elements start to lose facial structures

and shift to capture higher frequency components. While in

the K-SVD dictionary, visual appearances of the elements

are close to the top eigenfaces where facial structures are

well-preserved. This might explain why K-SVD and DW-

KSVD leads to hallucinations with higher fidelity as we

would see in the next section. Figure 5 shows a part of the

full face component as well as the periocular component of

a dictionary trained using the proposed DW-KSVD algo-

rithm. For display, the intensities for the two components

are both normalized.

4.3. Reconstruction Fidelity

Our primary goal is to provide a practical method for

hallucinating a full face from the periocular region to aid

further processing such as commercial face matching. How-

Figure 5. Top: Full face component of the DW-KSVD dictionary

trained using 500,000 training samples. Bottom: Periocular com-

ponent of the DW-KSVD dictionary. Only the first 400 dictionary

elements are shown.

ever, a natural metric to evaluate methods for reconstruction

would be to compare the reconstructed images to the origi-

nal images using the PSNR metric. In this experiment, we

reconstruct the entire target set in the FRGC ver2.0 database

(16, 028 images from 466 subjects) using the three methods

and compute the corresponding PSNR for each pair. For all

experiments using PCA, we restrict ourselves to the first 40

eigenvectors (same number of dictionary elements that K-

SVD and DW-KSVD would use) which can represent over

93.9% of the total energy.

Figure 6 shows the overall mean PSNR computed for

each subject (multiple images per subject) using DW-

KSVD, K-SVD and PCA reconstruction (bold line) along

with the mean PSNR for each individual subject for the

three methods (markers). In FRGC ver2.0 target set, each

individual has on an average 34 images. Figure 7 shows the

corresponding histograms. We find that DW-KSVD on av-

erage clearly outperforms both K-SVD and PCA by a large

margin in PSNR. Table 1 shows the mean and the standard

deviation of the distribution of the PSNR values. A few ran-

domly chosen samples and their reconstructions are shown
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in Figure 8. It is worth noting that most of the reconstructed

faces are neutral in expression. This is because our dictio-

naries are trained on mugshot images, which typically have

neutral expression. This, however, works in our favor be-

cause commercial matchers perform better under neutral ex-

pressions. Our proposed method actually eliminates expres-

sion variations and will be an asset for real-world matching.

We find that DW-KSVD not only provides reconstruc-

tions with higher PSNR values on average but the recon-

structions are in fact much more visually appealing and

similar to the original images than either PCA or K-SVD

based reconstructions. This suggests that DW-KSVD and

the combined formulation is able to extract the weak corre-

lations and dependencies between the periocular and other

facial features. Hence, explicitly penalising reconstruction

error in the periocular region more seems to be favorable.

4.4. Face Verification

We now provide a few results which explore face match-

ing using the reconstructed faces. We carry out a large-scale

Table 1. Mean and standard deviations for the distributions of the

PSNR values for reconstruction.
Methods Mean Standard Deviation

PCA Recon. 12.7439 2.1288

KSVD Recon. 14.0720 2.0532

DW-KSVD Recon. 17.6402 2.3757

face verification experiment to evaluate whether the halluci-

nated faces can practically replace the ground-truth full face

in face verification.

4.4.1 Reconstructed Face vs. Reconstructed Face

In our first verification experiment, we strictly follow

NIST’s FRGC Experiment 1 protocol which involves 1-to-1

matching of the 16, 028 controlled target images to them-

selves (∼ 256 million pair-wise face match comparisons).

For this experiment, we adopt the normalized cosine dis-

tance (NCD) to compute the similarities between images:

d(x,y) = 1− x·y
‖x‖‖y‖ .

The result of each algorithm is a similarity matrix with

the size of 16, 028 × 16, 028 whose entry SimMij is the

NCD between the feature vector of query image i and

gallery image j. In the case of FRGC Experiment 1, the

query set and gallery set are the same. The performance

is analyzed using verification rate (VR) at 1% (0.01) false

accept rate (FAR), equal error rate (EER) and the receiver

operating characteristic (ROC) curves. Table 2 shows the

VR at 1% FAR and EER for the FRGC Experiment 1 evalu-

ation. Figure 9 shows the corresponding ROC curves. It can

be noted from the table as well as the plot that DW-KSVD

can achieve comparable results as the full face evaluation,

which, from another angle, shows the fidelity of the hal-

lucination. Further, it clearly outperforms both PCA and

K-SVD based reconstructions. We also observe that the pe-

riocular region crop performs slightly better than the full

face. This is because in the FRGC target set, two facial

expressions are presented by each subject, neural and smil-

ing. The periocular region, however, is less affected by such

expression variations, thus gives rise to slightly better per-

formance than the full face. This observation brings a valid

point that one may focus on periocular region which has

higher tolerance for expression variations when matching

faces with unconstrained expressions.

Since this protocol matches the reconstructions to them-

selves, it only goes to show that the reconstructed images

preserve biometric and identity information amongst them-

selves almost as well as the original images. The perfor-

mance is not expected to drop too much if the entire system

is trained on reconstructed images. This however is imprac-

tical. It is very hard to retrain commercial matchers, and our

original problem was to evaluate the reconstructions using

recognition systems trained on original images. To evaluate

this, we run a second verification experiment in which we
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Figure 8. Original full faces and periocular region crops along with the corresponding reconstructed or hallucinated images using exclu-

sively the periocular crops for various samples from FRGC.

match the original images with the reconstructed images for

all methods i.e. the targets are the original images and the

probes are the reconstructed images.

4.4.2 Original Face vs. Reconstructed Face

For this experiment, we use a face verification algorithm

that had good performance in the NIST’s FRGC evaluation:

the kernel class-dependence feature analysis (KCFA) [13].

In our experiment, KCFA was trained on the original im-

ages of the 222 subjects belonging to FRGC ver2.0 training

set. We match the original face images of FRGC ver2.0 tar-

get set to the corresponding reconstructed images using the

KCFA feature vectors extracted. Thus, we simulate a real-

world situation, i.e. matching the reconstructed images to

the original ones with a verification algorithm that has been

trained on unseen original images. Our hope is to find that

reconstructed images using DW-KSVD perform competi-

tively as compared to matching the original images them-

selves. Indeed, this is what we observe. Figure 10 shows

the ROC curves corresponding to this experiment. We find

that among the three methods, DW-KSVD clearly outper-

forms both PCA and K-SVD reconstructions and in fact the

ROC curve shows that the evaluation is indeed competitive

to the one using the original full faces. Thus, we see that the

periocular based full face reconstruction using DW-KSVD

seems to be a practical solution in cases where the face ver-

ification system cannot adapt to partial faces. Moreover,

it clearly outperforms both PCA and K-SVD based recon-

structions in all evaluations. One reason that PCA’s VR is

lower than KSVD in this protocol but higher in the previ-

ous one might be that the truncated PCA reconstruction pro-

duces faces that lack details and tend towards the mean face.

Thus, for matching reconstruction to reconstruction images,

PCA actually gains by looking alike each other. However,

such a lack of detail hurts PCA in the second protocol when

matching reconstructed faces to the original ones. Thus for

face hallucination, this provides another reason to favor the

sparse representation in an overcomplete basis framework.

Note that for this experiment, we essentially arrived at the

same problem that motivated this study. We were unable to

match only the periocular region to the original face given

the trained KCFA based matcher, which is why no periocu-

lar ROC curve exists in Figure 10.

5. Conclusion

We present a practical and effective method to halluci-

nate a full face image using only the periocular region. Such

a method would have applications in areas such as commer-

cial face matching and law enforcement where currently al-

gorithms are not adaptive to having only the periocular re-

gion. Our algorithm DW-KSVD is a modification of the K-

SVD dictionary learning paradigm tailored so as to empha-

size on more accurate reconstruction of a subset of dimen-

sions, in this case the periocular region. Our experiments

demonstrate that reconstruction using DW-KSVD can be

practically used to hallucinate faces from the periocular re-
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Table 2. VR at 1% FAR and EER for the FRGC Experiment 1

evaluation. The last three rows are matching reconstructed faces

to the reconstructed faces.
Methods VR at 1% FAR EER

Original Full Face 0.524 0.170

Periocular Region 0.561 0.161

DW-KSVD Recon. 0.475 0.188

KSVD Recon. 0.285 0.248

PCA Recon. 0.329 0.236
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Figure 9. ROC curves obtained by following FRGC experiment

1 protocol (matching all sets to themselves) using raw pixels

matched under the NCD metric.

gion without sacrificing face verification performance too

much. Further, our method is open set and can hallucinate

faces not present in training. It also outperforms standard

K-SVD and PCA based reconstruction schemes in the same

tasks. Our method is general in that one can try to recon-

struct an entire signal given a part of it, given that weak

correlations exist between that part and the rest of the sig-

nal. In future work, it would be interesting to explore the

method based reconstructions being evaluated using other

dictionary and subspace learning techniques and various

commercial matchers.
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