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Halo abundances in the f nl model
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ABSTRACT
We show how the excursion set moving barrier model for halo abundances may be generalized
to the local non-Gaussian f nl model. Our estimate assumes that the distribution of step sizes
depends on f nl, but that they are otherwise uncorrelated. Our analysis is consistent with
previous results for the case of a constant barrier, and highlights some implicit assumptions.
It also clarifies the basis of an approximate analytic solution to the moving barrier problem in
the Gaussian case, and shows how it might be improved.
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1 IN T RO D U C T I O N

Detections of non-Gaussianity can discriminate between different inflation models (e.g. Maldacena 2003). The local f nl model, where the
primordial perturbation potential is

� = φ + fnl(φ
2 − 〈φ2〉), (1)

where φ is a Gaussian potential field and f nl is a scalar, has been the subject of much recent study (e.g. Buchbinder, Khoury & Ovrut 2008;
Khoury & Piazza 2008; Silvestri & Trodden 2008, and references therein). Constraints on this model tend to be of two types – from the
CMB (Hikage et al. 2008; McEwen et al. 2008; Yadav & Wandelt 2008; Komatsu et al. 2009) and from large-scale structures in the Universe
(Koyama, Soda & Taruya 1999; Matarrese, Verde & Jimenez 2000; Scoccimarro, Sefusatti & Zaldarriaga 2004; Izumi & Soda 2007; Sefusatti
& Komatsu 2007; Afshordi & Tolley 2008; Carbone, Verde & Matarrese 2008; Dalal et al. 2008; Desjacques, Seljak & Iliev 2008; Grossi
et al. 2008; Lo Verde et al. 2008; McDonald 2008; Matarrese & Verde 2008; Slosar et al. 2008; Slosar 2008; Taruya, Koyama & Matsubara
2008; Grossi et al. 2009; Kamionkowski, Verde & Jimenez 2009; Lam & Sheth 2009; Valageas 2009).

One of the fundamental quantities of interest in such studies is the abundance of virialized dark matter haloes. Press & Schechter (1974)
suggested that the abundance of collapsed virialized haloes may be estimated from the statistics of the initial fluctuation field. They used the
assumption that haloes form from a spherical collapse to argue that such objects started out as sufficiently overdense regions in the initial
fluctuation field. The excursion set approach of Bond et al. (1991) allows one to estimate halo abundances in Gaussian theories; in this context,
the spherical collapse model is associated a barrier of constant height. If the collapse is triaxial then the barrier height is stochastic with a
mean that is not constant (Sheth, Mo & Tormen 2001). Ignoring the stochasticity but including the changing of the barrier height allows the
excursion set approach to provide a simple parametrization of the effects of triaxial collapse on halo abundances (Sheth & Tormen 2002). The
main goal of the present work is to show how to generalize the moving barrier formulae of Sheth & Tormen (2002) to the local non-Gaussian
f nl model.

Section 2 provides explicit expressions for the one- and two-point distribution of the overdensity in f nl models. These are used, in
Section 3, to estimate how the mass function of virialized objects is modified when f nl �= 0. This section also clarifies earlier work on the
Gaussian (f nl = 0) case. A final section summarizes our results. Two appendices provide useful approximations and other technical details.

2 TH E L O C A L N O N - G AU S S I A N M O D E L

We are interested in models where the primordial perturbation potential is given by equation (1). We will use P φ(k) to represent the power
spectrum of φ; in what follows, we will set Pφ(k) = Akns−4, where ns ≈ 1 and A is a normalization constant that is fixed by requiring that
the rms fluctuation in the associated non-Gaussian initial density field (which we will define shortly) has value σ 8. The power spectrum and
bispectrum of the � field are

P�(k) = Pφ(k) + 2f 2
nl

(2π)3

∫
d q[Pφ(q)Pφ(|k − q|) − Pφ(k)Pφ(q) − Pφ(k)Pφ(|k − q|)], (2)
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2144 T. Y. Lam and R. K. Sheth

B�(k1, k2, k12) ≡ 2fnl

[
Pφ(k1)Pφ(k2) + cyclic

] + O
(
f 3

nl

)
(3)

(Scoccimarro et al. 2004).
Most of the complication in f nl models arises from the fact that we are almost always interested in spatially smoothed quantities.

In particular, the quantity σS3 ≡ 〈δ3|R〉/〈δ2|R〉3/2 will play an important role, because it represents the leading order contribution to the
non-Gaussianity (note that it is proportional to f nl). Fortunately, smoothing is a linear operation, so the smoothed variables are just linear
combinations of the unsmoothed ones. Hence, if W(kR) denotes the Fourier transform of the smoothing window of scale R then, to second
order in f nl,

〈δ2|R〉 = σ 2(R) = 1

(2π)3

∫
dk

k
4π k7M2(k) P�(k) W 2(kR) and (4)

〈δ3|R〉 = 2fnl
2

(2π)4

∫
dk1

k1
k5

1M(k1)W (k1R)
∫

dk2

k2
k5

2M(k2)W (k2R)
∫

dμ12 k2
12 M(k12)W (k12R)

B�(k1, k2, k12)

2fnl
, (5)

where M(k) ≡ [3D(z)c2]/(5�mH 2
0) T (k), T (k) is the cold dark matter transfer function and D(z) is the linear growth function. In hierarchical

models, σ and σS3 are both monotonically decreasing functions of R; this will be important in what follows. Appendix 5 provides a useful
fitting formula for σ S3, and shows that it is only a weak function of scale.

2.1 Edgeworth approximations for p(δ|R) and p(δ, �|r, R)

Because we are interested in small departures from Gaussianity, the Edgeworth expansion provides a convenient form for the distribution of
δ smoothed on scale R:

p(δ|R) dδ ≈
{

1 + σ (R)S3(R)

6
H3

[
δ

σ (R)

]}
e−δ2/2σ 2(R)

√
2πσ (R)

dδ =
[

1 + σS3

6
H3(ν)

]
p0(δ|R) dδ, (6)

where σ (R) is given by equation (4), σS3 ≡ 〈x3〉/〈x2〉3/2 = 2f nlγ
3/σ 3, and H 3(ν) ≡ ν(ν2 − 3) with ν ≡ δ/σ (R). Because H3 changes sign

at ν = √
3, the Edgeworth expansion is not always positive, making it ill suited for studying (at least one of) the tails of the distribution. The

expansion becomes negative when (σS3/6)ν(ν2 − 3) = −1, meaning ν(ν2 − 3) = −200 (0.03/σS3), and note that σS3 has the opposite sign
to f nl. For f nl ≈ 100, we have ν(ν2 − 3) = 200, so there certainly are problems at ν > 6, making the expansion suspect at slightly smaller
values. For f nl ≈ −100, there are problems at ν < −6. Because the Gaussian piece falls exponentially with ν2, the fact that the expansion
may not be accurate at large ν may not matter – but, for larger |f nl| values this limitation of the Edgeworth approach should be borne in mind.

Lam & Sheth (2009) have used this expansion in the context of modelling the one-point distribution of the evolved non-linear δ, where
σS3 is smaller and large ν values are indeed rare. Here, however, we will follow Lo Verde et al. (2008), and use it in our model of halo
abundances. In this case, it is the large ν tail which is of most interest, and this is precisely where the Edgeworth expansion is most suspect.
However, note that, when modelling haloes, one is most interested in the regime where ν > 0, so, for f nl < 0, the Edgeworth expansion is
positive definite except for large σS3, for which we know the Edgeworth expansion is not useful anyway. In any case, Appendix 5 shows that
large values of σS3 are not currently a concern.

For reasons that will become clear shortly, we will also be interested in the value of the field when it is smoothed on two different scales.
For small departures from Gaussianity, the bivariate Edgeworth expansion should provide a good description. It is

p(μ, ν) = 1

2π
√

1 − q2
exp

[
−μ2 − 2qμν + ν2

2(1 − q2)

] [
1 + λ30H30 + λ03H03

6
+ λ21H21 + λ12H12

2

]
(7)

(Kotz, Balakrishnan & Johnson 2000), where

μ ≡ δ

〈δ2〉1/2
, ν ≡ �

〈�2〉1/2
, q ≡ 〈μν〉, λmn = 〈μmνn〉c and Hmn(μ, ν, q) = hmn(μ, ν, q)

(1 − q2)2
,

with

h30(μ, ν, q) = h03(ν, μ, q) = (μ − qν)3

1 − q2
− 3(μ − qν),

h21(μ, ν, q) = h12(ν, μ, q) = 2q(μ − qν) − (ν − qμ) + (ν − qμ)(μ − qν)2

1 − q2
.

If our convention is that � is the field on the larger smoothing scale, then, to lowest order in λ03 = σS3,

p(μ|ν) = 1√
2π(1 − q2)

exp

[
− (μ − qν)2

2(1 − q2)

] ⎡
⎣1 + λ30H30 + λ03H03

6
+ λ21H21 + λ12H12

2
− λ03H3(ν)

6

⎤
⎦. (8)

In what follows, we will set q2 = 〈�2〉/〈δ2〉 (as it is for a Gaussian field smoothed with a top hat in k-space; this is standard for the excursion
set approach).
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3 H A L O A BU N DA N C E S

Recall that σ is a monotonically decreasing function of smoothing scale R. In the initial conditions, where fluctuations are negligible, the
smoothing scale R contains mass m = ρ̄ 4πR3/3 almost surely, so σ , R and m are equivalent variables. Now, let dn/dm denote the comoving
number density of haloes of mass m and ρ̄ denote the comoving density of the background. If f (m) denotes the mass fraction in haloes of
mass m then

F {< σ [R = (3m/4πρ̄)1/3]} = F (> m) =
∫ ∞

m

dmf (m) =
∫ ∞

m

dm

ρ̄

dn(m)

d ln m
. (9)

An estimate of F, then, is an estimate of dn/d ln m. The following sections describe the excursion set estimate of F for Gaussian initial
conditions, and how this estimate can be extended to the f nl �= 0 models.

3.1 Excursion set approach

The excursion set approach (Bond et al. 1991; Lacey & Cole 1993; Sheth 1998) relates the number of haloes of mass m to the first crossing
of a suitably chosen barrier b(σ ) by a suitably chosen set of walks. The simplest implementations of this approach consider the first crossing
of b(σ ) by an ensemble of uncorrelated random walks with uncorrelated steps. While neglecting both types of correlations is far from ideal,
previous work shows that this allows one to write down simple analytic expressions for the first crossing distribution and how this distribution
is related to halo abundances, which together provide reasonably accurate descriptions of halo abundances as well as their formation histories.

The barrier shape b(σ ) is set by the physics of collapse. The spherical collapse model has a barrier of constant height b(σ ) = δsc, whereas
barriers of the form

b(σ ) = √
aδc

[
1 + β (σ/

√
aδc)

2γ
]
, (10)

with β = 0.4 and γ = 0.6, may be related to models in which haloes form from a triaxial collapse (Sheth et al. 2001; Sheth & Tormen 2002).
The physics of collapse have a = 1, but setting a = 0.7 results in a predicted dn/d ln m which is in much better agreement with the abundance
observed in simulations (see Sheth et al. 2001, for further discussion of why a �= 1).

3.2 The Gaussian case: spherical collapse

Let p(δ, s) denote the probability that a randomly placed cell in the initial distribution has overdensity δ when the smoothing scale is such
that 〈δ2〉 = σ 2 ≡ s. Classify all cells by the largest scale S ≤ s on which they had overdensity greater than δc. Then, provided δ ≥ δc,

p(δ, s) =
∫ s

0
dS f (S, δc) p(δ, s|δc, S, first), (11)

where f is the fraction of cells for which S was the largest smoothing scale on which the overdensity was greater than δc and p(δ, s|δc, S,
first) is the probability that the overdensity on scale s is δ given that S was the largest scale on which the overdensity exceeded δc. If one
views a plot of δ versus smoothing scale as something which resembles a random walk, with large smoothing scales to the left, then S is the
first ‘time’ that the walk crosses δc: hence, the word ‘first’ in the expression above. Therefore,

P (δc, s) ≡
∫ ∞

δc

dδ p(δ, s) =
∫ s

0
dS f (S, δc)

∫ ∞

δc

dδ p(δ, s|δc, S, first) =
∫ s

0
dS f (S, δc) P (δc, s|δc, S, first). (12)

In what follows, we will use the subscript ‘0’ to denote quantities associated with Gaussian initial conditions (for which f nl = 0). For a
Gaussian field smoothed with a top hat in k-space,

p0(δ1, s|δ2, S, first) = p0(δ1, s|δ2, S) = p0(δ1 − δ2, s − S), (13)

so P 0(δc, s|δc, S, first) = P 0(0, s − S) = 1/2, and equation (12) implies

P0(δc, s) ≡
∫ ∞

δc

dδ p0(δ, s) =
∫ s

0
dS

f0(S, δc)

2
≡ F0(<s)

2
= F0(>m)

2
. (14)

Differentiating both sides with respect to s shows that f 0 is simply related to p0:

∂P0

∂s
= −p0

(
δc√
s

)
∂(δc/

√
s)

∂s
= δc

2s3/2

e−δ2
c /2s

√
2π

= f0(s, δc)

2
. (15)

3.3 The Gaussian case: ellipsoidal collapse

If δc depends on s, as in some parametrizations of triaxial collapse, then this simplicity is lost. In particular, for the barrier given in equation (10),
Sheth & Tormen (2002) show that

sf0(s, b) ≈ b(0)√
2πs

exp

(
− b2

2s

) [
1 + 0.067

sγ(
aδ2

c

)γ

]
. (16)
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To see where this comes from, note that the analogue of equation (14) becomes

∂P0

∂s
= − e−b2/2s

√
2πs

[
∂b

∂s
− b

2s

]
= f0(s, b)

2
−

∫ s

0
dS f0(S,B)

e−(b−B)2/2(s−S)

√
2π(s − S)

[
∂b

∂s
− (b − B)

2(s − S)

]
. (17)

However, the first term in square brackets on the right-hand side is independent of S, so this term integrates to p(b, s) ∂b/∂s. Since there is a
similar term on the left-hand side, this leaves

b

s

e−b2/2s

√
2πs

= f0(s, b) +
∫ s

0
dS f0(S, B)

e−(b−B)2/2(s−S)

√
2π(s − S)

(b − B)

(s − S)
. (18)

where we have multiplied both sides by a factor of 2. Writing B(S) as a Taylor series around b(s) implies

b

s

e−b2/2s

√
2πs

= f0(s, b) +
∞∑
i=1

∂ib

∂si

∫ s

0
dS f0(S,B)

e−(b−B)2/2(s−S)

√
2π(s − S)

(S − s)i−1

i!
. (19)

so

sf0(s, b) =
(

b − s
∂b

∂s

)
e−b2/2s

√
2πs

−
∞∑
i=2

si

i!

∂ib

∂si

∫ s

0
dS f0(S,B)

e−(b−B)2/2(s−S)

√
2π(s − S)

(S/s − 1)i−1. (20)

Equation (16), the approximation of Sheth & Tormen (2002), corresponds to ignoring all S/s terms and then keeping only the first few terms
in the series.

3.4 Dependence on f nl

We now extend the analysis above to the case in which f nl �= 0. Our primary assumption is that the expressions above remain valid if p on the
left-hand side of equation (12) is given by the Edgeworth expansion, and the conditional distribution on the right-hand side is given by the
bivariate Edgeworth expansion. This is not quite right, since the steps in the walk are now correlated, and we are assuming that the statistics
of walking from (B, S) to (B, S) do not depend on the fact that the walk did not cross B before S. In effect, this means that we assume that
the extra constraint that δ′ < δc for all S ′ < S makes no difference, so the only difference from the Gaussian calculation is that all probability
density functions (PDFs) are now replaced by the appropriate Edgeworth approximation.

To see what this implies, it is convenient to first define

Gmn =
∫ ∞

0
dδ p0(δ + b, s|B, S)hmn

(
δ + b√

s
,

B√
S

,

√
S

s

)
, (21)

where

G30 = −
√

s − S√
s

[
1 − (b − B)2

s − S

]
p0

(
b − B√
s − S

)

G03 = (s − S)2

s2
H3(B/

√
S)P0

(
b − B√
(s − S)

)

− 1

s2
√

S
√

s − S

{
S(s − S)(2S − 3s) + [S2(b2 + bB + B2) − 3sS(bB + B2) + 3B2s2]

}
p0

(
b − B√
s − S

)

G21 =
√

S
√

s − S

s

[
1 − (b − B)2

s − S
+ B(b − B)

S

]
p0

(
b − B√
s − S

)

G12 = −sS(s − S) + (bS − Bs)2

Ss3/2
√

s − S
p0

(
b − B√
s − S

)
. (22)

In addition, define

G3 ≡
∫ ∞

0
dδ p0(δ + b, s|B, S)H3(B/

√
S) = H3(B/

√
S)P0

(
b − B√
s − S

)
. (23)

If we ignore the scale dependence of σS3 (Fig. 1 shows that it is weak) then the derivative of equation (12) w.r.t. s is

∂P0(b/
√

s)

∂s

[
1 + σS3

6
H3

(
b√
s

)]
= f (s, b)

2
+

∫ s

0
dS f (S, B)

∂

∂s
P0

(
b − B√
s − S

)
+ σS3

6

∫ s

0
dS f (S,B)

∂

∂s

[
E(s, S)p0

(
b − B√
s − S

)]
,

(24)

where

E(s, S) = −4s3/2 + 6s
√

S − 2S3/2

(s − S)3/2
+ 3B

√
s − S

S(
√

s + √
S)2

(B
√

s + b
√

S) + (b − B)2
√

s − S

(
√

s + √
S)3

. (25)

Note that, in contrast to the case in which f nl = 0, the final term on the right-hand side of equation (24) is non-trivial because it is now s
dependent.
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Figure 1. Ratio of the first crossing probability for f nl = −100 to that when f nl = 0. Solid (black) curves set σS3 = 0.022 and G(s, b) = 0, dotted (red) curves
include G(s, b) �= 0 but keep σS3 fixed and the dashed (green) curves include the scale dependence of σS3 but set G(s, b) = 0. The top set of curves (offset
upwards by 0.4) show results for a moving barrier (equation 10), middle curves use a constant barrier with δc = 1.66 and lowest curves (offset downwards by
0.4) use a constant barrier of height

√
0.7δc .

Substituting the f nl = 0 solution for the pieces with subscript ‘0’ yields

f0(s, b)

2

[
1 + σS3

6
H3

(
b√
s

)]
= f (s, b)

2

{
1 + 2

∫ s

0
dS

∂

∂s
P0

(
b − B√
s − S

)
f (S,B) − f0(S, B)[1 + (σS3/6)H3(b/

√
s)]

f (s, b)

+ 2
σS3

6

∫ s

0
dS

f (S,B)

f (s, b)

∂

∂s

[
E(s, S)p0

(
b − B√
s − S

)]}
. (26)

This is an integral equation for f (s, b) which is valid when f nl �= 0. Clearly, the zeroth-order solution is simply the f nl = 0 solution (the
Gaussian case) times a correction term which depends on σS3 and the barrier shape b(s). We can include the next-to-leading order contribution
as

f (s, b) = f (0)(s, b)

[
1 + f (1)

f (0)

]
= f0(s, b)

[
1 + σS3

6
H3

(
b√
s

)] [
1 − σS3

6
G(s, b)

]
, (27)

where f 0 is the first crossing probability associated with uncorrelated steps when f nl = 0 (approximated by equation 16),

G(s, b) = 2
∫ s

0
dS

f0(S,B)

f0(s, b)

{
∂

∂s

[
E(s, S)p0

(
b − B√
s − S

)]
+ ∂

∂s
P0

(
b − B√
s − S

)
[H3(B/

√
S) − H3(b/

√
s)]

}
, (28)

where only terms to first order in σS3 have been kept, and

∂E
∂s

= −3
√

S√
s − S(

√
s + √

S)2
+ 3B

S
√

s − S(
√

s + √
S)

[
3B(

√
s − √

S)

2
√

s
+ (B + b)

√
S

s
+

√
S

∂b

∂s
(
√

s −
√

S)

]

− 9B

2S
√

s − S(
√

s + √
S)2

(
B

√
s + b

√
S
)

+ b − B√
s − S(

√
s + √

S)3

[
2(s − S)

∂b

∂s
+ b − B

2

]
− 3

2

(b − B)2
√

s − S√
s(

√
s + √

S)4
.

(29)

Thus,

f (s, b) ≈ f0(s, b)

[
1 + σS3

6
H3

(
b√
s

)
− σS3

6
G(s, b)

]
. (30)

The analysis simplifies somewhat for a constant barrier (see Appendix 6). Previous analyses of the case in which the barrier is a constant
either have explicitly ignored the final term in the square brackets above (Matarrese et al. 2000) or have missed the fact that it is there entirely
(Lo Verde et al. 2008).

Fig. 1 shows the effect of G(s, b) on the ratio of the first crossing distribution when f nl = −100 to that when f nl = 0. This is done
for three different barriers: the top curves (offset upwards by 0.4) show results for the moving barrier of equation (10), the middle are for a
constant barrier of height b = δc and the lowest (offset downwards by 0.4) for b = √

0.7δc. The middle curves are for the barrier shape that
has been previously studied (Matarrese et al. 2000; Lo Verde et al. 2008); differences between these and the bottom curves are due to the
barrier height. Differences between the top and bottom sets of curves are due to the s dependence of the barrier.

In each case, the black (solid) curves show the result of neglecting the factor of G(s) and setting σS3 = 0.022 (i.e. we ignore the fact
that it depends weakly on scale). The red (dotted) curves include the fact that G(s, b) �= 0 [or the corresponding G(s) (equation B8) for
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2148 T. Y. Lam and R. K. Sheth

Figure 2. Ratios of the first crossing probability for f nl = −100 to that when f nl = 0. Black (solid), green (dashed) and cyan (dotted) curves plot the ratios
for moving barrier b(s), b = δc and b = √

0.7δc when G(s) is set to 0. The red (dot–dashed) curve shows equation (30).

the constant barrier] with the same (fixed) value of σS3. The differences between these two sets of curves are small for all three barriers,
indicating that the contribution from the factor G is small. The effect of again ignoring G, but now including the scale dependence of σS3

(using equation A1), but setting ∂σS3/∂s ≈ 0 is shown by the green (dashed) curves.
Fig. 2 shows the ratios of the first crossing distribution for different barrier shapes. The scale dependence of σS3 is included and computed

by the approximation formula (equation A1). Black (solid), green (dashed) and cyan (dotted) curves plot the ratios for moving barrier b(s),
b = δc and b = √

0.7δc, respectively (all without G). The red (dot–dashed) curve shows the term in square brackets in equation (30): this
includes the scale dependence in the factor σS3 but it sets ∂lnσS3/∂ s ≈ 0, and it ignores the fact that this scale dependence will also
modify the G(s, b) term. The inclusion of the factor G(s, b) has a small effect compared to using different barrier shapes. The three barrier
shapes result in slightly different predictions for how f nl modifies halo abundances. Therefore, comparisons with measurements in numerical
simulations may indicate which barrier shapes better describe halo formation.

Figs 1 and 2 show that the effect of G(s, b) is small compared to the effects of including the scale dependence of σS3, and the effect of
using different barrier shapes. Therefore, it is a good approximation to set

f (s, b) ≈ f0(s, b)

[
1 + σS3

6
H3

(
b√
s

)]
. (31)

When the barrier is constant, b = δc, then this reduces to the expression presented by Lo Verde et al. (2008). Our analysis shows that there is
an additional correction factor which their derivation missed [our factor of (σS3/6) G], but that this happens to be small. On the other hand,
they include a term which comes from the scale dependence of ∂ (σS3/6)/∂ ln s which we are ignoring (we have checked that it is small.).

4 D ISCUSSION

We showed how the excursion set approach may be extended to model halo abundances when the initial conditions were non-Gaussian. In
this approach, the estimate of halo abundances is related to the first crossing distribution of a suitably chosen barrier by a suitably chosen set
of walks. The physics of collapse set the barrier shape, and the statistics of the initial fluctuation field set the properties of the ensemble of
walks: for example, how steps in a given walk are correlated and whether the walks are independent of one another. Our analysis assumes
that the steps in a walk are uncorrelated, and the appropriate ensemble contains all possible independent walks. The first assumption may
be well motivated only for Gaussian random fields – we argue that it may remain a useful approximation for weakly non-Gaussian fields.
The second assumption ignores the fact that averaging over the full ensemble of uncorrelated walks is only an approximation to the more
physically appropriate ensemble described in Sheth et al. (2001). Previous work suggests that this allows one to write down simple analytic
expressions which are reasonably accurate.

Our analysis was done in two steps – the first showed how the calculation depends on the physics of collapse: spherical and triaxial
collapse models are associated with ‘constant’ and ‘moving’ barriers (Section 3). For Gaussian initial conditions, our results clarify the nature
of approximations made in previous studies of the moving barrier model (see Section 3.3).

For non-Gaussian initial conditions, our analysis assumes that the correlated nature of the steps (in non-Gaussian models) changes the
step-size distribution in a calculable way, but that steps are otherwise independent. For weak non-Gaussianity, we approximate the change to
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the step sizes by using the Edgeworth expansion (equations 6 and 7). This is not strictly correct – it is an approximation which may be accurate
for weakly non-Gaussian fields. (In this context, our analysis of the constant-barrier model showed that previous work on this problem, which
made the same assumptions as we do, had missed some terms. However, these turn out to be small.) As we were completing this work,
Maggiore & Riotto (2009) presented a very different analysis of the constant-barrier problem which yields consistent results, suggesting that
our neglect of the additional correlations between steps associated with f nl �= 0 is reasonable.

Ours is the first analysis of the moving barrier problem for non-Gaussian models: the moving barrier yields quantitatively different
predictions for halo abundances than does the constant-barrier model, at a level that current simulations should be able to detect. This is
explored further in Lam, Sheth & Desjacques (2009). So, we hope that our results will benefit problems which use halo abundances to
constrain the nature of the initial fluctuation field. They also provide a key ingredient to the halo model interpretations of how galaxies cluster
(Cooray & Sheth 2002).
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APPENDIX A : A PPROX IMATION FORMULA FOR σ S3

The quantity σS3 measures the strength of non-Gaussianity in the smoothed field. Unfortunately, it requires the computation of several
numerical integrals. We have found that the following provides a good approximation:

σS3 ≈ 12 fnl
〈δRφR〉

σ

(
1 + 1

6

d ln〈δRφR〉
d ln r

) {
1 −

[
σ

σ (r0)

]m1
}

+ σS3(r0)
〈δRφR〉/〈δRφR〉(r0)

σ/σ (r0)

[
σ

σ (r0)

]m2

, (A1)
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Figure A1. The quantity σS3(r) for f nl = 100. Dotted (black) curve is the numerical result, dot–dashed (cyan) curve is equation (A1), and dashed (green)
curve is the approximation from Scoccimarro et al. (2004), which is only expected to be valid on large scales.

where the first term on the right-hand side is the large-scale approximation given in Scoccimarro et al. (2004). If we set r0 = 0.1 Mpc h−1,
m1 = 0.5, m2 = 0.7 then σS3(r0) = −0.0316, and equation (A1) is rather accurate (see Fig. A1).

A P P E N D I X B: H A L O A BU N DA N C E S IN TH E C O N S TA N T- BA R R I E R M O D E L W H E N FNL �= 0

The main text considered the general case of a moving barrier. When the barrier is constant then it is convenient to define

Gmn ≡
∫ ∞

0
dδ p0(δ + δc, s; δc, S)hmn

(
δ + δc√

s
,

δc√
S

,

√
S

s

)
, (B1)

making

G30 = −
√

s − S√
2π

√
s
, G03 =

(
δ3
c − 3Sδc

)
(s − S)2

2s2S3/2
−

√
s − S[S(2S − 3s) + 3δ2

c (s − S)]√
2πs2

√
S

,

G21 =
√

S
√

s − S√
2πs

and G12 = −sS(s − S) + δ2
c (s − S)2

√
2πSs3/2

√
s − S

.
(B2)

In addition,

G3 ≡
∫ ∞

0
dδ p0(δ + δc, s; δc, S)H3(δc/

√
S) =

(
δ3
c − 3Sδc

)
2S3/2

, (B3)

so∫ ∞

0
p(δ + δc, s|δc, S) = 1

2
+ λ30

6

G30s
2

(s − S)2
+ λ03

6

[ √
S(3s − 2S)√

2π(s − S)3/2
− 3δ2

c√
2π

√
S
√

s − S

]
+ λ21

2

G21s
2

(s − S)2
+ λ12

2

G12s
2

(s − S)2
. (B4)

If the scale dependence of σS3 can be ignored then λmn = σS3, so, to first order in σS3,∫ ∞

0
p(δ + δc, s|δc, S) = 1

2
+ 1√

2π

σS3

6
E(s, S), where E(s, S) = 2(−2s3/2 + 3s

√
S − S3/2)

(s − S)3/2
+ 3δ2

c (
√

s − √
S)

S
√

s − S
. (B5)

Note that E(s, S) = 0 when s = S, so when σS3 is a constant then

∂

∂s

∫ ∞

δc

dδ p(δ, s) = f (s, δc)

2
+ 1√

2π

σS3

6

∫ s

0
dS f (S, δc)

∂E

∂s
, where

∂E

∂s
= 3

2s

√
S

s

(
δ2
c /S

)
(1 + √

S/s) − 2√
(1 − S/s)(1 + √

S/s)2
. (B6)

The main text assumes that the second term on the right-hand side is negligible compared to the first. In the approximation where σS3 is
constant, this makes f (s, δc) = f 0(s, δc) [1 + (σS3/6) H 3(δc/σ )]. To see if this is accurate one can substitute this expression for f (s, δc) into
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the integral, and check that this contribution really is negligible compared to the first term, f (S, δc)/2. Namely, write

∂

∂ ln s

∫ ∞

δc

dδ p(δ, s) = sf (s, δc)

2

[
1 + 2√

2π

σS3

6

∫ s

0

dS

S

Sf (S, δc)

sf (s, δc)

∂E

∂ ln s

]
, (B7)

then note that, to leading order in σS3, we may approximate f (S, δc) ≈ f 0(S, δc), so the second term in square brackets is

G(s) = 2√
2π

σS3

6

∫ s

0

dS

S

Sf0(S, δc)

sf0(s, δc)

3

2

√
S

s

(
δ2
c /S

)
(1 + √

S/s) − 2√
(1 − S/s)(1 + √

S/s)2
= σS3

2

∫ 1

0

dx

x

e−(δ2
c /2s)(1/x−1)

√
2π

(
δ2
c /s

)
(1 + √

x) − 2x

x
√

1 − x(1 + √
x)2

. (B8)
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