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ABSTRACT

We present a detailed comparison of fundamental dark matter halo properties retrieved by a

substantial number of different halo finders. These codes span a wide range of techniques

including friends-of-friends, spherical-overdensity and phase-space-based algorithms. We
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further introduce a robust (and publicly available) suite of test scenarios that allow halo

finder developers to compare the performance of their codes against those presented here. This

set includes mock haloes containing various levels and distributions of substructure at a range

of resolutions as well as a cosmological simulation of the large-scale structure of the universe.

All the halo-finding codes tested could successfully recover the spatial location of our mock

haloes. They further returned lists of particles (potentially) belonging to the object that led

to coinciding values for the maximum of the circular velocity profile and the radius where

it is reached. All the finders based in configuration space struggled to recover substructure

that was located close to the centre of the host halo, and the radial dependence of the mass

recovered varies from finder to finder. Those finders based in phase space could resolve central

substructure although they found difficulties in accurately recovering its properties. Through

a resolution study we found that most of the finders could not reliably recover substructure

containing fewer than 30–40 particles. However, also here the phase-space finders excelled by

resolving substructure down to 10–20 particles. By comparing the halo finders using a high-

resolution cosmological volume, we found that they agree remarkably well on fundamental

properties of astrophysical significance (e.g. mass, position, velocity and peak of the rotation

curve).

We further suggest to utilize the peak of the rotation curve, vmax, as a proxy for mass, given

the arbitrariness in defining a proper halo edge.

Key words: methods: numerical – galaxies: evolution – galaxies: haloes – cosmology: mis-

cellaneous – cosmology: theory – dark matter.

1 IN T RO D U C T I O N

While recent decades have seen great progress in the understanding

and modelling of the large- and small-scale structure of the Uni-

verse by means of numerical simulations, there remains one very

fundamental question that is yet to be answered: ‘how to find a

dark matter (DM) halo?’ The comparison of any cosmological sim-

ulation to observational data relies upon reproducibly identifying

‘objects’ within the model. But how do we identify ‘DM haloes’ or

even ‘galaxies’ in such simulations? Researchers in the field have

developed a wide variety of techniques and codes to accomplish

this task. But how does the performance of these various techniques

and codes compare? While we still may argue about the proper def-

inition of an ‘object’, the various approaches should nevertheless

agree, once the same recipe for defining a (DM) halo is used.

This introduction begins by establishing why it is important to

have ‘The Halo-Finder Comparison Project’ before continuing by

laying out the groundwork for the comparison we have undertaken.

It is therefore subdivided into a first subsection where we highlight

the necessity for such a comparison and summarize the recent lit-

erature in this area. This section also includes a brief primer on

halo finders and their history. The second part introduces the de-

sign of the test cases, illustrated with some analysis. The last part

then raises the question ‘how to cross-compare haloes?’ as well as

‘what is actually a halo?’ and presents a possible answer the authors

agreed upon.

1.1 The necessity for a comparison project

Over the last 30 years, great progress has been made in the de-

velopment of simulation codes that model the distribution of dis-

sipationless DM while simultaneously following the (substantially

more complex) physics of the baryonic component that accounts

for the observable Universe. Nowadays, we have a great variety of

highly reliable, cost-effective (and sometimes publicly available)

codes designed for the simulation of cosmic structure formation

(e.g. Couchman, Thomas & Pearce 1995; Gnedin 1995; Pen 1995;

Kravtsov, Klypin & Khokhlov 1997; Bode, Ostriker & Xu 2000;

Fryxell et al. 2000; Knebe, Green & Binney 2001; Springel, Yoshida

& White 2001b; Teyssier 2002; Dubinski et al. 2004; O’Shea et al.

2004; Quilis 2004; Merz, Pen & Trac 2005; Springel 2005; Bagla

& Khandai 2009; Doumler & Knebe 2010; Springel 2010).

However, producing the (raw) simulation data is only the first step

in the process; the model requires reduction before it can be com-

pared to the observed Universe we inhabit. This necessitates access

to analysis tools to map the data onto ‘real’ objects; traditionally,

this has been accomplished via the use of ‘halo finders’. Conven-

tional halo finders search the (dark) matter density field within the

simulations generated by the aforementioned codes to find locally

overdense gravitationally bound systems, which are then tagged as

(dark) matter haloes. Such tools have led to critical insights into our

understanding of the origin and evolution of cosmic structure. To

take advantage of sophisticated simulation codes and to optimize

their predictive power, one obviously needs equally sophisticated

halo finders! Therefore, this field has also seen great development

in recent years (e.g. Gelb & Bertschinger 1994; Klypin & Holtzman

1997; Eisenstein & Hut 1998; Bullock et al. 2001; Springel et al.

2001a; Stadel 2001; Aubert et al. 2004; Gill et al. 2004; Neyrinck

et al. 2005; Weller et al. 2005; Diemand et al. 2006; Kim & Park

2006; Gardner et al. 2007a,b; Shaw et al. 2007; Habib et al. 2009;

Knollmann & Knebe 2009; Maciejewski et al. 2009; Ascasibar,

in preparation; Behroozi, in preparation; Planelles & Quilis 2010;

Rasera et al. 2010; Skory et al. 2010; Sutter & Ricker 2010; Falck

et al., in preparation; see also Fig. 1, noting that for some halo find-

ers no code paper exists yet). However, so far, comparison projects

have tended to focus on the simulation codes themselves rather than

the analysis tools.

The increasing demand and supply for halo finders is schemati-

cally presented in Fig. 1 where we show the (cumulative) number

of codes as a function of time, binned in 10-yr intervals since 1970.

We can clearly see the increasing pace of development in the past

decade, reflecting the necessity for sophisticated codes: in the last
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Figure 1. Schematic presentation of the (cumulative) number of halo finders

as a function of time, binned in 10-yr intervals since 1970. The codes

participating in this comparison project have been highlighted in bold font.

10 years, the number of existing halo-finding codes has practically

tripled. While for a long time the spherical-overdensity (SO) method

first mentioned by Press & Schechter (1974) as well as the friend-of-

friends (FOF) algorithm introduced by Davis et al. (1985) remained

the standard techniques, the situation changed in the 1990s when

new methods were developed (Gelb 1992; Lacey & Cole 1994; van

Kampen 1995; Pfitzner & Salmon 1996; Klypin & Holtzman 1997;

Eisenstein & Hut 1998; Gottlöber, Klypin & Kravtsov 1999).

While the first generation of halo finders primarily focused on

identifying isolated field haloes, the situation dramatically changed,

once it became clear that there was no such thing as ‘overmerging’,

that is, the premature destruction of haloes orbiting inside larger

host haloes (Klypin et al. 1999) was a numerical artefact rather

than a real physical process. Now codes faced the challenge of

finding both haloes embedded within the (more or less uniform)

background density of the Universe and subhaloes orbiting within

a density gradient of a larger host halo. The past decade has seen a

substantial number of codes and techniques introduced in an attempt

to cope with this problem (Bullock et al. 2001; Springel et al. 2001a;

Stadel 2001; Aubert et al. 2004; Gill et al. 2004; Neyrinck et al.

2005; Weller et al. 2005; Diemand et al. 2006; Kim & Park 2006;

Gardner et al. 2007a,b; Shaw et al. 2007; Knollmann & Knebe 2009;

Maciejewski et al. 2009; Planelles & Quilis 2010). Along with the

need to identify subhaloes, simulations became much larger during

this period and this led to a drive towards parallel analysis tools.

The simulation data had become too large to be analysed on single

CPU architectures and hence halo finders had to be developed to

cope with this situation, too.

Nevertheless, the first two halo finders mentioned in the literature,

that is, the SO method (Press & Schechter 1974) and the FOF

algorithm (Davis et al. 1985) remain the foundation of nearly every

code: they often involve at least one phase where either particles are

linked together or (spherical) shells are grown to collect particles.

While we do not wish to invent stereotypes or a classification scheme

for halo finders, there are unarguably two distinct groups of codes:

(i) density peak locator (+ particle collection); and

(ii) particle collector.

The density peak locators – such as the classical SO method –

aim at identifying by whatever means peaks in the matter density

field. About these centres, (spherical) shells are grown out to the

point where the density profile drops below a certain pre-defined

value normally derived from a spherical top-hat collapse. Most of

the methods utilizing this approach merely differ in the way they

locate density peaks. The particle collector codes – above all the

FOF method – connect and link particles together that are close to

each other (either in a 3D configuration or in 6D phase space). They

afterwards determine the centre of this mass aggregation.

After the initial selection has been made, most methods apply a

pruning phase where gravitationally unbound particles are removed

from the object. While this unbinding procedure is not essential for

isolated field haloes, it is vital for subhaloes in order to properly

alleviate the contamination by host halo particles. Furthermore, for

subhaloes, it appears essential to define the first guess for bound

particles upon a stable and reproducible criterion for the subhalo

edge. One cannot extend the (spherical) shells out to the point where

the density drops below some pre-selected multiple of the universal

background density as this level will not be reached anymore; one

needs to ‘truncate’ the object beforehand, usually at the point where

the density rises again due to the fact that the subhalo is embedded

within a host. Similarly, particle-collecting codes which use simple

‘proximity’ as a criterion for grouping particles need to adjust their

yardsticks. However, the situation may be a bit more straightforward

for 6D phase-space finders as we expect the velocity distributions

of the host and the subhalo to be different.

Driven by the explosion of high-quality observational data, sim-

ulations of cosmological structure formation have moved to in-

creasingly high mass and force resolution. The simulation codes

and techniques have been continuously refined over the past few

decades, providing us with methods that are akin yet different: they

all have to solve the collisionless Boltzmann equation simultane-

ously with Poisson’s equation and the equations that govern gas

physics. In order to verify their credibility, the past few years have

seen substantial efforts to intercompare the results stemming from

these different techniques (cf. Frenk et al. 1999; Knebe et al. 2000;

O’Shea et al. 2005; Agertz et al. 2007; Heitmann et al. 2008; Tasker

et al. 2008). However, to date, the literature lacks a quantitative

comparison of the various halo-finding techniques. While some ef-

forts have been directed towards this goal (e.g. Lacey & Cole 1994;

White 2002; Gill et al. 2004; Cohn & White 2008; Knollmann &

Knebe 2009; Lukić et al. 2009; Maciejewski et al. 2009; Tweed

et al. 2009), these studies primarily scratched the surface and no

one has yet presented a conclusive intercomparison based upon a

well-defined test suite. In addition, we would like to stress again

that the analysis of massive state-of-the-art simulations is a non-

trivial task, especially when it comes to the detailed substructure of

the haloes. Furthermore, various definitions of the extent of a halo

exist within the literature, making comparisons of the results from

different groups far from straightforward (cf. White 2001; Lukić

et al. 2009).

We though acknowledge that there is a body of the literature

available that has compared halo-finder methods to theoretical pre-

dictions (e.g. Press & Schechter 1974; Lacey & Cole 1994; Sheth

& Tormen 1999; Jenkins et al. 2001; Robertson et al. 2009; Courtin

et al. 2011). While this is important work, it nevertheless rather
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often leads to halo finders being tuned to match theoretical expec-

tations than testing the validity of the code in the first place; the

theories have sometimes been used to answer ‘what halo definition

is required to match theoretical expectations?’ This may therefore

mask important differences between a simple linear theory and the

full non-linear growth of the structure in the Universe. In this pa-

per, we focus instead on directly comparing different codes for halo

finding and leave theoretical expectations aside.

In summary, there is no clear definition of ‘what is a (dark) mat-

ter halo?’ never mind ‘what is a subhalo?’ Workers in the field of

simulation analysis tend to utilize their own definitions and codes

to study the properties of haloes in cosmological simulations. This

paper aims at rectifying this situation by presenting the first-ever

coherent halo-finder comparison involving a substantial number of

codes as well as providing the community with a well-defined set

of test cases. However, we would like to caution the reader that

the prime objective of this comparison is codes and not algorithms.

Therefore, while certain codes may be based upon the same algo-

rithm, they still may yield (marginally) different results due to the

individual realization of that algorithm.

1.2 The workshop

During the last week of 2010 May, we held the workshop ‘Haloes

going MAD’ in Miraflores de la Sierra close to Madrid, dedicated

to the issues surrounding identifying haloes in cosmological simu-

lations. Amongst other participants, 15 halo-finder representatives

were present. The aim of this workshop was to define (and use!)

a unique set of test scenarios for verifying the credibility and re-

liability of such programs. We applied each and every halo finder

to our newly established suite of test cases and cross-compared the

results.

To date most halo finders were introduced (if at all) in their re-

spective code papers which presented their underlying principles

and subjected them to tests within a full cosmological environment

[primarily matching (sub)halo mass functions to theoretical models

and fitting functions] and hence no general benchmarks such as the

ones designed at the workshop and presented below existed prior to

our meeting. Our newly devised suite of test cases is designed to be

simple yet challenging enough to assist in establishing and gauging

the credibility and functionality of all commonly employed halo

finders. These tests include mock haloes with well-defined prop-

erties as well as a state-of-the-art cosmological simulation. They

involve the identification of individual objects, various levels of

substructure and dynamically evolving systems. The cosmological

simulation has been provided at various resolution levels with the

best resolved containing a sufficient number of particles (10243)

that it can only presently be analysed in parallel.

All the test cases and the analysis presented here is publicly

available from http://popia.ft.uam.es/HaloesGoingMAD under the

tab ‘The Data’.

1.3 How to compare haloes?

One of the most crucial questions to address is obviously ‘how

to define a halo?’ This question is intimately related to ‘how do

we fairly cross-compare the results of the various halo finders?’

While we all agreed that the proper definition of a halo should be

a ‘gravitationally bound object’, how the size of a halo should be

defined proved harder to agree upon. The ‘virial radius’ is not a

well-defined property as its precise definition can (and does) vary

from halo finder to halo finder.1 Furthermore, this quantity is ill-

defined for subhaloes that live within the environment of a host halo.

While there is some work available that allows for a conversion

between commonly applied methods to calculate the mass of an

isolated field halo (see e.g. White 2001; Lukić et al. 2009), such

variations in definition will nevertheless lead to discrepancies in a

cross-comparison and hence we decided to abandon the ambiguous

definition for the edge of a halo and rather focus on a property that

uniquely specifies the halo for the code-comparison project: the

peak of the rotation curve as characterized by vmax and the radial

location of this peak Rmax. It has been argued (e.g. Ascasibar &

Gottlöber 2008) that these quantities do indeed provide a physically

motivated scale for DM haloes, showing that, in contrast to the inner

regions, there is substantial scatter in their physical properties, as

well as significant systematic trends with halo mass and cosmic

epoch, beyond the radius Rmax.

However, utilizing vmax raises two obvious issues: first, as vmax

is reached quite close to the centre of the halo, its measurement is

obviously sensitive to resolution. Secondly, as the value of vmax is set

by the central particles, it is not very sensitive to tidal stripping. The

relationship between Rmax and Rvir for a range of NFW (Navarro et al.

1995, 1996, 1997) halo concentrations is given in fig. 6 of Muldrew,

Pearce & Power (2011). The resolution issue can be addressed by

increasing the number of particles required when studying subhalo

properties so that vmax will always be resolved sufficiently and

credibly. The relevance of the stripping issue though depends upon

the questions to be asked of the simulation data – are we interested

in a (stable) measure of the (original) infall mass of the subhalo or

do we want to quantify the mass inside the tidal radius? For the

comparison project, we decided to evaluate vmax in order to have a

stable quantity. We further agreed that this quantity is better related

to observational data as it is possible to observe rotation curves

(and hence vmax), whereas the same ambiguity applies to observers:

what is the (outer) edge of a halo and/or galaxy? Nevertheless, we

also decided to include Npart (i.e. the total number of gravitationally

bound particles as returned by the respective halo finder) in the

comparison as a halo is (or should be) a gravitationally bound

entity. The values for Npart are the ones directly returned by the halo

finder and are based upon the internal criteria each code uses. How

(and if) to perform the unbinding procedure and what particles to

consider as belonging to the (sub)halo were questions left for each

group taking part to answer as they saw fit. For several groups,

these particle lists would normally be pruned further during an

additional post-processing phase prior to obtaining halo properties.

The numbers given here therefore serve solely as an indicator of

whether or not particles are missing and/or – in case of subhaloes –

belong to the host. In addition, we also used the list of particles

belonging to each halo to calculate a fiducial M200 value [defined

via M(<r)/4πr3 = 200 × ρcrit] considering the object in isolation,

even for subhaloes: there are physical situations – like the dynamical

friction on infalling loose groups (e.g. Read et al. 2008; Lux, Read

& Lake 2010) – where the (total) mass is the physically important

quantity. Such examples of the limitation of the vmax value as a

proxy for mass have also been witnessed in our test cases and we

will come back to it in Section 4.1.3.

The first preliminary comparisons focusing on the spatial loca-

tion, vmax, and the number of bound particles for the static mock

1 We like to add the cautionary remark that a lot of the properties and in

particular any ‘radius’ is based upon the assumption of spherical symmetry

which is not valid for all halo finders presented here.
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haloes indicate that even though there exist a variety of different

approaches for halo finding, most of the codes agree with the known

correct result well. If substructure is located close to the centre of

the host halo, then all the codes tested experience some difficulties

in accurately recovering it, with all the finders based in 3D config-

uration space missing some material. For subhaloes placed near the

very centre of the host halo, the more sophisticated 6D finders based

in phase space – while correctly noting the existence of a substruc-

ture – often overestimated the associated mass due to the confusion

with the material in the host halo. After proving to ourselves that we

could all successfully reproduce the location and scale of a supplied

mock halo, we performed a resolution study where the mass and

hence the number of particles in a subhalo was gradually lowered.

We found that practically all halo finders have a completeness limit

of 30–40 particles; substructure objects smaller than these are not

reliably found. Once we had established a firm baseline for our

comparisons, we extended the study to consider a full cosmological

volume at varying resolution. The results of this comparison are

presented in Section 4 below after we first briefly introduce each

of the halo finders involved in the comparison project in Section 2

and describe the setup of our mock haloes in Section 3. Finally, we

wrap up and present some conclusions in Section 5.

2 TH E C O D E S

In this section, we are going to briefly present the codes that par-

ticipated in the The Halo-Finder Comparison Project. We highlight

their main features allowing for a better understanding of any (pos-

sible) differences in the comparison (Section 4). The prime infor-

mation to be found in each code paragraph should be sufficient to

understand how the algorithm works, how the initial particle con-

tent of a halo is obtained, the way the (sub)halo centre and edge

are calculated, how the unbinding is performed and which method

of parallelization has been applied. Note that not all halo finders

perform an unbinding, are parallelized or suitable to detect sub-

haloes, and we explicitly stress that this section is neither intended

as a review of all available halo finders nor intended as an elaborate

exposition of the partaking codes; for the latter, we refer the reader

to the respective code papers referenced in the subsection of each

halo finder.

As much as possible, the halo finders have been organized in

terms of their methodology: SO finders first followed by FOF-based

finders with 6D phase-space finders last. This applies to both the

presentation in this section and the comparison in Section 4.

2.1 AHF (Knollmann & Knebe)

The MPI+OpenMP parallelized halo finder AHF
2 (AMIGA Halo

Finder, Knollmann & Knebe 2009) is an improvement of the MHF

halo finder (Gill et al. 2004), which employs a recursively refined

grid to locate local overdensities in the density field. The identified

density peaks are then treated as centres of prospective haloes. The

resulting grid hierarchy is further utilized to generate a halo tree

readily containing the information which halo is a (prospective)

host and subhalo, respectively. We therefore like to stress that our

halo-finding algorithm is fully recursive, automatically identifying

haloes, subhaloes, sub-subhaloes, etc. Halo properties are calcu-

lated based on the list of particles asserted to be gravitationally

2
AHF is freely available from http://www.popia.ft.uam.es/AMIGA

bound to the respective density peak. To generate this list of parti-

cles, we employ an iterative procedure starting from an initial guess

of particles. This initial guess is based again upon the adaptive grid

hierarchy: for field haloes we start with considering all particles out

to the isodensity contour encompassing the overdensity defined by

the virial criterion based upon the spherical top-hat collapse model;

for subhaloes, we gather particles up to the grid level shared with

another prospective (sub)halo in the halo tree which corresponds to

the upturn point of the density profile due to the embedding within

a (background) host. This tentative particle list is then used in an

iterative procedure to remove unbound particles: in each step of the

iteration, all particles with a velocity exceeding the local escape

velocity, as given by the potential based on the particle list at the

start of the iteration, are removed. The process is repeated until no

particles are removed anymore. At the end of this procedure, we are

left with bona fide haloes defined by their bound particles and we

can calculate their integral and profiled quantities.

The only parameter to be tuned is the refinement criterion used

to generate the grid hierarchy that serves as the basis for the halo

tree and also sets the accuracy with which the centres are being de-

termined. The virial overdensity criterion applied to find the (field)

halo edges is determined from the cosmological model of the data

though it can readily be tailored to specific needs; for the analysis

presented here, we used 200 × ρcrit. For more details on the mode

of operation and actual functionality, we refer the reader to the

two code-description papers by Gill et al. (2004) and Knollmann &

Knebe (2009), respectively.

2.2 ASOHF (Planelles & Quilis)

The ASOHF finder (Planelles & Quilis 2010) is based on the SO ap-

proach. Although it was originally created to be coupled to an Eule-

rian cosmological code, in its actual version, it is a stand-alone halo

finder capable of analysing the outputs from cosmological simula-

tions, including different components (i.e. DM, gas and stars). The

algorithm takes advantage of an adaptive mesh refinement (AMR)

scheme to create a hierarchy of nested grids placed at different levels

of refinement. All the grids at a certain level, named patches, share

the same numerical resolution. The higher the level of refinement,

the better the numerical resolution, as the size of the numerical

cells gets smaller. The refining criteria are open and can be chosen

depending on the application. For a general purpose, ASOHF refines

when the number of particles per cell exceeds a user-defined param-

eter. Once the refinement levels are set up, the algorithm applies the

SO method independently at each of those levels. The parameters

needed by the code are the following: (i) the cosmological param-

eters when analysing cosmological simulations; (ii) the size of the

coarse cells, the maximum number of refinement levels (N levels) and

the maximum number of patches (Npatch) for all levels in order to

build up the AMR hierarchy of nested grids; (iii) the number of

particles per cell in order to choose the cells to be refined; and (iv)

the minimum number of particles in a halo.

After this first step, the code naturally produces a tentative list

of haloes of different sizes and masses. Moreover, a complete de-

scription of the substructure (haloes within haloes) is obtained by

applying the same procedure on the different levels of refinement.

A second step, not using the cells but the particles within each halo,

makes a more accurate study of each of the previously identified

haloes. These prospective haloes (subhaloes) may include particles

which are not physically bound. In order to remove unbound par-

ticles, the local escape velocity is obtained at the position of each

particle. To compute this velocity, we integrate Poisson equation
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assuming spherical symmetry. If the velocity of a particle is higher

than the escape velocity, the particle is assumed to be unbound and

is therefore removed from the halo (subhalo) being considered. Fol-

lowing this procedure, unbound particles are removed iteratively

along a list of radially ordered particles until no more of them need

to be removed. In the case that the number of remaining particles is

less than a given threshold, the halo is dropped from the list.

After this cleaning procedure, all the relevant quantities for the

haloes (subhaloes) as well as their evolutionary merger trees are

computed. The lists of (bound) particles are used to calculate canon-

ical properties of haloes (subhaloes), like the position of the halo

centre, which is given by the centre of mass of all the bound parti-

cles, and the size of the haloes, given by the distance of the farthest

bound particle to the centre.

The ability of the ASOHF method to find haloes and their substruc-

tures is limited by the requirement that appropriate refinements of

the computational grid exist with enough resolution to spot the

structure being considered. In comparison to algorithms based on

linking strategies, ASOHF does not require a linking length to be de-

fined, although at a given level of refinement the size of the cell can

be considered as the linking length of this particular resolution.

The version of the code used in this comparison is serial, although

there is already a first parallel version based on OpenMP.

2.3 BDM (Klypin & Ceverino)

The BDM (Bound Density Maxima) halo finder originally described

in Klypin & Holtzman (1997) uses a spherical 3D overdensity al-

gorithm to identify haloes and subhaloes. It starts by finding the

local density at each individual particle position. This density is

defined using a top-hat filter with a constant number of particles,

Nfilter, which typically is Nfilter = 20. The code finds all maxima of

density, and for each maximum it finds a sphere containing a given

overdensity mass M� = (4π/3)�ρcrR
3
�, where ρcr is the critical

density and � is the specified overdensity.

For the identification of distinct haloes, the code uses the density

maxima as halo centres; amongst overlapping spheres the code

finds the one that has the deepest gravitational potential. Haloes are

ranked by their (preliminary) size, and their final radius and mass

are derived by a procedure that guarantees the smooth transition

of properties of small haloes when they fall into a larger host halo

becoming subhaloes: this procedure assigns either R� or Rdist as the

radius for a currently infalling halo, depending on the environmental

conditions, where Rdist measures the distance of the infalling halo

from the surface of the soon-to-be host halo.

The identification of subhaloes is a more complicated procedure:

centres of subhaloes are certainly density maxima, but not all density

maxima are centres of subhaloes. BDM eliminates all density maxima

from the list of subhalo candidates which have less than Nfilter self-

bound particles. For the remaining set of prospective subhaloes,

the radii are determined as the minimum of the following three

distances: (i) the distance from the nearest barrier point [i.e. centres

of previously defined (sub)haloes]; (ii) the distance from its most

remote bound particle; and (iii) the truncation radius (i.e. the radius

at which the average density of bound particles has an inflection

point). This evaluation involves an iterative procedure for removing

unbound particles and starts with the largest density maximum.

The unbinding procedure requires the evaluation of the gravita-

tional potential which is found by first finding the mass in spherical

shells and then by integration of the mass profile. The binning is

done in log radius with a very small bin size of �log (R) = 0.005.

The bulk velocity of either a distinct halo or a subhalo is defined

as the average velocity of the 30 most bound particles of that halo

or of all particles, if the number of particles is less than 30. The

number 30 is a compromise between the desire to use only the

central (sub)halo region for the bulk velocity and the noise level.

The code uses a domain decomposition for MPI parallelization

and OpenMP for the parallelization inside each domain.

2.4 PSO (Sutter & Ricker)

The PSO (parallel spherical overdensity) halo finder is a fast, highly

scalable MPI-parallelized tool directly integrated into the FLASH sim-

ulation code that is designed to provide on-the-fly halo finding for

use in subgrid modelling, merger tree analysis and AMR schemes

(Sutter & Ricker 2010). The PSO algorithm identifies haloes by grow-

ing SO spheres. There are four adjustable parameters controlling the

desired overdensity criteria for centre detection and halo size, the

minimum allowed halo size, and the resolution of the halo radii rel-

ative to the grid resolution. The algorithm discovers halo centres by

mapping DM particles on to the simulation mesh and selecting cell

centres where the cell density is greater than the given overdensity

criterion. The algorithm then determines the halo edge using the

SO radius by collecting particles using the FLASH AMR tree hierar-

chy. The algorithm determines the halo centre, bulk velocity, mass

and velocity dispersion without additional post-processing. PSO is

provided both as an API for use in-code and as a stand-alone halo

finder.

2.5 LANL (Lukić, Fasel & Hsu)

The LANL halo finder is developed to provide on-the-fly halo analysis

for simulations utilizing hundreds of billions of particles and is

integrated into the MC
3 code (Habib et al. 2009), although it can

also be used as a stand-alone halo finder. Its core is a fast kD-tree

FOF halo finder which uses 3D (block), structured decomposition to

minimize the surface-to-volume ratio of the domain assigned to each

process. As it is aimed at large-scale structure simulations (100+
Mpc h−1 on the side), where the size of any single halo is much

smaller than the size of the whole box, it uses the concept of ‘ghost

zones’ such that each process gets all the particles inside its domain

as well as those particles which are around the domain within a

given distance (the overload size, a code parameter chosen to be

larger than the size of the biggest halo we expect in the simulation).

After each process runs its serial version of a FOF finder, MPI-based

‘halo stitching’ is performed to ensure that every halo is accounted

for, and accounted for only once.

If desired, spherical ‘SO’ halo properties can be found using

the FOF haloes as a proxy. Those SO haloes are centred at the

particle with the lowest gravitational potential, while the edge is at

R� – the radius enclosing an overdensity of �. It is well known

that percolation-based FOF haloes suffer from the overbridging

problem; therefore, if we want to ensure the completeness of our

SO sample, then we should run the FOF algorithm with a smaller

linking length than usual in order to capture all density peaks, but

still avoid overbridging at the scale of interest (which depends on our

choice of �). Overlapping SO haloes are permitted, but the centre

of one halo may not reside inside another SO halo (that would

be considered as a substructure, rather than a ‘main’ halo). The

physical code parameters are the linking length for the FOF haloes

and overdensity parameter � for SO haloes. Technical parameters

are the overload size and the minimum number of particles in a

halo.
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The LANL halo finder is being included in the standard distribu-

tions of the PARAVIEW
3 package, enabling researchers to combine

the analysis and visualization of their simulations. A substructure

finder is currently under development.

2.6 SUBFIND (Iannuzzi, Springel & Dolag)

SUBFIND (Springel et al. 2001a) identifies gravitationally bound, lo-

cally overdense regions within an input parent halo, traditionally

provided by a FOF group finder, although other group finders could

be used in principle as well. The densities are estimated based on

the initial set of all particles via adaptive kernel interpolation based

on a number Ndens of smoothing neighbours. For each particle, the

nearest Nngb neighbours are then considered for identifying local

overdensities through a topological approach that searches for sad-

dle points in the isodensity contours within the global field of the

halo. This is done in a top-down fashion, starting from the parti-

cle with the highest associated density and adding particles with

progressively lower densities in turn. If a particle has only denser

neighbours in a single structure, then it is added to this region. If

it is isolated, then it grows a new density peak, and if it has denser

neighbours from two different structures, an isodensity contour that

traverses a saddle point is identified. In the latter case, the two in-

volved structures are joined and registered as candidate subhaloes

if they contain at least Nngb particles. These candidates, selected

according to the spatial distribution of particles only, are later pro-

cessed for gravitational self-boundness. Particles with positive total

energy are iteratively dismissed until only bound particles remain.

The gravitational potential is computed with a tree algorithm, such

that large haloes can be processed efficiently. If the number of

the remaining bound number of particles is at least Nngb, then the

candidate is ultimately recorded as a subhalo. The set of initial

substructure candidates forms a nested hierarchy that is processed

inside out, allowing the detection of substructures within substruc-

tures. However, a given particle may only become a member of one

substructure, that is, SUBFIND decomposes the initial group into a set

of disjoint self-bound structures. Particles not bound to any genuine

substructure are assigned to the ‘background halo’. This component

is also checked for self-boundness, so that some particles that are

not bound to any of the structures may remain. For all substructures

as well as the main halo, the particle with the minimum gravita-

tional potential is adopted as (sub)halo centre. For the main halo,

SUBFIND additionally calculates a SO virial mass around this centre,

taking into account all particles in the simulation (i.e. not just those

in the FOF group that are analysed). There exist both serial and

MPI-parallelized versions of SUBFIND, which implement the same

underlying algorithm. For more details, we refer the reader to the

paper by Springel et al. (2001a).

2.7 FOF (Gottlöber & Turchaninov)

In order to analyse large cosmological simulations with up to 20483

particles, we have developed a new MPI version of the hierarchical

FOF algorithm with low memory requests. It allows us to construct

very fast clusters of particles at any overdensity (represented by

the linking length) and to deduce the progenitor–descendant rela-

tionship for clusters in any two different time-steps. The particles

in a simulation can consist of different species (DM, gas, stars)

of different mass. We consider them as an undirected graph with

3 http://www.paraview.org/

positive weights, namely the lengths of the segments of this graph.

For simplicity, we assume that all weights are different. Then, one

can show that a unique minimal spanning tree (MST) of the point

distribution exists, namely the shortest graph which connects all

points. If subgraphs cover the graph, then the MST of the graph

belongs to the union of MSTs of the subgraphs. Thus, subgraphs

can be constructed in parallel. Moreover, the geometrical features

of the clusters, namely the fact that they occupy mainly almost

non-overlapping volumes, allow the construction of fast parallel

algorithms. If the MST has been constructed, all possible clus-

ters at all linking lengths can be easily determined. To represent

the output data, we apply topological sorting to the set of clusters

which results in a cluster-ordered sequence. Every cluster at any

linking length is a segment of this sequence. It contains the dis-

tances between adjacent clusters. Note that for the given MST there

exist many cluster-ordered sequences which differ in the order of

the clusters but yield the same set of clusters at a desired linking

length. If the set of particle clusters has been constructed, further

properties (centre of mass, velocity, shape, angular momentum, ori-

entation, etc.) can be directly calculated. Since this concept is by

construction aspherical, a circular velocity (as used to characterize

objects found with SO algorithms) cannot be determined here. The

progenitor–descendant relationship is calculated for the complete

set of particles by comparison of the cluster-ordered sequences at

two different output times.

The hierarchical FOF algorithm identifies objects at different

overdensities depending on the chosen linking length (More et al.

2011). In order to avoid artificial misidentifications of subhaloes

on high overdensities, one can add an additional criterion. Here we

have chosen the requirement that the spin parameter of the subhalo

should be smaller than one. All subhaloes have been identified at 512

times the virial overdensity. Thus, only the highest density peak has

been taken into account for the mass determination and the size of

the object, which are therefore underestimated. The velocity of the

density peak is estimated correctly but without removing unbound

particles.

2.8 PFOF (Rasera & Roy)

PFOF (Parallel FOF) is a MPI-based parallel FOF halo finder which is

used within the DEUS Consortium4 at the Laboratory Universe and

Theories. It has been parallelized by Roy and was used in several

studies involving large N-body simulations such as Courtin et al.

(2011) and Rasera et al. (2010). The principle is the following: first,

particles are distributed in cubic subvolumes of the simulation and

each processor deals with one ‘cube’ and runs the FOF algorithm

locally. Then, if a structure is located close to the edge of a cube,

PFOF checks if there are particles belonging to the same halo in the

neighbouring cube. This process is carried out iteratively until all

haloes extending across multiple cubes have been merged. Finally,

particles are sorted on a per halo basis, and the code writes two

kinds of output: particles sorted per region and particles sorted per

halo. This makes any post-processing straightforward because each

halo or region can be analysed individually on a single CPU server.

PFOF was successfully tested on up to 4096 Bluegene/P cores with

a 20483 particle N-body simulation. In this paper, the serial version

was used for mock haloes and small cosmological simulations, and

the parallel version for larger runs. The linking length was set to

b = 0.2 (however, see Courtin et al. 2011, for a discussion on the

4 www.deus-consortium.org
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halo definition) and the minimum halo mass to 100 particles; the

halo centres reported here are the centre of mass of the respective

particle distribution.

2.9 NTROPY-FOFSV (Gardner, McBride & Stinson)

The Ntropy parallel programming framework is derived from N-

body codes to help address a broad range of astrophysical prob-

lems.5 This includes an implementation of a simple but efficient

FOF halo finder, NTROPY-FOFSV, which is more fully described in

Gardner et al. (2007a) and Gardner et al. (2007b). Ntropy provides

a ‘distributed shared memory’ implementation of a kD-tree, where

the application developer can reference tree nodes as if they exist in

a global address space, even though they are physically distributed

across many compute nodes. Ntropy uses the kD-tree data structures

to speed up the FOF distance searches. It also employs an imple-

mentation of the Shiloach & Vishkin (1982) parallel connectivity

algorithm to link together the haloes that span separate processor

domains. The advantage of this method is that no single computer

node requires the knowledge of all of the groups in the simulation

volume, meaning that NTROPY-FOFSV is scalable to petascale plat-

forms and handles large data input. This algorithm was used in

the mock halo test cases to stitch together particle groups found

across many threads into the one main FOF halo. As FOF is a

deterministic algorithm, NTROPY-FOFSV takes a single physical link-

ing length to group particles into FOF haloes without performing

any particle unbinding or subhalo identification. The halo centres

for the analysis presented here use centre-of-mass estimates based

on the FOF particle list. Ntropy achieves parallelization by calling

the ‘machine-dependent library’ that consists of high-level opera-

tions such as ‘acquire_treenode’ or ‘acquire_particle’. This library

is rewritten for a variety of models (MPI, POSIX Threads, Cray

SHMEM, etc.), allowing the framework to extract the best perfor-

mance from any parallel architecture on which it is run.

2.10 VOBOZ (Neyrinck)

Conceptually, a VOBOZ (VOronoi BOund Zones, Neyrinck et al.

2005) halo or subhalo is a density peak surrounded by gravitation-

ally bound particles that are down steepest density gradients from

the peak. A statistical significance is measured for each (sub)halo,

based on the probability that Poisson noise would produce it.

The only physical parameter in VOBOZ is the density threshold

characterizing the edge of (parent) haloes (set to 200 times the mean

density here), which typically only affects their measured masses.

To return a definite halo catalogue, we also impose a statistical-

significance threshold (set to 4σ here), although depending on the

goal of a study, this may not be necessary.

Density peaks are found using a Voronoi tessellation (paralleliz-

able by splitting up the volume), which gives an adaptive, parameter-

free estimate of each particle’s density and a set of neighbours (e.g.

Schaap & van de Weygaert 2000). Each particle is joined to the

peak particle (whose position is returned as the halo centre) that

lies up the steepest density gradient from that particle. A halo as-

sociated with a high-density peak will also contain smaller density

peaks. The significance of a halo is judged according to the ratio

of its central density to a saddle point joining the halo to a halo

with a higher central density, comparing to a Poisson point process.

Pre-unbinding (sub)halo boundaries are defined along these density

ridges.

5 http://www.phys.washington.edu/users/gardnerj/ntropy

Unbinding evaporates many spurious haloes and often brings

other halo boundaries inwards a bit, reducing the dependence on the

outer density contrast. Particles not gravitationally bound to each

halo are removed iteratively, by comparing their potential energies

(measured as sums over all other particles) to kinetic energies with

respect to the velocity centroid of the halo’s core (i.e. the particles

that directly jump up density gradients to the peak). The unbinding

is parallelized using OpenMP. In the cosmological test, we remove

haloes with fewer than 20 particles from the VOBOZ halo list.

2.11 ORIGAMI (Falck, Neyrinck & Aragon-Calvo)

ORIGAMI (Order-ReversIng Gravity Apprehended Mangling Indices,

Falck et al., in preparation) uses a natural, parameter-free defini-

tion of the boundary between haloes and the non-halo environment

around them: halo particles are particles that have experienced shell-

crossing. This dynamical definition does not make use of the density

field, in which the boundary can be quite ambiguous. In 1D, shell-

crossings can be detected by looking for pairs of particles whose

positions are out-of-order compared with their initial positions. In

3D, then, a halo particle is defined as a particle that has undergone

shell-crossings along three orthogonal axes. Similarly, this would

be two axes for a filament, one for a wall and zero for a void. There

is a huge number of possible sets of orthogonal axes in the initial

grid to use to test for shell-crossing, but we only used four simple

ones, which typically suffice to catch all the shell-crossings. We

used the Cartesian x-, y- and z-axes, as well as the three sets of axes

consisting of one Cartesian axis and two (45◦) diagonal axes in the

plane perpendicular to it.

Once halo particles have been tagged, there are many possible

ways of grouping them into haloes. For this paper, we grouped them

on a Voronoi tessellation of final-conditions particle positions. This

gives a natural density estimate [e.g. Schaap & van de Weygaert

2000; Voronoi Tessellation Field Estimator (VTFE)] and a set of

neighbours for each particle. Haloes are sets of halo particles con-

nected to each other on the Voronoi tessellation. To prevent haloes

from being unduly linked, we additionally require that a halo con-

tains at most one halo ‘core’, defined as a set of particles connected

on the tessellation that all exceed a VTFE density threshold. This

density threshold is the only parameter in our algorithm, since the

initial tagging of halo particles is parameter-free; for this study, we

set it to 200 times the mean density. We partition connected groups

of halo particles with multiple cores into haloes as follows: each core

iteratively collects particles in concentric rings of Voronoi neigh-

bours until all halo particles are associated. The tagging procedure

establishes halo boundaries, so no unbinding procedure is neces-

sary. Also, we note that, currently, the algorithm does not identify

subhaloes. We remove haloes with fewer than 20 particles from the

ORIGAMI halo catalogue, and the halo centre reported is the position

of the halo’s highest density particle.

Note that due to its nature ORIGAMI is only applicable to cosmo-

logical simulations and hence only enters the comparison project

in the respective Section 4.2.

2.12 SKID (Stadel & Potter)

SKID (Spline Kernel Interpolative Denmax),6 first mentioned in

Governato et al. (1997) and extensively described in Stadel (2001),

6 The OpenMP parallelized version of SKID can be freely downloaded from

http://www.hpcforge.org
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finds density peaks within N-body simulations and subsequently de-

termines all associated bound particles, thereby identifying haloes.

It is important to stress that SKID will only find the smallest scale

haloes within a hierarchy of haloes as is generally seen in cosmo-

logical structure formation simulations. Unlike original DENMAX

(Bertschinger & Gelb 1991; Gelb 1992) which used a fixed grid

based density estimator, SKID uses smoothed particle hydrodynam-

ics (SPH) kernel averaged densities which are much better suited to

the Lagrangian nature of N-body simulations and allow the method

to locally adapt to the large dynamic range found in cosmological

simulations.

Particles are slowly slid (each step moving the particles by a

distance of the order of the softening length in the simulation)

along the local density gradient until they pool at a maximum, each

pool corresponding to each initial group. This first phase of SKID

can be computationally very expensive for large simulations, but is

also quite robust.

Each pool is then ‘unbound’ by iteratively evaluating the binding

energy of every particle in their original positions and then removing

the most non-bound particle until only bound particles remain. This

removes all particles that are not part of substructure either because

they are part of larger scale structure or because they are part of the

background.

SKID can also identify structure composed of gas and stars in

hydrodynamical simulations using the DM only for its gravitational

binding effect. The ‘Haloes going MAD’ meeting has motivated

the development of an improved version of the algorithm capable

of also running on parallel computers.

2.13 ADAPTAHOP (Tweed & Colombi)

The code ADAPTAHOP is described in appendix A of Aubert et al.

(2004). The first step is to compute an SPH density for each particle

from the 20 closest neighbours. Isolated haloes are then described

as groups of particles above a density threshold ρ t, where this pa-

rameter is set to 80, which closely matches results of a FOF group

finder with parameter b = 0.2. To identify subhaloes within those

groups, local density maxima and saddle points are detected. Then,

by increasing the density threshold, it is a simple matter to decom-

pose haloes into nodes that are either density maxima or groups of

particles whose density is between two values of saddle points. A

node structure tree is then created to detail the whole structure of

the halo itself. Each leaf of this tree is a local density maximum and

can be interpreted as a subhalo. However, further post-processing

is needed to define the halo structure tree, describing the host halo

itself, its subhaloes and subhaloes within subhaloes. This part of

the code is detailed in Tweed et al. (2009); the halo structure tree

is constructed so that the halo itself contains the most massive lo-

cal maximum (Most massive Sub maxima Method, MSM). This

method gives the best result for isolated snapshots, as used in this

paper.

In more detail, ADAPTAHOP needs a set of seven parameters. The

first parameter is the number of neighbours nnei used with a kD-

tree scheme in order to estimate the SPH density. Among these nnei

neighbours, the nhop closest are used to sweep through the density

field and detect both density maxima and saddle points. As pre-

viously mentioned, the parameter ρ t sets the halo boundary. The

decomposition of the halo itself into leaves that are to be redefined

as subhaloes has to fulfil certain criteria set by the remaining four pa-

rameters. The most relevant is the statistical significance threshold,

set via the parameter fudge, defined via (〈ρ〉−ρt)/ρt > f udge/
√

N ,

where N is the number of particles in the leaves. The minimal mass

of a halo is limited by the parameter nmembers, the minimum number

of particles in a halo. Any potential subhalo has also to respect

two conditions with respect to the density profile and the minimal

radius, through the parameters α and f ǫ . These two values ensure

that a subhalo has a maximal density ρmax such as ρmax > α〈ρ〉 and

a radius greater than f ǫ times the mean interparticle distance. We

used the following set of parameters (nnei = nhop = 20, ρ t = 80,

fudge = 4, α = 1, f ǫ = 0.05 and nmembers = 20). It is important to

understand that all nodes are treated as leaves and must comply with

aforementioned criteria before being further decomposed into sep-

arate structures. As for defining haloes and subhaloes themselves,

this is done by grouping linked lists of particles corresponding to

different nodes and leaves from the node structure tree. Further, the

halo and subhalo centres are defined as the positions of the particle

with the highest density. The halo edge corresponds to the ρ t density

threshold, whereas the saddle points define the subhalo edge.

Note that ADAPTAHOP is a mere topological code that does not fea-

ture an unbinding procedure. For substructures (whose boundaries

are chosen from the saddle point value), this may have impact on

the estimate of the mass as well as lead to the contamination by host

particles.

2.14 HOT (Ascasibar)

This algorithm, still under development, computes the Hierarchical

Overdensity Tree (HOT; Ascasibar, in preparation) of a point dis-

tribution in an arbitrary multidimensional space. HOT is introduced

as an alternative to the MST for spaces where a metric is not well

defined, like the phase space of particle positions and velocities.

The method is based on the Field Estimator for Arbitrary Spaces

(FIESTAS, Ascasibar & Binney 2005). First, the space is tessellated

1D at a time, until it is divided into a set of hypercubical cells

containing exactly one particle. Particles in adjacent cells are con-

sidered as neighbours. Then, the mass of each point is distributed

over an adaptive smoothing kernel as described in Ascasibar (in

preparation), which provides a key step in order to define a metric.

In the HOT+FIESTAS scheme, objects correspond to the peaks of the

density field, and their boundaries are set by the isodensity contours

at the saddle points. At each saddle point, the object containing

less particles is attached to the most massive one, which may then

be incorporated into even more massive objects in the hierarchy.

This idea can be implemented by computing the MST of the data

distribution, defining the distance between two neighbouring parti-

cles as the minimum density along an edge connecting them (i.e.

the smallest of the two densities, or the density of the saddle point

when it exists). However, this is not practical for two reasons. First,

defining a path between two particles is not trivial when a metric

is not available. Secondly, finding the saddle points would require

a minimization along the path, which is extremely time-consuming

when a large number of particles are involved. These problems may

be overcome if the distance between two data points is given by the

average density within the hyperbox they define.

Once the distances are defined in this way, HOT+FIESTAS com-

putes the MST of the data distribution by means of Kruskal’s al-

gorithm (Kruskal 1956). The output of the algorithm consists of

the tree structure, given by the parent of each data point in HOT,

and a catalogue containing an estimate of the centroid (given by

the density-weighted centre of mass) as well as the number of par-

ticles in the object (both including and excluding substructures).

In order to discard spurious density fluctuations, a minimum num-

ber of points and density contrast are required for an object to

be output to the catalogue. Currently, these parameters are set to
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N > 20 particles and a contrast threshold ρpeak/ρbackground > 5.

Although these values seem to yield reasonable results, more ex-

perimentation is clearly needed.

In this work, the algorithm is applied to the particle positions only

(HOT3D) as well as the full set of phase-space coordinates (HOT6D).

Since it is intended as a general data analysis tool, not particularly

optimized for the problem of halo identification, it should not (and

does not) take into account any problem-specific knowledge such as

the concepts of binding energy or virial radius. The latter quantity,

as well as the maximum circular velocity, has been computed from

the raw particle IDs returned by the code.

The definition of object boundaries in terms of the saddle points

of the density field will have a relatively mild impact on the results

concerning the mock haloes, but it is extremely important in the

cosmological case. HOT+FIESTAS will, for instance, identify large-

scale filamentary structures that are not considered haloes by any

of the other algorithms (although many of these objects are indeed

gravitationally bound).

On the other hand, keeping unbound particles will be an issue for

subhaloes close to the centre of their host, especially in 3D, and a

post-processing7 script will be developed to perform this task.

Note that due to its present implementation HOT is not yet ap-

plicable to cosmological simulations and hence only enters the

comparison project in the mock halo Section 4.1.

2.15 HSF (Maciejewski)

HSF (Hierarchical Structure Finder, Maciejewski et al. 2009) identi-

fies objects as connected self-bound particle sets above some density

threshold. This method consists of two steps. Each particle is first

linked to a local DM phase-space density maximum by follow-

ing the gradient of a particle-based estimate of the underlying DM

phase-space density field. The particle set attached to a given maxi-

mum defines a candidate structure. In a second step, particles which

are gravitationally unbound to the structure are discarded until a

fully self-bound final object is obtained.

In the initial step, the phase-space density and phase-space gra-

dients are estimated by using a 6D SPH smoothing kernel with a

local adaptive metric as implemented in the ENBID code (Sharma &

Steinmetz 2006). For the SPH kernel, we use Nsph between 20 and

64 neighbours, whereas for the gradient estimate, we use Nngb = 20

neighbours.

Once phase-space densities have been calculated, we sort the

particles according to their density in descending order. Then, we

start to grow structures from high to low phase-space densities.

While walking down in density we mark for each particle the two

closest (according to the local phase-space metric) neighbours with

higher phase-space density, if such particles exist. In this way, we

grow disjoint structures until we encounter a saddle point, which

can be identified by observing the two marked particles and seeing

if they belong to different structures. A saddle point occurs at the

border of two structures. According to each structure mass, all the

particles below this saddle point can be attached to only one of

the structures if it is significantly more massive than the other one,

or redistributed between both structures if they have comparable

masses. This is controlled by a simple but robust cut or grow cri-

terion depending on a connectivity parameter α which is ranging

from 0.2 up to 1.0. In addition, we test on each saddle point if struc-

tures are statistically significant when compared to Poisson noise

7
HOT3D does not even read particle velocities.

(controlled by a β parameter). At the end of this process, we obtain

a hierarchical tree of structures.

In the last step, we check each structure against an unbinding

criterion. Once we have marked its more massive partner for each

structure, we sort them recursively such that the larger partners

(parents) are always after the smaller ones (children). Then, we

unbind structure after structure from children to parents and add

unbound particles to the larger partner. If the structure has less than

Ncut = 20 particles after the unbinding process, then we mark it as

not bound and attach all its particles to its more massive partner (note

that a smaller Ncut is used for the resolution study in Section 4.1.4).

The most bound particle of each halo/subhalo defines its position

centre.

Although HSF can be used on the entire volume, to speed up the

process of the identification of the structures in the cosmological

simulation volume, we first apply the FOF method to disjoint the

particles into smaller FOF groups.

2.16 6DFOF (Zemp & Diemand)

6DFOF is a simple extension of the well-known FOF method which

also includes a proximity condition in velocity space. Since the

centres of all resolved haloes and subhaloes reach a similar peak

phase-space density, they can all be found at once with 6DFOF. The

algorithm was first presented in Diemand et al. (2006). The 6DFOF

algorithm links two particles if the condition

(x1 − x2)2

�x2
+

(v1 − v2)2

�v2
< 1 (1)

is fulfilled. There are three free parameters: �x, the linking length

in position space, �v, the linking length in velocity space, and

Nmin, the minimum number of particles in a linked group so that

it will be accepted. For �v → ∞, it reduces to the standard FOF

scheme. The 6DFOF algorithm is used for finding the phase-space

coordinates of the high phase-space density cores of haloes on all

levels of the hierarchy and is fully integrated in parallel within the

MPI and OpenMP parallelized code PKDGRAV (Stadel 2001).

The centre position and velocity of a halo are then determined

from the linked particles of that halo. For the centre position of a

halo, one can choose between the following three types: (i) the centre

of mass of its linked particles; (ii) the position of the particle with

the largest absolute value of the potential among its linked particles;

or (iii) the position of the particle which has the largest local mass

density among its linked particles. For the analysis presented here,

we chose type (iii) as our halo centre position definition. The centre

velocity of a halo is calculated as the centre-of-mass velocity of

its linked particles. Since in 6DFOF only the particles with a high

phase-space density in the very centre of each halo (or subhalo) are

linked together, it explains the somewhat different halo velocities

(compared to the other halo finders) and slightly offset centres in

cases where only a few particles were linked.

Other properties of interest (e.g. mass, size or maximum of the

circular velocity curve) and the hierarchy level of the individual

haloes are then determined by a separate profiling routine in a post-

processing step. For example, a characteristic size and mass-scale

definition (e.g. r200c and M200c) for field haloes based on traditional

SO criteria can be specified by the user. For subhaloes, a trunca-

tion scale can be estimated as the location where the mass density

profile reaches a user-specified slope. During the profiling step, no

unbinding procedure is performed. Hence, the profiling step does

not base its (sub)halo properties upon particle lists but rather on
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spherical density profiles. Therefore, 6DFOF directly returned halo

properties instead of the (requested) particle ID lists.

2.17 ROCKSTAR (Behroozi)

ROCKSTAR is a new phase-space-based halo finder designed to max-

imize halo consistency across time-steps; as such, it is especially

useful for studying merger trees and halo evolution (Behroozi et al.,

in preparation). ROCKSTAR first selects particle groups with a 3D

FOF variant with a very large linking length (b = 0.28). For each

main FOF group, ROCKSTAR builds a hierarchy of FOF subgroups

in phase space by progressively and adaptively reducing the linking

length, so that a tunable fraction (70 per cent, for this analysis) of

particles are captured at each subgroup as compared to the imme-

diate parent group. For each subgroup, the phase-space metric is

renormalized by the standard deviations of the particle position and

velocity, that is, for two particles p1 and p2 in a given subgroup, the

distance metric is defined as

d(p1, p2) =
[

(x1 − x2)2

σ 2
x

+
(v1 − v2)2

σ 2
v

]1/2

, (2)

where σ x and σ v are the particle position and velocity dispersion,

respectively, for the given subgroup. This metric ensures an adap-

tive selection of overdensities at each successive level of the FOF

hierarchy.

When this is complete, ROCKSTAR converts FOF subgroups into

haloes beginning at the deepest level of the hierarchy. For a subgroup

without any further sublevels, all the particles are assigned to a

single seed halo. If the parent group has no other subgroups, then

all the particles in the parent group are assigned to the same seed

halo as the subgroup. However, if the parent group has multiple

subgroups, then particles are assigned to the subgroups’ seed haloes

based on their phase-space proximity. In this case, the phase-space

metric is set by halo properties, so that the distance between a halo

h and a particle p is defined as

d(h, p) =
[

(xh − xp)2

r2
vir

+
(vh − vp)2

σ 2
v

]1/2

, (3)

where rvir is the current virial radius of the seed halo and σ v is the

current particle velocity dispersion. This process is repeated at all

levels of the hierarchy until all particles in the base FOF group have

been assigned to haloes. Unbinding is performed using the full par-

ticle potentials (calculated using a modified Barnes & Hut method,

Barnes & Hut 1986); halo centres are defined by averaging parti-

cle positions at the FOF hierarchy level which yields the minimum

estimated Poisson error – which in practice amounts to averaging

positions in a small region close to the phase-space density peak.

For further details about the unbinding process and for details about

the accurate calculation of halo properties, see Behroozi et al. (in

preparation).

ROCKSTAR is a massively parallel code (hybrid OpenMP/MPI

style); it can already run on up to 105 CPUs and on the very largest

simulations (>1010 particles). Additionally, it is very efficient, re-

quiring only 56 bytes of memory per particle and 4–8 (total) CPU

hours per billion particles in a simulation snapshot. The code is in

the final stages of development; as such, the results in this paper are

a minimum threshold for the performance and accuracy of the final

version.8

8 Those interested in obtaining a copy of the code as well as a draft of

the paper should contact the author at behroozi@stanford.edu. The current

acceptable input formats for simulation files are ART, GADGET-2 and ASCII.

3 TH E DATA

In order to study, quantify and assess the differences between vari-

ous halo-finding techniques, we, first, have to define a unique set of

test cases. In that regard, we decided to split the suite of comparisons

into two major parts:

(i) well-defined mock haloes consisting of field haloes in isola-

tion as well as (sub-)subhaloes embedded within the density back-

ground of larger entities; and

(ii) a state-of-the-art cosmological simulation primarily focusing

on the large-scale structure.

We further restricted ourselves to analysing DM-only data sets as

the inclusion of baryons (especially gas and its additional physics)

will most certainly complicate the issue of halo finding. As most of

the codes participating in this comparison project do not consider

gas physics in the process of object identification, we settled for

postponing such a comparison to a later study.

We further adopted the following strategy for the comparison. For

the mock haloes, each code was asked to return a list of particles

and the centre of the (sub)halo as derived from applying the halo

finder to the respective data set. These centres and particle lists were

then post-processed by one single code deriving all the quantities

studied below. By this approach we aimed at homogenizing the

comparison and eliminating subtle code-to-code variations during

the analysis process. However, we also need to acknowledge that

not all codes complied with this request as they were not designed

to return particle lists; those codes nevertheless provided the halo

properties in question and are included in the comparison.

For the comparison of the cosmological simulations, each code

merely had to return those halo properties to be studied, based upon

each and every code individually. The idea was to compare the actual

performance of the codes in a realistic setup without interference in

the identification/analysis process.

3.1 Mock haloes

In order to be able to best quantify any differences in the results re-

turned by different halo finders, it is best to construct test scenarios

for which the correct answer is known in advance. Even though we

primarily aim at comparing vmax and the number of gravitationally

bound particles, we also want to have full control over various defi-

nitions of, for instance, virial mass, that is, we require haloes whose

density profile is well known. Additionally, as subhalo detection is

of prime interest in state-of-the-art cosmological simulations, we

also place haloes within haloes within haloes, and so on. Further,

sampling a given density profile with particles also gives us the flex-

ibility to study resolution effects related to the number of particles

actually used.

We primarily used the functional form for the (DM) density

profile of haloes originally proposed in a series of papers by Navarro,

Frenk & White (Navarro et al. 1995, 1996, 1997), the so-called

‘NFW profile’:

ρ(r)

ρcrit

=
δc

r/rs(1 + r/rs)2
, (4)

where ρcrit is the critical density of the universe, rs is the scale radius

and δc is the characteristic density. NFW haloes are characterized

by their mass for a given enclosed overdensity,

M� =
4π

3
r3
��ρcrit, (5)

where � is a multiple of the critical density that defines the mag-

nitude of the overdensity and r� is the radius at which this occurs.
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Table 1. The properties of the (sub)haloes for the study of recovered halo properties presented in Sections 4.1.1 and 4.1.2. The

number of particles Nxxx counts all particles out to Rxxx where the density drops below xxx × ρcrit. Masses are given in h−1 M⊙,

radii in h−1 kpc and velocities in km s−1. Note that all haloes have been sampled out to 2 × R100 and that the Plummer sub-subhalo

does not reach this overdensity and has been truncated at 23.9 h−1 kpc. The halo type indicates whether the halo is a host, a subhalo

or a sub-subhalo. Rs is the scalelength of the appropriate halo type.

Profile Type N100 M100 R100 N200 M200 R200 Rs vmax

NFW Host 106 1014 947.4 760 892 7.61 × 1013 689.1 189.5 715

Sub 104 1012 204.1 8066 8.07 × 1011 151.4 17.0 182

Sub-sub 102 1010 44.0 84 8.42 × 109 33.1 2.6 43

Plummer Host 106 1014 947.0 966 326 9.66 × 1013 760.5 190.0 961

Sub 104 1012 204.0 9937 9.94 × 1011 161.7 17.0 314

Sub-sub 102 1010 23.9 100 10.00× 109 23.9 2.6 79

The characteristic density is then defined as

δc =
�

3

c3

ln(1 + c) − c/(1 + c)
, (6)

where c = r�/rs is the concentration. The mock haloes were gen-

erated by using a predefined number of particles that reproduced

the NFW profile even though the consensus has moved away from

the statement that DM haloes follow this particular profile all the

way down to the centre. We are not interested in probing those very

central regions where the density profile starts to deviate from the

NFW form as found nowadays in cosmological simulations (Stadel

et al. 2009; Navarro et al. 2010). We need to stress that the po-

sition and size of the maximum of the rotation curve is in fact

unaffected in all tests presented here. The velocities of the particles

were then assigned using the velocity dispersion given in Łokas &

Mamon (2001) and distributed using a Maxwell–Boltzmann func-

tion (Hernquist 1993).9

In addition to mock haloes whose density profile is based upon the

findings in cosmological simulations (at least down to those scales

probed here), we also chose to generate test haloes that follow a

Plummer profile (Plummer 1911),

ρ(r) =
3M

4πr3
s

(

1 +
r2

r2
s

)−5/2

, (7)

where M is the total mass and rs is the scale radius. The mock haloes

were then produced again using a pre-defined number of particles to

reproduce the profile, but this time the velocities were obtained using

an isotropic, spherically symmetric distribution function (Binney &

Tremaine 1987). The two major differences between the Plummer

and the NFW density profile are that for the former profile the mass

converges and it contains a well-defined constant-density core. This

constant density may pose problems for halo finders as most of them

rely on identifying peaks in the density field as (potential) sites for

DM haloes. We stress that the Plummer spheres are intended as

academic problems with no observed counterpart in cosmological

simulations and hence only to be taken lightly and for information

purposes; they may be viewed as a stability test for halo finders

and as a trial how sensitive halo characteristics are against precise

measurements of the centre. We will see that some properties can

9 We are aware of that the velocity distribution is not derived from the full

distribution function and that the Maxwell–Boltzmann distribution is only

an approximation (cf. Kazantzidis, Magorrian & Moore 2004; Zemp et al.

2008). Despite this, it will have no effect on the ability of halo finders to

recover the haloes as has been shown in Muldrew et al. (2011) where also

more details about the generation of the mock haloes can be found.

still be stably recovered even if an incorrect determination of the

Plummer halo centre is made.

As we also plan to study the accurate recovery of substructure, we

generated setups where one (or multiple) subhaloes are embedded

within the density profile of a larger host halo. To this end, we

generate, for instance, two haloes in isolation: one of them (the

more massive one) will then serve as the host, whereas the lighter

one will be placed inside at a known distance from the centre of

its host and with a certain (bulk) velocity. The concentrations (i.e.

the ratio between the virial and the scale radii) have been chosen in

order to meet the findings of cosmological simulations (e.g. Bullock

et al. 2001). All our mock haloes are set up with fully sampled 6D

initial phase-space distributions and every halo (irrespective of it

becoming a host or a subhalo) has been evolved in isolation for

several Gyr in order to guarantee equilibrium. The mass of all

particles in both the host halo and the subhalo is identical and all

haloes have been sampled with particles out to 2 × R100, where R100

marks the point where the density drops below 100 × ρcrit. For more

details of the procedure and the generation of the NFW haloes, we

would like to refer the reader to Muldrew et al. (2011) and Read

et al. (2006), respectively.

The characteristics of the haloes are summarized in Table 1. We

are aware of the fact that even though the radius at which the en-

closed overdensity reaches some defined level is well defined for

our subhaloes when they were generated in isolation, such a defini-

tion becomes obsolete once they are placed inside a host. However,

we nevertheless need to acknowledge that such a definition may

serve as a fair basis for the comparisons of the recovery of subhalo

properties amongst different halo finders.

Further, placing an unmodified subhalo at an arbitrary radial

distance within a parent halo is also in part an academic exercise.

It neglects that ‘real’ subhaloes will always be tidally truncated.

In that regard, it is not realistic to have an extended/untruncated

subhalo at small distances to the host’s centre. Some halo finders

(e.g. SUBFIND) rely on the tidal truncation in order to be able to avoid

a very large radially dependent bias in the amount of mass that can

be recovered for a subhalo.

For each of the two types of density profiles, we generated the

following setups:

(i) isolated host halo;

(ii) isolated host halo + subhalo at 0.5Rhost
100 ;

(iii) isolated host halo + subhalo at 0.5Rhost
100 + subsubhalo at

(0.5Rhost
100 + 0.5Rsubhalo

100 ); and

(iv) isolated host halo + five subhaloes at various distances.

The (sub-)subhaloes were placed along the x-axis and given radi-

ally infalling bulk velocities of 1000 km s−1 for the subhalo and
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Table 2. The properties of the subhaloes for the NFW resolution

study presented in Section 4.1.4. Radii are given in h−1 kpc and

velocities in km s−1.

N100 Ntot R100 vmax Rvmax

10 13 20.41 18.24 3.68

20 27 25.72 22.99 4.62

30 41 29.44 26.31 5.30

40 55 32.40 28.96 5.85

50 68 34.90 31.20 6.30

100 137 43.98 39.31 7.93

500 687 75.20 67.21 13.55

1000 1375 94.74 84.68 17.08

1200 km s−1 for the sub-subhalo. These velocities are typical for

what you would expect in a DM host halo and were set to round

numbers to make the analysis easier; their values were motivated

by
√

2GMhost(<D)/D, where D is the distance of the subhalo from

the host’s centre.

The first three setups were used to study the overall recovery

of (sub)halo properties presented in Section 4.1.1. The fourth test

has been used to study the radial dependence of subhalo properties

introduced in Section 4.1.2.

Besides the recovery of (sub)halo properties, we also aim at

answering the question ‘how many particles are required to find a

subhalo?’ To this end, we systematically lowered the number of

particles (and hence also the subhalo mass as our particle mass

remains constant) used to sample the subhalo listed above as test

case # 2. The properties of these mock subhaloes are summarized

in Table 2 and the results will be shown in Section 4.1.4.

Besides these well-controlled tests, we also performed a so-called

‘Blind Test’ where the precise setup of the data to be analysed by

each halo finder was unknown to the participants. We introduce

this particular experiment alongside its results in a stand-alone Sec-

tion 4.1.5. Only a small subset of the halo finders took part in this

trial.

We close this section with a cautionary remark that not all halo

finders are ab initio capable of identifying subhaloes and hence

some of the test cases outlined here were not performed by all the

finders. Therefore, some of the codes only contribute data points

for the host halo in Section 4.

3.2 Cosmological simulation

The cosmological simulation used for the halo-finder code com-

parison project is the so-called MareNostrum Universe which was

performed with the entropy-conserving GADGET-2 code (Springel

2005). It followed the non-linear evolution of structures in gas and

DM from z = 40 to the present epoch (z = 0) within a comoving

cube of side 500 h−1 Mpc. It assumed the spatially flat concordance

cosmological model with the following parameters: the total matter

density 
m = 0.3, the baryon density 
b = 0.045, the cosmological

constant 
� = 0.7, the Hubble parameter h = 0.7, the slope of the

initial power spectrum n = 1 and the normalization σ 8 = 0.9. Both

components, the gas and the DM, were resolved by 10243 particles,

which resulted in a mass of mDM = 8.3 × 109 h−1 M⊙ for the DM

particles and mgas = 1.5 × 109 h−1 M⊙ for the gas particles. For

more details, we refer the reader to Gottlöber & Yepes (2007) that

describes the simulation and presents results drawn from it.

For the comparison presented here, we discarded the gas parti-

cles as not all halo finders yet incorporate a proper treatment of

gas physics in their codes. The focus here lies with the DM struc-

tures. However, to avoid that too many particles will be considered

‘unbound’ (for those halo finders that perform an unbinding proce-

dure), the masses of the DM particles have been corrected for this,

that is, mcorrected
DM = mDM/(1 − fb), where f b = 
b/
m is the cosmic

baryon fraction of our model universe.

In order to allow non-parallel halo finders to participate in this

test, we degraded the resolution from the original 10243 particles

down to 5123 as well as to 2563 particles. The properties to be

compared will, however, be drawn from the highest resolved data set

for each individual halo finder, making the appropriate mass/number

cuts when producing the respective plots.

3.3 Code participation

Not all codes have participated in all the tests just introduced and

outlined. Hence, in order to facilitate an easier comparison of the

results and their relation to the particular code, we provide in Table 3

an overview of the tests and the halo finders participating in them. In

that regard, we also list for the cosmological simulation the respec-

tive resolution of the data set analysed by each code. The last two

columns simply indicate whether the code performs an unbinding

procedure and provided subhalo properties, respectively.

4 TH E C O M PA R I S O N

This section forms the major part of this paper as it compares the

halo catalogues derived with various halo finders when applied to

the suite of test scenarios introduced in the previous section. We first

address the issue of the controlled experiments brought forward in

Section 4.1 followed by the analysis of the cosmological simulation

introduced in Section 4.2. As already mentioned before, we are

solely addressing DM haloes, leaving the inclusion of baryonic

matter (especially gas) for a later study.

4.1 Mock haloes

Before presenting the results of the cross-comparison, we need to

explain further the actual procedures applied. Each data set was

given to the respective code representative asking them to return the

centre of each object found as well as a list of the (possible) particles

belonging to each (sub)halo. A single code using only that particu-

lar list was then used to derive the bulk velocity Vbulk, the (fiducial)

mass M200 and the peak of the rotation curve, vmax, in order to elim-

inate differences in the determination of said values from code to

code, or, in other words, we did not aim at comparing how different

codes calculate, for instance, vmax or M200 and so eliminated that

issue. This simple analysis routine is also available from the project

website. We were aiming at answering the more fundamental ques-

tion ‘which particles may or may not belong to a halo?’ according

to each code. However, not all representatives returned particle lists

as requested (due to a different method or technical difficulties) but

rather directly provided the values in question; those codes are BDM,

FOF and 6DFOF. Further, FOF did not provide values for vmax.

When comparing results, we primarily focused on fractional dif-

ferences to the theoretical values by calculating �x/xModel = (xcode −
xModel)/xModel, where x is the halo property in question.

4.1.1 Recovery of host and subhalo properties

For all the subsequent analyses and the plots presented in this

subsection, we used the setups (i) through (iii) specified in Sec-

tion 3.1. In that regard, we have three host haloes (one for the
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Table 3. Brief summary of the codes participating in the comparison project. The first six columns provide a synopsis of the respective tests the code participated

in (columns 2–7). The last two columns simply list whether the code performs an unbinding procedure and provided subhalo properties, respectively.

Code Participation in the test Unbinding Subhaloes

Recovery Radial dependence Dynamical infall Resolution Blind Cosmology

AHF Yes Yes Yes Yes Yes 10243 Yes Yes

ASOHF Yes Yes Yes Yes Yes 2563 Yes Yes

BDM Yes Yes Yes Yes Yes 5123 Yes Yes

PSO Only host No No No Only host 10243 No No

LANL Only host No No No No 10243 No No

SUBFIND Yes Yes Yes Yes Yes 10243 Yes Yes

FOF Yes Yes Yes Yes No 10243, no vmax No Limited

PFOF Only host No No No No 5123 No No

NTROPY-FOFSV Only host No No No No 10243, no vmax No No

VOBOZ Yes Yes No Yes Yes 5123 Yes Yes

ORIGAMI No No No No No 5123 Yes No

SKID Yes Yes Yes Yes Yes 10243 Yes Yes

ADAPTAHOP Yes Yes Yes Yes Yes 5123 No Yes

HOT Yes Yes Yes Yes Yes No No Yes

HSF Yes Yes Yes Yes Yes 10243 Yes Yes

6DFOF Yes Yes Yes Yes Yes 10243 No Yes

ROCKSTAR Yes Yes Yes Yes No 10243 Yes Yes

host alone, one from the host+subhalo setup and one from the

host+subhalo+subsubhalo configuration); we further have two sub-

haloes at our disposal (one from the host+subhalo and one from

the host+subhalo+subsubhalo tests) as well as one subsubhalo.

In all the figures presented below, the origin of the halo is indi-

cated by the size of the symbol: the largest symbol refers to the

host+subhalo+subsubhalo set with the symbol size decreasing in

the order of the host+subhalo towards the host test alone. We further

always show the results for the NFW mock haloes in the left-hand

panel and for the Plummer spheres in the right-hand panel. As much

as possible, the halo finders have been organized in terms of their

methodology: SO finders first followed by FOF-based finders with

6D phase-space finders last.

Centre determination. We start with inspecting the recovery of

the position of the haloes as practically all subsequent analyses

as well as the properties of haloes depend on the right centre de-

termination. The results can be viewed in Fig. 2 where the y-axis

Figure 2. The offset of the actual and recovered centres for the NFW

(left-hand panel) and Plummer (right-hand panel) density mock haloes. The

symbols refer to either the host halo, subhalo or subsubhalo as indicated,

while the symbol size indicates the test sequence as detailed in the text (i.e.

larger symbols for haloes containing more subhaloes).

represents the halo finder and the x-axis measures the offset between

the actual position and the recovered centre in h−1 kpc.

We can clearly see differences for all sorts of comparisons: host

haloes versus (sub-)subhaloes, NFW versus Plummer model, and –

of course – amongst halo finders. While for the NFW density pro-

file the deviations between the analytical and recovered centres are

for the majority of haloes and codes below ≈5 h−1 kpc, there are

nevertheless some outliers. For the large halo, the 100th particle

is 3 h−1 kpc from the nominal centre. These outliers are primarily

for the FOF-based halo finders which are using a centre of mass

rather than a density peak as the centre. However, for a perfectly

spherically symmetric setup as the one used here, the differences

between the centre of mass and density peak should be small. Some

of the finders (PSO, LANL, PFOF, NTROPY-FOFSV) were not designed

to find substructure and so do not return the locations for these.

Interestingly, HOT6D cannot detect the NFW sub-subhalo. The situ-

ation is a bit different for the Plummer model that consists of a flat

density profile inwards from the scale radius of 190 h−1 kpc. While

the centre offset for the FOF finders remains the same, we now

also observe a shift towards larger offset values for the majority of

the other codes; some codes were even unable to locate the host

halo at all (e.g. SKID), while other finders marginally improved their

(sub)halo centre determination (AHF, ASOHF, HOT3D). Remember that

for 6DFOF all positions and velocities were solely determined from

the linked particles, which explains the slightly offset centres in

cases where only a few particles were linked (as in the case of the

Plummer sphere which had an artificial low phase-space density

by construction) as well as the somewhat different bulk velocities

(when compared to the other halo finders below).

Halo bulk velocity. A natural follow-up to the halo centre is to

ask for the credibility of the bulk velocity of the halo. Errors in this

value would indicate the contamination from particles not belonging

to the halo in question to be studied in greater detail in Section 4.1.4

below. In our test data, the host is always at rest, whereas the subhalo

(sub-subhalo) flies towards the centre with 1000 (1200) km s−1

along the negative x-direction. The fractional difference between

the model velocity and the bulk velocity as measured for each halo

finder is presented in Fig. 3. Note that we have normalized the host’s

velocities to the rotational velocity at R100, that is, ≈1000 km s−1,
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Figure 3. Recovery of halo bulk velocities in comparison to the analytical

input values for the NFW (left-hand panel) and Plummer (right-hand panel)

density mock haloes. Note that the host halo has been set up to be at rest

with vbulk = 0. The symbols have the same meaning as in Fig. 2.

Figure 4. Total number of particles recovered for the (sub)halo for the NFW

(left-hand panel) and Plummer (right-hand panel) density mock haloes with

respect to the number of particles within M200. The symbols have the same

meaning as in Fig. 2.

for the two density profiles. Here we find that for practically all

halo finders, the error in the bulk velocity is smaller than 3 per

cent; only some outliers exist. Note that we used all particles in the

determination of the bulk velocities as returned/recovered by the

respective halo finder. SKID displays very significant contamination

in the recovered subhaloes with a 40 per cent error in the recovered

bulk velocity but is also one of the codes whose returned particle

lists are intended to undergo significant post-processing. ADAPTAHOP

and HOT3D have smaller but still significant levels of contamination

within the returned substructures. The marginal offset in the bulk

velocities of the Plummer host haloes for 6DFOF and BDM is directly

related to the respective centre offsets seen in Fig. 2: those two

codes base their bulk velocities on particles in the central regions.

Number of particles. In Fig. 4, we are comparing the number of

particles recovered by each halo finder to the number of particles

within M200 listed in Table 1.10 We are aware that there is no such

well-defined radius for (sub-)subhaloes, but it nevertheless provides

a well-defined base to compare against.

10 Note that in all subsequent plots, we are using N200 when referring to

Nmodel.

Figure 5. M200 mass (as determined from the supplied particle lists) mea-

sured according to the mean enclosed density being 200 × ρcrit criterion for

the NFW (left-hand panel) and Plummer (right-hand panel) density mock

haloes extracted from each finder’s list of gravitationally bound particles.

The symbols have the same meaning as in Fig. 2.

We observe that while the errors are at times substantial for the

NFW model the Plummer results appear to be more robust this

time. However, this is readily explained by the form of the applied

density profile: the variations in mass and hence in the number of

particles are more pronounced for the NFW profile than for the

Plummer model when changing the (definition of the) edge of a

halo or, in other words, the total mass of a Plummer model is well

defined, whereas the mass of an NFW halo diverges. Therefore,

(minor) changes and subtleties in the definition of the other edge of

a (sub)halo will lead to deviations from the analytically expected

value – at least for the NFW model. To this extent we also need

to clarify that each halo finder had been asked to return that set

of particles that was believed to be part of a gravitationally bound

structure; participants were not asked to return the list of particles

that make up M200. Post-processing of the supplied particle lists to

apply this criterion results in errors for the NFW profiles that are

well below 10 per cent – at least for the host haloes (cf. Fig. 5

below). However, a straight comparison of the number of recovered

particles amongst the codes reveals a huge scatter. This is due to the

fact that the individual codes are tuned to different criteria to define

the edge of the halo. Clearly, some codes (HSF, HOT, VOBOZ) have

been tuned to extract an effectively smaller overdensity for this test

than, say, 6DFOF, LANL, PSO or AHF. This is a well-known issue and

all code developers are well aware of it. Perhaps more concerning

is the wide scatter in the relative mass of the largest subhalo. Here

M200 is ill-determined but the ratio of the substructure mass to the

host halo mass displays a wide scatter. This ratio is of astrophysical

importance for several issues.

The difference in a host halo seen for FOF and PFOF is – in gen-

eral – due to the choice of a linking length not corresponding to

200 × ρcrit. However, with an appropriate linking length the FOF

algorithm detects the halo at the desired overdensity correctly as

can be seen for the host-only and host+subhalo data for which

there is agreement with the analytical expectation as opposed to

the host+subhalo+subsubhalo where the standard linking length

has been applied and hence the number of particles (and mass) is

overestimated. As a (down)tuned linking length has also been uti-

lized for the detection of the (positions of the) subhaloes, the higher

overdensity encompassed naturally led to a smaller number of par-

ticles (and masses) than assumed in the model.

C© 2011 The Authors, MNRAS 415, 2293–2318

Monthly Notices of the Royal Astronomical Society C© 2011 RAS



2308 A. Knebe et al.

Again, we stress that Fig. 4 does not necessarily reflect the num-

ber of particles actually used to calculate halo properties; it is the

raw number of (bound) particles assigned to the centre of the re-

spective (sub)halo and used for further post-processing with most

of the codes. However, the comparison also indicates that neither

the number of particles nor M as defined by some overdensity cri-

terion (see below) is a stable quantity for a fair comparison; this

is why we argue in favour of the peak of the rotation curve for

cross-comparison as already highlighted in the Introduction.

Mass. Using the particle lists provided by each halo finder, we

extract each object and calculate the density profile. From this we

determine the point where it drops below 200 × ρcrit. This point can

then be used as a radial distance within which to define M200 which

is then compared against the theoretical expectation (cf. Table 1) in

Fig. 5. Again, we acknowledge that this is not the correct definition

for the (sub-)subhalo mass, but can regardlessly be used to compare

halo finders amongst themselves.

As already outlined in the previous paragraph, the differences

to the analytical values (and between the codes) are substantially

alleviated, now that differences in the definition for the edge of

each halo have been removed. The apparent underestimation of the

(sub-)subhalo masses has also to be taken and digested carefully as

the M200 values are based upon objects in isolation when these are

embedded in a large host halo. However, recall that the values for

BDM, FOF and 6DFOF are based upon their respective criteria as these

codes did not return particle lists but directly M200.

Amongst those codes that did recover subhaloes and underwent

the same processing scheme, there remains a surprisingly wide vari-

ation in the recovered subhalo mass M200. Almost all the codes stud-

ied here post-process their subhalo catalogues heavily to alleviate

this problem. We would, however, stress that the precise definition

for a subhalo content can, as demonstrated, lead to a range of re-

covered subhalo masses, a point users of subhalo catalogues should

be well aware of. We will return to the issue of the missing subhalo

mass in Section 4.1.3 below, which provides some explanation for

the variation.

Maximum of the rotation curve. As outlined in Section 1.3,

M200 does not provide a fair measure for the (sub-)subhalo mass

and hence we consider the maximum circular velocity vmax as a

proxy for mass. The fractional difference between the theoretically

derived vmax and the value based upon the particles returned by each

halo finder is plotted in Fig. 6. While we now find a considerably

Figure 6. Recovery of numerical vmax values in comparison to the analytical

input values for the NFW (left-hand panel) and Plummer (right-hand panel)

density mock haloes. The symbols have the same meaning as in Fig. 2.

improved agreement with the analytical calculation, the sub-subhalo

has still not been recovered correctly in most of the cases. This

result is entirely in line with the results of fig. 7 of Muldrew et al.

(2011) where the error in measuring vmax for a range of particle

numbers was calculated: we should not be surprised by a 10 per

cent underestimate for our subsubhalo as this is well within the

expected limits.

4.1.2 Radial dependence of subhalo properties

The following test aims at studying how the recovered properties of

a subhalo change as a function of the distance from the centre of the

subhalo to the centre of its host. We always placed the same subhalo

(sampled with 10 000 particles) at various distances and applied

each halo finder to this test scenario, without changing the respective

code parameters in between the analyses. We then focused our

attention on the number of gravitationally bound particles in Fig. 7,

the recovered M200 masses in Fig. 8 and the maximum of the rotation

curve in Fig. 9.

We reiterate that this particular test (as well as the following two)

is only suited to halo finders that are able to identify the substruc-

ture embedded within the density profile of a larger encompassing

object. Therefore, some of the codes will not appear in this and

the following tests in Sections 4.1.3 and 4.1.4. However, we also

need to acknowledge that some of the code developers were keen

Figure 7. Number of particles belonging to the subhalo for the NFW (upper

panel) and Plummer (lower panel) density mock haloes as a function of the

subhalo distance from the host.
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Figure 8. Hypothetical M200 value comparison to the NFW (upper panel)

and Plummer (lower panel) subhalo as a function of the distance from the

host. M200 was calculated again considering the recovered particles N (as

presented in Fig. 7) in isolation.

to participate in this venture and manually tuned their halo finders

to (at least) provide a centre and possibly mass estimate for the

subhalo under investigation (e.g. FOF by Gottlöber & Turachninov

systematically lowered their linking length until an object had been

found using the spin parameter as a measure for credibility (cf.

Section 2.7); however, as FOF in its basic implementation does not

perform any unbinding, they did not dispense particle lists and/or

internal properties). Therefore, the results for FOF are to be taken

lightly and with care.

Number of particles. Aside from the location of the substructure,

which we are not investigating in more detail in this particular

subsection, the number of particles recovered by each halo finder

is the first quantity to explore as a function of the subhalo distance.

The results can be viewed in Fig. 7 with the NFW mock halo in the

upper panel and the Plummer sphere in the lower. Recall that there

are five subhaloes placed at various distances from the centre of the

host with the closest one actually overlapping with the host centre.

As expected from the above results of the previous section (which

equate to the middle position of these five haloes), various halo

finders recover a range of the number of particles within the halo.

Only the phase-space-based finders are capable of disentangling

the subhalo when it is directly at the centre. Even then their particle

recovery indicates that either there are too few particles associated

with the subhalo or they found the host. We further observe that, at

Figure 9. Recovery of numerical vmax values in comparison to the analytical

input values for the NFW (upper panel) and Plummer (lower panel) density

mock haloes as a function of the subhalo distance from the host.

least for the NFW haloes, the number of recovered particles drops

the closer we get to the centre. This is naturally explained by the

fact that the density contrast of the subhalo becomes smaller and

the point where the host halo’s density takes over is closer to the

centre of the subhalo. This is another reflection of the fact that the

number of particles (or anything based upon a measure of the ‘halo

edge’) is not a good proxy for the actual subhalo. The situation

is obviously different for the Plummer sphere with no pronounced

density rise towards the centre; therefore, the subhalo appears to

be well recovered in this case. For the low number of particles

recovered by SUBFIND, we refer the reader to an improved discussion

and investigation, respectively, in Muldrew et al. (2011).

In any case, these are still simply the particle lists; we continue

to check the (hypothetical) M200 values as well as the recovery of

the maximum of the rotation curve. When defining a (hypothetical)

M200 value, considering the subhalo in isolation, we find basically

the same trends as for the number of particles. This can be verified

in Fig. 8 where we observe the same phenomena as in Fig. 7. How-

ever, SKID is the exception with the M200 values closer to the actual

model mass across all distances than to the number of particles,

as expected and as they themselves would obtain during their own

post-processing steps.

We note that the discrepancy between the (fiducial) mass and the

real mass of the subhalo placed at different radial distances from

the centre is more serious in this idealized setup than it would be
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in a realistic situation, where the substructures would experience

tidal truncation in moving towards the inner regions of the halo (see

the discussion in Section 3.1 as well as the study of the dynamical

subhalo infall in Section 4.1.3 below); when considering the mass

within the tidal truncation radius, the discrepancy between the ‘real’

and recovered mass would reduce.

Maximum of the rotation curve. The most credible measure of the

subhalo mass, however, appears to be the maximum of the rotation

curve: it hardly changes its value, irrespective of the position inside

the host halo as can be seen in Fig. 9. All halo finders perform

equally well in recovering the vmax value from the list of particles

used in Fig. 7. This then indicates that the only difference between

the halo finders as seen as a substantial spread in (the upper panel

of) Fig. 7 stems from the outer and less-well-contrasted regions of

the subhalo.

We have seen in Section 4.1.1 that the maximum of the rotation

curve, vmax, serves as an adequate proxy for mass and hence we

test its sensitivity to the radial position in Fig. 9. We find that this

quantity is, as expected, hardly affected by the actual position of the

subhalo within the host. Its value is determined by the more central

regions of the subhalo and hence does not change if the object is

truncated in the outskirts due to the embedding within the host’s

background density field. Only when the two centres of the subhalo

and the host halo overlap do we encounter problems again; however,

HOT6D and HSF even master this situation fairly well (at least for the

more realistic NFW test scenario).

4.1.3 Dynamical infall of a subhalo

The test described and analysed in this subsection is a dynamic

extension of the previously studied radial distance test: we throw

a subhalo (initially sampled with 10 000 particles inside M100) into

a host halo two orders of magnitude more massive. It was initially

placed at a distance of D = 3×Rhost
100 with a radially inward velocity

of v =
√

2GM(<D)/D = 686 km s−1 and then left to free fall.

During the temporal integration of this system with GADGET-2, the

cosmological expansion was turned off so the haloes were only

affected by gravity. The orbit of the subhalo takes it right through

the host halo centre, exiting on the other side. Due to the tidal forces,

the subhalo will lose mass and we aim at quantifying how different

halo finders recover both the number of (bound) particles as well as

the evolution of the peak rotational velocity.

Evolution in the number of particles. In Fig. 10, we start again

with the number of recovered particles, this time as a function of

time measured in Gyr since the infalling object passed 2×Rhost
200 . Note

that the fractional difference �N/Nmodel is measured with respect to

the number of particles, Nmodel, prior to infall and that the analysis

has only been performed over a certain number of output snapshots

and not every integration step. At the starting point, we observe

again the same scatter in the number of particles as already found in

Fig. 7.11 Until the passage through the very centre of the host halo

after approximately 1.8 Gyr, we also find the expected drop in the

number of particles due to the stripping of the subhalo; however, as

noted in Fig. 7, part of this drop can also be attributed to the subhalo

moving deeper into the dense region of the host. This drop in the

particle number has a marginally different shape depending on the

halo finder. However, this time, actually, all halo finders (expect

11 However, when comparing Fig. 7 with Fig. 10 one needs to bear in

mind that the radial dependence of subhalo properties only extends out to

≈1.37 × Rhost
200 , whereas the first data point in Fig. 10 is for 2 × Rhost

200 .

Figure 10. Temporal evolution of the number of particles belonging to the

subhalo for the dynamical infall study.

most of the phase-space finders, cf. Fig. 12 shown below) do lose

the subhalo when it overlaps with the host halo – or at least are

unable to determine its properties at that time (e.g. 6DFOF actually

found the objects but could not assign the correct particles to it as the

search radius for ‘subhalo membership’ was practically zero). After

the passage through the centre, all halo finders identify the object

again with more particles yet obviously not reaching the original

level anymore.

However, we also like to mention that after the core transition

of the subhalo we expect to find a more or less constant set of

particles that remain bound to the subhalo: as the radial distance

increases again there is no reason for the subhalo to lose additional

mass. It seems clear that the majority of structure finders agree on

this plateau value, but there are also some that return an unphysical

result in this regime (e.g. both HOT codes as well as 6DFOF in the

early phases).

Note again that none of the FOF-based halo finders is ab ini-

tio designed to locate substructure, but the FOF results have been

included as this code was manually tuned to locate subhaloes (cf.

Section 4.1.2).

Evolution of the maximum of the rotation curve. As we have

already seen before a number of times, the number of particles has

to be used with care as the actual halo properties will be based upon

them, but the list has undeniably to be pruned and/or post-processed.

We therefore present in Fig. 11 again the evolution of the maximum

of the rotation curve which focuses on the more central regions of

the subhalo and its particles. Here, we can undoubtedly see that all

halo finders perform equally well (again): they all start with a value

equal to the analytical input value and have dropped by the same

amount, once the subhalo has left the very central regions again.

However, the majority of the codes (except SUBFIND, HSF and SKID)

found a sharp rise in vmax right after the central passage.

To gain better insight into this region, we show in Fig. 12 a zoom

into the time-frame immediately surrounding the central passage,

this time though using the distance (as measured by the respective

halo finder) from the host centre as the x-axis. We attribute part of

this rise to an inclusion of host particles in the subhalo’s particle list

to be studied in greater detail below in Section 4.1.4; we can see
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Figure 11. Temporal evolution of the maximum of the rotation curve for

the dynamical infall study.

Figure 12. The maximum of the rotation curve for the dynamical infall

study as a function of the distance (as measured by the halo finder) from the

centre of the host – zooming into the region about the centre.

that codes having problems with such contamination appear to show

this rise too – even though not all of the codes showing this rise are

amongst the list of finders showing contamination. However, this

rise is also (or maybe even more) indicative of problems with the

unbinding procedure: particles which have just left the subhalo (and

are then part of the host) may still be considered bound, depending

on the particulars of the halo finder. For instance, AHF assumes a

spherically symmetric object during the unbinding process which

is obviously not correct for an object heavily elongated by the

strong tides during the central passage. However, one should also

bear in mind that a rise in vmax also occurs when the subhalo gets

(tidally) compressed and hence Rmax is lowered (cf. Dekel, Devor &

Hetzroni 2003) even though this has not been seen in all (controlled)

experiments of this kind (e.g. Hayashi et al. 2003; Klimentowski

et al. 2009).

Finally, we point out that the x-axis is based upon the distance

to the host centre as measured by each individual halo finder and it

is rather obvious that all halo finders have recovered (more or less)

the same distance for the subhalo.

4.1.4 Resolution study of a subhalo

While we have seen that there is little variation of the most stable

subhalo properties with respect to the distance from the host (i.e.

vmax), we now investigate the number of particles required to (cred-

ibly) identify a subhalo. To this extent we used setup (ii) from the

list in Section 3.1 where we placed a single subhalo into a host halo

at half the host’s M100 radius. But this time we gradually lowered

its mass and number of particles (keeping the mass of an individual

particle constant). Even though it is meaningless to talk about R200

radii for subhaloes again, we are nevertheless comparing the num-

ber of gravitationally bound particles, as returned by the respective

halo finder, with the number of particles inside the subhaloes’ R200

radius; remember that the subhaloes were generated in isolation and

sampled out to two times their M100 radius (cf. Section 3.1).

Number of particles. The results of this resolution study can

be viewed in Fig. 13 where we plot the fractional difference in

the number of particles within R200 against the number of particles

in the subhalo. In this figure, there are two important things to

note and observe: (i) the end-point of each curve (towards lower

particle numbers) marks the point where the respective halo finder

was no longer able to identify the object; and (ii) a constant line

(irrespective of being above, on top or below the 0-line) means that

for each particle number the error in the determination is equal.

Again, practically all halo finders perform equally well, that is, they

recover the input number of particles with a constant error across all

values. Only the two HOT algorithms show a strong deviation due to

the lack of an unbinding procedure. It is also interesting to compare

the (inner) end-point of the curves marking the number of particles

Figure 13. Fractional difference between the number of particles within

the recovered R200 and the number of particles belonging to the halo as

returned by the respective halo finder versus the number of particles inside

the subhalo.
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for which a certain code stopped finding the subhalo: all of them

were still able to identify the object with 50 particles. HSF and SKID

actually went all the way down to 10 particles with VOBOZ, 6DFOF and

ROCKSTAR stopping at 20 particles, and AHF at 30. We need to stress

that codes were asked not to alter their technical parameters while

performing this resolution study and hence some may in fact be able

to recover objects with a lower number of particles than presented

here. For instance, we are aware of that SUBFIND (as well as AHF and

ASOHF) is capable of going all the way down to 20 particles, if the

technical parameters are adjusted appropriately.

In any case, we also observe that some codes show a rise in

�N/Nmodel towards lower particle numbers (e.g. ADAPTAHOP, HOT);

could this be due to the contamination from host halo particles? We

will study this phenomenon in the following subsection.

Contamination by host particles. Downsizing a subhalo yet still

trying to pinpoint it also raises the question how many of the re-

covered particles are actually subhalo and how many are host halo

particles. We are in the unique situation to know the IDs of both

the subhalo and the host halo and hence studied the ‘contamination’

of the subhalo with host particles as a function of the number of

(theoretical) subhalo particles in Fig. 14. We can see that the vast

majority of the halo finders did not assign any host particles to the

subhalo. However, some halo finders appear to have picked up a

fraction of host particles possibly leading to differences in the sub-

halo properties such as vmax investigated next. Note that the high

contamination for ADAPTAHOP is due to the lack of an unbinding

procedure.

Maximum of the rotation curve. As the number of particles is

merely a measure for the cross-performance of halo finders and not

(directly) related to credible subhalo properties, we also need to

have a look at vmax again. The fractional error as a function of the

(theoretical) number of subhalo particles is plotted in Fig. 15. We

note that aside from those halo finders who showed a contamination

by host particles, all codes recover the theoretical maximum of

the rotation curve down to the limit of their subhalo’s visibility

(although possibly the last data point for the lowest number of

particles should be discarded in that regard).

Figure 14. Fraction of host’s particles identified to be part of the subhalo

as a function of particles inside the subhalo.

Figure 15. Fractional difference between the theoretical maximum of the

rotation curve and the numerically derived maximum versus the theoretical

maximum for the subhalo.

4.1.5 The ‘Blind Test’

Aside from the mock haloes analysed before, we also designed a

particular test where none of the participants had foreknowledge of

what it contained; only Stuart Muldrew, who generated all the mock

haloes, knew the setup that is summarized in Table 4 where the type

‘Host’ refers to the host halo and ‘Sub’ refers to a subhalo. We

dubbed this individual test the ‘Blind Test’. Note that some of the

subhalo’s density profiles in this test followed a Hernquist model

(Hernquist 1990, marked ‘Hern’ in the table) instead of the NFW

profile. Further, two haloes were deliberately placed at the same

location yet with diametrically opposed velocities.

As this test more or less marked the end of the workshop and

was primarily considered a fun exercise, we did not include it in

the actual data set presented in Section 3.1. Note that not all halo

finders participated and that we did not give the players in the game a

chance to tune their code parameters to the data set. Nevertheless we

decided to simply show visual impressions of those who returned

results in Fig. 16. There we merely show the projections of the

(fiducial) R200 and Rvmax radii in the x–y plane as the z-coordinate

of all haloes is identical.

It is interesting to note that the phase-space halo finders were

again capable of locating the two overlapping subhaloes even though

this is not clearly visible in the projection (as their circles are ob-

viously overlapping). Of the 3D finders, SKID noted that there was

something odd at that position, returning one object with double

Table 4. Summary of the haloes in the Blind Test. Positions are given in

h−1 Mpc and velocities in km s−1.

Type N100 x y z vx vy vz Profile

Host 106 50 50 50 0 0 0 NFW

Sub 104 50.5 50 50 −103 0 0 NFW

Sub 104 50.5 50 50 103 0 0 NFW

Sub 104 49.5 50 50 103 0 0 Hern

Sub 102 50 49.8 50 103 103 0 NFW

Sub 102 50 50.2 50 0 −103 0 Hern
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Figure 16. Visual impression of the ‘Blind Test’ (projection into the x–y plane). Each halo found is represented by a circle with a radius equal to the fiducial

R200 value (solid black) and the Rvmax value (dashed red).

the mass (and Rvmax extending out to the outer radius). All other

halo finders only found one of the two subhaloes. Also remember

that PSO is not (yet) designed to find subhaloes and hence only the

host has been returned. It is further remarkable that none of the halo

finders had trouble finding the two small subhaloes while the host

had not been found for some of the codes.

Again, we would like to stress that this test should not be taken

too seriously. However, we nevertheless remark that analysing a

cosmological simulation is also a sort of ‘blind’ analysis as the

answer is not previously known.

4.2 Cosmological simulation

We now turn to the comparison of a real cosmological simulation

including a substantial number of objects formed and embedded

within the large-scale structure of the Universe.

However, even though the simulation contains a large number

of particles (i.e. up to 10243 in the highest resolved data set), the

given volume of side length 500 h−1 Mpc does not allow for a

study of subhaloes in detail: for the fiducial 5123 particle run the

largest object in the simulation box merely contains of the order of

10 subhaloes with the number of substructure objects dramatically

decreasing when moving to (potentially) lower mass host haloes.

We therefore stress that this particular comparison only focuses

on field haloes and hence is well suited even for those codes that

(presently) cannot cope with subhaloes.

Further, as mentioned already in Section 3.2 we have the data

available at various resolutions ranging from 2563 to 10243 particles.

We decided to use the highest resolution analysis performed by each

finder as has already been summarized in Table 3 in the subsequent

comparison plots. The analysis in this particular section primarily

revolves around the (statistical) recovery of halo properties. In that

regard, we are nevertheless limiting our analysis to properties akin

to the ones already studied in Section 4.1, namely the mass M,

the position R, the peak of the rotation curve vmax and the (bulk)

velocity Vbulk. We are going to utilize masses as defined via 200 ×
ρcrit, that is, M200.

We like to reiterate at this point again that for this particular com-

parison each halo finder returned halo properties as derived from

applying the code to the actual data set; we aim at comparing the

results of the codes for each and every single one being applied

to the data individually. We consider this the most realistic com-

parison as this directly gauges the differences of the resulting halo

catalogues.

We have already seen that all halo finders are capable of recov-

ering the mass of mock haloes, irrespective of whether the density

profile is cored or has a cusp (cf. Fig. 5). We therefore do not expect

to find surprising differences in the first and most obvious compar-

ison, that is, the (cumulative) mass function presented in Fig. 17.

Note that PFOF discarded objects below 100 particles and hence did

not return haloes below ≈8 × 1012 h−1 M⊙; similarly, PSO discarded

objects with fewer than 50 particles, according to the criterion laid

out in equation (30) of Lukić et al. (2007), and in each case the

(cumulative) mass function starts to flatten at approximately the

resolution limit of the simulation analysed by the respective code.

However, ORIGAMI seems to miss some low-mass structures

caught by other halo finders. One possible reason is that some

smaller density enhancements seen by other finders have not un-

dergone shell-crossing along three axes, and therefore do not meet

ORIGAMI’s definition of a halo. Another is that ORIGAMI may be miss-

ing subhaloes, which it does not attempt to separate from parent

haloes.

Further, the LANL halo finder is designed to be an FOF finder and,

if needed, SO objects are defined on top of such FOF haloes. Thus,

for smaller haloes, completeness is an issue as not every SO halo

will have an FOF counterpart. Of course, it is possible to run the

code in the limit b → 0 and Nmin = 1, having each particle serving

as a potential centre of an SO halo, but the increase in computational

cost would make this impractical, as direct SO halo finders which do

precisely this in a more effective manner already exist. Nevertheless,
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Figure 17. Upper panel: the cumulative mass (M200) function. The arrows indicate the 50 particle limit for the 10243 (left-hand panel), 5123 (middle panel)

and 2563 (right-hand panel) simulation data. The thin black lines crossing the whole plot corresponds to the mass function as determined by Warren et al. (2006,

solid line) and Tinker et al. (2008, dashed line). The error bars represent the mean mass function of the codes (±1σ ). Lower panel: the fractional difference

between the mean and code halo mass functions. For more details, refer to the text.

we can see that the computationally very fast method of growing

SO spheres on top of FOF proxy haloes results in excellent match

when compared to direct SO finders for well-sampled haloes (∼500

particles per halo).

In order to better view (possible) differences in the mass func-

tions, we further calculated the ‘mean mass function’ in 10 loga-

rithmically placed bins across the range 2 × 1011–1 × 1015 h−1 M⊙
alongside 1σ error bars for the means. Note that all codes only con-

tributed to those bins where their data set is considered complete.

We further deliberately stopped the binning at 1 × 1015 h−1 M⊙
to not be dominated by small number statistics for the few largest

objects. The results can also be viewed in Fig. 17, where we show

in the bottom panel the fractional difference between the mean and

the code mass functions across the respective mass range, and we

additionally added as the thin solid black line to the actual mass

function plot in the upper panel of Fig. 17 the numerically deter-

mined mass function of Warren et al. (2006) which is based upon

a suite of 16 10243 simulations of the �CDM universe as well as

the one of Tinker et al. (2008) derived from a substantial set of cos-

mological simulations actually including the ones used by Warren

et al. (2006) (cf. their fig. 1). Note that the former is based upon

FOF and the latter on SO masses.

As highlighted in Introduction 1.3, the peak value of the rotation

curve may be a more suitable quantity to use when it comes to com-

paring the masses of (DM) haloes. We therefore show in Fig. 18 the

cumulative distribution of vmax. Apart from the expected flattening

at low vmax due to resolution, we now note that this is in fact the

case: codes that did not estimate masses according to the standard

definition M(<R) = 4π/3R3�ρ nevertheless recovered the correct

vmax values. Given the ability of comparing vmax to observational

data (cf. Section 1.3), we conclude that vmax is a more meaning-

ful quantity which can serve as a proxy for mass. Note again the

flattening of some curves at the low-vmax end due to either the reso-

lution of the simulation analysed or an imposed minimum number

of particles cut and that not all FOF-based finders returned a vmax

value.

We have seen in Section 4.1 that there exists some scatter between

halo finders in the recovery of the halo position. It therefore appears

mandatory to check for differences in halo positions recovered from

the cosmological simulation, too. To this extent, we calculated the
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Figure 18. The cumulative vmax function.

Figure 19. The two-point correlation function for the 10 000 most massive

objects.

two-point correlation function and present the results in Fig. 19. In

order to analyse a comparable data set (remember that some codes

analysed the 10243, some the 5123 and some the 2563 particle sim-

ulation), we restricted the haloes to the 10 000 most massive objects

and found excellent agreement.12 The smallest scale considered in

this comparison is 2 h−1 Mpc in order not to probe the interiors of

galaxy clusters. The minute drop of the correlation function for PFOF

at the smallest scale probed may be explained by the usage of the

marginally larger linking length of b = 0.2 applied during their

analysis and the fact that PFOF uses the centre of mass instead of the

density peak as the centre of the halo.

Finally, we cross-compare the bulk velocities of haloes in Fig. 20

where we find excellent agreement. We further give in the legend

the medians of the distribution for each halo finder: the mean (of

12 Note that it makes little difference to use the 10 000 objects with the

largest vmax value as there is a strong correlation between M and vmax for

each code. At the end, we are interested in limiting the analyses to the N

most massive objects and hence a ‘miscalculation’ of the mass is irrelevant

as long as differences in mass are systematic as in our case.

Figure 20. The distribution of bulk velocities for objects more massive than

5 × 1011 h−1 M⊙.

the medians) is 489 km s−1 with a 1σ of 9 km s−1 (i.e. 2 per cent

deviation).

5 SU M M A RY A N D C O N C L U S I O N S

We have performed an exhaustive comparison of 18 halo finders

for cosmological simulations. These codes were subjected to var-

ious suites of test scenarios all aimed at addressing issues related

to the subject of identifying gravitationally bound objects in such

simulations.

The tests consisted of idealized mock haloes set up according

to a specific matter density profile (i.e. NFW and Plummer) where

we studied isolated haloes as well as (sub-)subhaloes. We further

utilized a cosmological simulation of the large-scale structure of the

universe primarily containing field haloes. The requirement for the

mock haloes was to simply return the centres of the identified objects

alongside a list of particles (possibly) belonging to that halo. We then

applied a universal tool to calculate all other quantities [e.g. bulk

velocity, rotation curve, (virial) mass, etc.]. For the cosmological

data, the code representatives were simply asked to return their

‘best’ values for a suite of canonical values.

Mock haloes. We found that the deviation of the recovered posi-

tion to the actual centre of the object is largest for FOF-based meth-

ods which is naturally explained by the fact that they define centres

as the centre of mass, whereas most other codes identify a peak in

the density field. Further, DM haloes that have an intrinsic core (e.g.

a Plummer sphere) yield larger differences between the input centre

and the recovered centre for most codes. Such density profiles are

not expected within the Universe we inhabit. However, the bulk

velocities, (virial) masses and vmax values satisfactorily agreed with

the analytical input, irrespective of the underlying density profile –

at least for hosts and subhaloes; subsubhaloes still showed at times

departures as large as 50 per cent in mass and 20 per cent for vmax.

Note that all results are based upon the same post-processing soft-

ware and only the list of particles (and the centre) was determined

by each halo finder individually. Hence, variations in the centre will

automatically lead to differences as both the mass and rotation curve

are spherically averaged quantities.

We further investigated the dependence of subhalo properties

upon the position within the host, in particular its distance from the
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centre. There we found that – while all codes participating in this

exercise recovered excellent vmax values for a NFW subhalo sampled

with 10 000 particles inside a NFW host two orders of magnitude

more massive13 – phase-space finders excelled by also locating the

subhalo when it overlapped with the centre of the host. However, in

this case they struggle to properly calculate its properties.

Putting a subhalo at varying positions inside a host is closely

related to a subhalo actually falling into a host. However, the latter

also introduces distortions in the shape of the subhalo due to tidal

forces while it is plunging through the background potential of the

host. We performed a simulation of the scenario where a subhalo

initially containing 10 000 particles shoots right through the centre

of a host two orders of magnitude more massive. While we found

that the number of particles significantly drops when the subhalo

approaches the host’s centre, it rises again to a plateau level after

the central passage – and this is apparent in all codes. The peak of

the rotation curve, which should be less susceptible to (tidally in-

duced) variations in the outer subhalo regions, shows less variation.

However, vmax actually rises shortly after the subhalo leaves the

very central region indicative of two (related) effects: contamina-

tion with host particles and problems with the unbinding procedure.

Nevertheless, these problems are (still) common to all halo finders

used in this particular study and they all mutually agree upon the

initial and final values.

Another question addressed during our tests with the mock haloes

was the number of particles required in a subhalo in order to still

be able to separate it from the host background. To this extent,

we successively lowered the number of particles used to sample a

subhalo that had been placed at half the M100 radius of the host.

We found that the majority of finders participating in this exercise

are capable of identifying the subhalo down to 30–40 particles. Yet

again, (most of) the phase-space finders even locate the object with

as few as 10–20 particles. Some of the configuration space finders

also tracked down the subhalo to such low numbers of particles;

however, they did not obtain the correct particle lists leading to

subhalo properties that differ from the analytical input values.

We would like to close this part of the summary with the notion

that while there is a straightforward relation between the (virial)

mass and the peak of the rotation curve for isolated field haloes

(once the density profile is known), the mass of a subhalo is more

ambiguously defined. As we have seen, it is (in most situations)

more meaningful to utilize the peak of the rotation curve as a proxy

for mass (cf. Fig. 8 versus Fig. 9 as well as Fig. 10 versus Fig. 11).

However, as could also be witnessed in Fig. 11, quite a number of

halo-finding techniques gave rise to an artificial increase in vmax

right after the passage through the centre of its host, obscuring its

applicability as a mass representative.

Cosmological simulation. As a matter of fact there is little to say

regarding the comparison of the cosmological data sets; as can be

seen in Figs 17–20, the agreement is well within the (omitted) error

bars for the basic properties investigated here (i.e. mass, velocity,

position and vmax), and unless we can be certain which halo-finding

technique is the ultimate (if such exists at all), the observed scatter

indicates the accuracy to which we can determine these properties

in cosmological simulations. We would though like to caution that

the haloes found within the cosmological simulation are primarily

well-defined and isolated objects and hence it is no surprise that we

find such an agreement. Subhaloes, however, are not well defined

13 Note that only halo finders capable of identifying substructures can par-

ticipate in a comparison of (sub-)subhalo properties.

and therefore lead to larger differences between halo finders as

seen during the comparison of the mock haloes. For those codes

that diverge from the general agreement, the differences are readily

explained and have been discussed in Section 4.2.

Concluding remarks. The agreement amongst the different codes

is rather remarkable and reassuring. While they are based upon

different techniques and – even for those based upon the same

technique – different technical parameters, they appear to recover

comparable properties for DM haloes as found in state-of-the-art

simulations of cosmic structure formation. We nevertheless need to

acknowledge that some codes require improvement. For instance,

phase-space finders find halo centres even if the centre overlaps with

another (distinct) object and recover subhaloes to a smaller particle

number; however, they still have problems with the (separated) issue

of assigning the correct particles in these cases and hence deriving

halo properties afterwards.

We close with the remark that we deliberately did not dwell on

the actual technical parameters of each and every halo finder as

this is beyond the scope of this paper and we refer the reader to

the respective code papers for this. However, it is important to note

that with an appropriate choice of these parameters the results can

be brought into agreement. This is an important message from this

particular study. We are not claiming that all halo finders need to

return identical results, but they can (possibly) be tuned that way. In

that regard, we also like to remind the reader again that this particular

comparison is aimed at comparing codes as opposed to algorithms:

we even tried to gauge the differences found when applying codes

based upon the same algorithm to identical data sets.
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