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Halogen-bonded mesogens direct polymer
self-assemblies up to millimetre length scale
Nikolay Houbenov1, Roberto Milani2, Mikko Poutanen1, Johannes Haataja1, Valentina Dichiarante3, Jani Sainio1,

Janne Ruokolainen1, Giuseppe Resnati3, Pierangelo Metrangolo2,3 & Olli Ikkala1

Aligning polymeric nanostructures up to macroscale in facile ways remains a challenge in

materials science and technology. Here we show polymeric self-assemblies where nanoscale

organization guides the macroscopic alignment up to millimetre scale. The concept is shown

by halogen bonding mesogenic 1-iodoperfluoroalkanes to a star-shaped ethyleneglycol-based

polymer, having chloride end-groups. The mesogens segregate and stack parallel into aligned

domains. This leads to layers at B10 nm periodicity. Combination of directionality of halogen

bonding, mesogen parallel stacking and minimization of interfacial curvature translates into

an overall alignment in bulk and films up to millimetre scale. Upon heating, novel supra-

molecular halogen-bonded polymeric liquid crystallinity is also shown. As many polymers

present sites capable of receiving halogen bonding, we suggest generic potential of this

strategy for aligning polymer self-assemblies.
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S
elf-assembly of polymers has received significant
attention aiming at simple and low-cost methods for new
technologies1–5. Supramolecular principles further allow

hierarchical polymeric structures, modularity, complexity
and functionalities6–10. Self-assembly of polymers results in
microphase-separated domains at a length scale of ca.
10–100 nm. However, typically the structures are local, that is,
they lack common alignment and therefore the materials are
macroscopically disordered. To achieve overall alignment in
bulk matter, large electric, magnetic and flow fields have been
used11–14. In films, graphoepitaxy and surface templating allow
long-range order15–19. Also extensive thermal or solvent
annealing20 classically improve the overall order. However,
achieving aligned and globally ordered self-assembled polymer
systems organized up to millimetre length scale through simple,
rapid and technologically relevant ways remains a fascinating
challenge, in order to exploit the properties of the nanometre
structures at macroscopic scale.

Towards tackling such a problem, we designed self-assemblies
involving polymers and low-molecular-weight rod-like mesogens
where the latter ones would pack in strictly parallel fashion
leading to an overall broken symmetry, where the interface
curvature in the local and global scale between the rods and the
polymer matrix is minimized, and where plasticization by
supramolecular binding of low-molecular-weight units improves
dynamics to reach the equilibrium. Such features may synergis-
tically result in an overall spontaneous organization up to
macroscale without the need of external stimuli. The aimed
strong repulsion of the mesogenic rods from the organic
polymeric domains could be achieved by the use of perfluorinated
molecules. To this purpose, we used iodoperfluoroalkanes
(IPFAs) that can be halogen-bonded to polymers possessing
electron-donor sites21–25. However, in spite of its strength,
specificity and directionality, halogen bonding has seldom been
used for directing polymer self-assembly26,27.

Here we report, as a model material, the amine hydrochloride
derivative of a 4-arm polyethylene glycol, that is, C-[CH2-
(OCH2CH2)29-NH3

þCl� ]4 (molecular weight of 5 kDa, a
branched semicrystalline polymer, see Methods), halogen-bonded
to mesogenic IPFAs (Fig. 1). A star-shaped polymer is selected
aiming to reduce coiling and entanglement tendency, which we
expect to promote ordering and to allow a dense packing of the
noncovalently bonded IPFA chains. In IPFAs, the fluorine atoms
inductively boost the electron accepting ability of the terminal
iodine, which promotes halogen bonding. The long-chain IPFAs
adopt all-trans conformations, showing rod-like behaviour and
exceptionally high repulsion from hydrocarbons (fluorophobic
effect)28. However, selection of proper perfluoroalkyl chain
lengths of IPFA turned out to be subtle: too short chains lead
to excessive volatility thus reducing the stability of the complexes,
whereas too long chains do not allow solution processing
to prepare the complexes. Therefore, 1-iodoperfluorodecane
(I-C10F21) and 1-iodoperfluorododecane (I-C12F25) are here
selected. Halogen bonds are expected to occur between the
chloride anions and the iodine atoms (Fig. 1). The simplicity and
rapidity of the method described here demonstrate that the
synergistic use of halogen bonding and fluorophobic effect
constitutes a major advancement to obtain nanostructured
polymeric materials aligned up to the macroscopic scale.

Results
Stoichiometry of the halogen-bonded complexes. In small-
molecule co-crystals, the chloride anions may behave as either
mono- or bi-dentate halogen bond acceptors (see Supplementary
Note 1). Therefore, to establish the nominal halogen bonding
stoichiometry in the present polymeric case, we first used a facile

process, where powders of the polymer and I-C10F21 were ground
together in a mortar and pestle for 10min using 1:1 and 1:2 molar
ratios of Cl� :I (see Methods). Fourier transform infrared
spectroscopy (FTIR) showed that the C-F stretching mode at
1,198 cm� 1 and the I-CF2 deformation mode at 631 cm� 1 of
I-C10F21 exhibit a blue shift of around 8 and 11 cm� 1 upon
complexation to the polymer (Fig. 2a). Similar blue shift is also
observed for the C–O–C bending at 1,100 cm� 1, whereas a
smaller blue shift of ca. 2 cm� 1 involves the stretching mode of
the polymer at 2,880 cm� 1. An intensity decrease in the complex
is observed in the region 3,700–3,300 cm� 1, potentially
associated with the modified interaction environment of the
ammonium chloride group. The spectral changes support
supramolecular interaction. Importantly, the 1:1 and 1:2 molar
ratios of Cl� :I yielded almost indistinguishable FTIR spectra.
Therefore, we suggest that each chloride nominally binds one
IPFA molecule, and in the process of grinding the Cl� :I 1:2
composition, the additional IPFA sublimes off the powder owing
to its high vapour pressure. Similar FTIR spectra are observed in
the complex with I-C12F25 (see Supplementary Fig. 1).

Further evidence of the halogen bond between C-[CH2-
(OCH2CH2)29-NH3

þCl� ]4 and I-C10F21 at the nominal 1:1 Cl� :
I molar ratio is given by X-ray photoelectron spectroscopy (XPS)
(Fig. 2b,c). The complexes were prepared upon mixing the
starting materials in isopropanol (see Methods). We expected that
upon halogen bonding the electron density of the I atom (halogen
bond donor) would increase while that of the Cl� anion (halogen
bond acceptor) would decrease, resulting in a downshift of the
binding energies for the I 3d doublet of I-C10F21 and an upshift
of the Cl 2p doublet in C-[CH2-(OCH2CH2)29-NH3

þCl� ]4.
Measuring the XPS spectrum of highly volatile I-C10F21 posed
challenges in our setup under its high-vacuum conditions and
focused beam, and therefore the binding energy for the I 3d
doublet was measured using the less volatile I-C12F25. As XPS
only probes the nearest atomic neighbourhood of the iodine, the
slightly different alkyl tail length is not expected to be relevant in
this case. Indeed, the peaks at 620.4 and 632 eV, corresponding to
I 3d, shift to 618.7 and 630.2 eV, respectively, while the Cl 2p
doublet in C-[CH2-(OCH2CH2)29-NH3

þCl� ]4 shifts to higher
energies (see Supplementary Note 2). These energy shifts agree
with literature values for related interactions27, supporting that
chloride ion and the IPFA are halogen bonded.

Liquid-crystalline behaviour. Differential scanning calorimetry
(DSC) shows a single sharp endothermic peak at 67 �C for
I-C10F21 upon heating (Fig. 2d). As polarized optical microscopy
(POM) (Fig. 3b) shows transition from an optically anisotropic
state to an isotropic state upon heating, we assign this as melting.
C-[CH2-(OCH2CH2)29-NH3

þCl� ]4 polymer shows the main
melting at 41 �C as well as a small exothermic peak at around
33 �C (Fig. 2d) due to cold crystallization and related melting
endotherm at 37 �C, signalling polymorphism. The corresponding
POM images (Fig. 3a) show growth of spherulitic crystalline
domains upon cooling after having been heated above its melting
temperature. On the other hand, the complex C-[CH2-
(OCH2CH2)29-NH3

þCl� ]4 � 4 I-C10F21 shows a main endother-
mic peak at 44 �C (Fig. 2d) corresponding to the transition from
crystalline solid to the liquid-crystalline phase (smectic A phase,
SmA), as supported by POM at 47 �C, Fig. 3c. POM (Fig. 3d)
agrees with the DSC data as the optical anisotropy is suppressed
upon heating from 48 to 54 �C, and becomes again observable
upon cooling. No sign of phase-separated I-C10F21 or C-[CH2-
(OCH2CH2)29-NH3

þCl� ]4 polymer was observed. The present
finding shows the first observation of supramolecular halogen-
bonded liquid crystals involving polymers.
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Halogen-bonded mesogen directed self-assembly. The struc-
tures were elucidated by using small-angle X-ray scattering
(SAXS), X-ray diffraction (XRD) and transmission electron
microscopy (TEM) (Fig. 4). As a reference, the pristine C-[CH2-
(OCH2CH2)29-NH3

þCl� ]4 shows a nanoscale periodicity due to
the charge clustering of the end-group ammonium salts, as SAXS
shows a broad reflection at q2¼ 0.067Å� 1 (periodicity of ca.
9.4 nm) with a faint second-order reflection (Fig. 4a, plot 2). Two-
dimensional (2D) SAXS confirms that the material is macro-
scopically isotropic with a poor overall alignment. Peaks q5 and q6
(Fig. 4b, plot 2) are signatures of the crystalline structure within
C-[CH2-(OCH2CH2)29-NH3

þCl� ]4. Pure I-C10F21 shows a
reflection at q1¼ 0.38Å� 1 (periodicity of ca. 1.6 nm) (see Fig. 4a,
plot 1) and its higher-order peaks in the wide-angle region
(Fig. 4b, plot 1). On the other hand, the complex C-[CH2-
(OCH2CH2)29-NH3

þCl� ]4 � 4 I-C10F21, as prepared from iso-
propanol solution, shows a highly ordered lamellar structure with
the primary SAXS peak at q3¼ 0.055Å� 1 and a series of higher-
order reflections 2q3, 3q3, 4q3 and 5q3 (Fig. 4a, plot 3). Compared
with the pure polymer, the periodicity has increased to 11.4 nm,

due to the intercalation of the halogen-bonded I-C10F21 mesogens
(Fig. 4d). XRD shows narrow reflections at q4¼ 1.4 Å� 1, 2q4 and
3q4 corresponding to a well-defined spacing of 0.45 nm (Fig. 4b,
plot 3), which suggests tight lateral packing driven by the
perfluoroalkyl rod-like chains. Peak q5 (Fig. 4b, plot 3) indicates
crystallization within the C-[CH2-(OCH2CH2)29-NH3

þCl� ]4
domains. 2D SAXS shows improved overall alignment in com-
parison with the pure polymer, which is also confirmed by TEM
(Fig. 4c). As C-[CH2-(OCH2CH2)29-NH3

þCl� ]4 � 4 I-C10F21
shows no SAXS reflections of the starting materials, macroscopic
phase separation is not suggested.

The high order in the complex C-[CH2-(OCH2CH2)29-NH3
þ

Cl� ]4 � 4 I-C10F21 observed by X-ray scattering and TEM can be
explained by the interplay between various interactions. First,
I-C10F21 interacts through a halogen bond with the chloride ion
of the ammonium chloride end-capped polyethylene glycol
polymer chains. Then, the terminal perfluoroalkyl rod-like chains
pack tightly into fluorous-segregated layers, resulting in a long-
range lamellar order, which can even be improved by annealing at
mild conditions. Indeed, in Fig. 5 we show that vacuum treatment
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Figure 1 | Halogen-bonded complex formation. The supramolecular complexes are here denoted as C-[CH2-(OCH2CH2)29-NH3
þCl� ]4 �4 I-C10F21 and

C-[CH2-(OCH2CH2)29-NH3
þCl� ]4 �4 I-C12F25 based on their nominal stoichiometric compositions.
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at sufficiently low temperature does not cause removal of I-C10F21
from the complexes. For that, C-[CH2-(OCH2CH2)29-NH3

þ

Cl� ]4 � 4 I-C10F21 was kept in high vacuum for 2 days at 33 oC,
which is below the melting point of the crystalline domains
within the C-[CH2-(OCH2CH2)29-NH3

þCl� ]4 phase. In these
conditions the complex remains stable, as seen from the C-F
(1,206 cm� 1) stretching and I-CF2 (643 cm� 1) deformation
bands in Fig. 5a as compared with those shown in Fig. 2a. Such a
vacuum annealing at low temperature even slightly improves the
structural order and overall alignment of the system, compared
with non-annealed sample (see Fig. 5b), showing primary SAXS

peak at q1¼ 0.052Å� 1 and a series of higher-order reflections, as
shown in Fig. 5b.

However, I-C10F21 can be completely removed upon thermal
treatment at sufficiently high temperatures, as demonstrated
by the thermogram obtained in the second heating cycle
(Supplementary Fig. 2), which coincides with that of pure
C-[CH2-(OCH2CH2)29-NH3

þCl� ]4 (Fig. 2d). It appears, there-
fore, that all of I-C10F21 has been removed during the heating to
90 �C in the first cycle. It is important to note that at mild
conditions, that is, vacuum and mild temperatures, the complex
remains stable.
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Figure 2 | Characterization of the halogen-bonded complexes. (a) Attenuated total reflectance (ATR) FTIR spectra in the relevant regions. (b) XPS

spectra showing the shifts in I 3d and (c) Cl 2p orbital binding energies upon halogen bonding. (d) DSC thermographs upon the first heating cycle at

10 �Cmin� 1 of the starting compounds and the C-[CH2-(OCH2CH2)29-NH3
þCl� ]4 �4 I-C10F21 complex prepared by grinding.
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We next aimed to further reduce the interfacial curvature and
undulations. Therefore, we incorporated a longer fluorous tail by
using I-C12F25 to increase the repulsion to the organic domains.
However, since 1-iodoperfluorododecane is poorly soluble in
common organic solvents, we could not use solution methods to
prepare the complexes. Here we identified a vapour-phase
procedure as a facile and new processing method to prepare the
complex by exposing drop-cast films of C-[CH2-(OCH2CH2)29-
NH3

þCl� ]4 to vapours of I-C12F25 at ca. 100 �C for 3 h. This
allowed the volatile I-C12F25 to penetrate the melt polymer and
become absorbed by forming halogen bonds. The films can even
be relatively thick, even a fraction of millimetre. After the
reaction, the material was returned back to room temperature and
analysed by XPS (Fig. 2b,c) and FTIR (Supplementary Fig. 1;
Supplementary Note 3), which showed occurrence of halogen
bonding of I-C12F25 to C-[CH2-(OCH2CH2)29-NH3

þCl� ]4.
Such longer perfluoroalkyl chains led to increased thickness of

the fluorous layer, as SAXS showed the main reflection at
q2E0.05Å� 1 (Fig. 6a, plot 2), indicating that periodicity has
increased from 9 nm (Fig. 6a, plot 1) to 12.5 nm. This agrees with
the halogen bond-driven intercalation of I-C12F25 upon complex-
ing with the polymer, followed by interdigitation and packing of
the perfluoroalkyl chains, which result into a highly ordered and
oriented lamellar structure, as demonstrated by higher-order
reflections 2q2, 3q2 and 4q2 (Fig. 6a, plot 2) and 2D SAXS
(Fig. 6b). However, the most striking observation was based on
TEM. TEM micrographs on several positions provided direct
evidence that there is an overall alignment of the C-[CH2-
(OCH2CH2)29-NH3

þCl� ]4 � 4 I-C12F25 complex, which extends
to the millimetres (Fig. 6d), that is, six orders of magnitude higher
than the nanometric-scale interactions and assembly, as driven
by the halogen bonding and fluorophobic effect. The starting

polymer (Fig. 6c) or complexes with IPFAs shorter than 10
carbon atoms do not show such an overall alignment. The
I-C12F25 can also be completely removed upon combined
vacuum/thermal treatment, as confirmed by FTIR analysis
(Supplementary Fig. 3; Supplementary Note 4) and SAXS, which
showed a shrinking of the periodicity from 12.5 nm to 9.5 nm
(Fig. 6a,b plot 3).

Discussion
In summary, the halogen bond-driven self-assembly of a model
polymer with IPFAs resulted in a very efficient spontaneous
organization up to millimetre length scale without applying
external aligning fields. The concept is based on the guiding effect
of halogen bonding, owing to its strength and directionality,
coupled with the packing of perfluoroalkyl mesogenic rods, whose
extremely high repulsion from the organic polymeric phase
promotes straight interfaces, and high dynamics due to their low
molecular weight, which promotes plasticization and favours
progress towards energy minimum. We believe that this approach
is broad and not limited to the materials reported here, as many
polymers possess halogen bond-accepting groups. The facile
reversibility of the binding to the IPFAs opens up a plethora of
new possibilities for the processing, structure control and
molecular imprinting of polymeric materials, as well as for the
tuning of materials properties, such as directional wetting,
transport, optical, electrical and ionic properties.

Methods
Materials. C-[CH2-(OCH2CH2)29-NH3

þCl� ]4 with Mn¼ 5,000 gmol� 1 was
purchased from Jenkem Technology USA Inc. and used without additional
purification. Iodoperfluorodecane (I-C10F21) and iodoperfluorododecane (I-C12F25)
were purchased from Apollo Scientific Ltd. and used without additional

a
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Figure 3 | Polarized optical micrographs. (a) C-[CH2-(OCH2CH2)29-NH3
þCl� ]4 after heating to 38 and 47 �C, subsequent cooling and resting at room

temperature for about 5min. The growth of crystalline spherulitic domains is observed over time upon cooling below the polymer’s melting temperature.

(b) I-C10F21. (c) C-[CH2-(OCH2CH2)29-NH3
þCl� ]4 �4 I-C10F21 complex at 47 �C, suggesting smectic A-type liquid crystallinity (SmA), as prepared by

grinding. (d) C-[CH2-(OCH2CH2)29-NH3
þCl� ]4 �4 I-C10F21 complex after heating to 39, 48 and 54 �C, and subsequent cooling to 48 �C. The complex is

prepared from isopropanol solution. Scale bars, 200mm.
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purification. The solvents in this study were used as received from commercial
suppliers.

FTIR. Attenuated total reflectance-FTIR spectra were recorded on a Nicolet
Nexus FTIR spectrometre equipped with a UATR unit. The values were given in
wavenumbers and were rounded to 1 cm� 1 upon automatic assignment.

DSC. DSC analyses were performed on a Mettler Toledo DSC823e differential
scanning calorimeter, using aluminium 40 ml sample pans and Mettler STARe

software for calculation. The measurements were carried out from 25 to 100 �C,
with a heating rate of 10 �Cmin� 1 (the first cycle); after this, the sample was
cooled down to � 20 �C with a cooling rate of 10 �Cmin� 1 and heated again to
100 �C (the second cycle), all at 10 �Cmin� 1. Calibration was carried out using an
indium standard and an empty pan, sealed in the same way as the sample. Sample
weights of about 1–4mg were used in the measurements.

POM. Liquid crystal textures (Fig. 3) were studied with an Olympus BX51 POM
equipped with a Linkam Scientific LTS 350 heating stage and a Sony CCD-IRIS/
RGB colour video camera connected to a Sony video monitor CMA-D2. POM
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þCl� ]4 (2, indicating poor

self-assembly by segregation of the ionic end-groups from the polyethylene glycol-core), and supramolecular complex C-[CH2-(OCH2CH2)29-NH3
þCl� ]4 �
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þCl� ]4

and high overall order for C-[CH2-(OCH2CH2)29-NH3
þCl� ]4 �4 I-C10F21. (b) XRD shows (1) fluoroalkyl chain order for pure I-C10F21, (2) Polyethylene

glycol-crystallization for pure C-[CH2-(OCH2CH2)29-NH3
þCl� ]4 and (3) lateral packing due to the fluoroalkyl chains in the supramolecular complex

C-[CH2-(OCH2CH2)29-NH3
þCl� ]4 �4 I-C10F21. (c) TEM micrograph of C-[CH2-(OCH2CH2)29-NH3

þCl� ]4 �4 I-C10F21, showing lamellar smectic-like order

with periodicity of 11.4nm (scale bar, 50nm). (d) Cartoon showing the self-assembly mechanism of the halogen-bonded complex.
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images were also taken as a function of temperature (Fig. 3) using a Leica DM4500
P polarization microscope with a Leica DFC420 digital camera.

XPS. XPS spectra were recorded by Surface Science Instruments SSX-100 spec-
trometre using monochromated Al Ka X-rays and operated at 100W.

SAXS. SAXS measurements were performed with a setup consisting of a Bruker
Microstar microfocus X-ray source with a rotating anode (l¼ 1.54 Å) and Montel
optics. The beam from the X-ray source was further adjusted by four sets of
four-blade slits, which resulted in anB1� 1-mm beam at the sample position. The
scattered beam was detected with the Hi-Star 2D area detector (Bruker). For
measurements, the sample to detector distance was set to 0.59m to capture the

desired length scale in the measurements. The measured 2D scattering data is
azimuthally averaged to obtain one-dimensional SAXS data.

XRD. XRD spectra were recorded using XRD; Panalytical X’Pert PRO MPD.
CuKa1 radiation (45 kV, 40mA, with a wavelength of 0.154060 nm) was used.

TEM. TEM specimens were prepared by cryo-microtoming samples below
� 80 �C with a Leica EM UC7 ultramicrotome to 70–150 nm thick sections. During
preliminary TEM measurements, it was noticed that sections introduced from
room temperature to the high vacuum (B10� 6 bar) melted and formed micro-
metre-sized droplets when exposed under the beam. Therefore for the actual
TEM investigations, the specimens were cooled down to � 187 oC after
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cooling

Heating/
cooling

C-[CH2-(OCH2CH2)29-NH3
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C-[CH2-(OCH2CH2)29-NH3
+ Cl–]4 · 4 I-C12F25
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C-[CH2-(OCH2CH2)29-NH3
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Figure 6 | Self-assembly due to complexation with I-C12F25. (a,b) SAXS patterns showing weak nanometer-scale order of the pristine

C-[CH2-(OCH2CH2)29-NH3
þCl� ]4 (1); halogen bonding leads to an increased periodicity by complexation of I-C12F25 from vapours at ca. 100 �C to

C-[CH2-(OCH2CH2)29-NH3
þCl� ]4 and allows highly ordered self-assembly with equidistant reflections based on SAXS (2) and high overall alignment. By

heating and vacuum treatment, the halogen-bonded I-C12F25 is removed and the original periodicity is approximately recovered, however, showing better

residual alignment of C-[CH2-(OCH2CH2)29-NH3
þCl� ]4 (3). (c) TEM micrographs at various points of pure C-[CH2-(OCH2CH2)29-NH3

þCl� ]4 showing

lack of macroscale alignment. (d) TEM micrographs of the complex C-[CH2-(OCH2CH2)29-NH3
þCl� ]4 �4 I-C12F25, denoted as its nominal composition,

after 3 h of exposure to I-C12F25 vapours. The micrographs were taken at spots B0.5mm apart from each other, and show exceptionally well-ordered

lamellar nanostructures with overall macroscale order at the millimetre scale. Scale bar, 100 nm (c,d).
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sectioning and cryotransferred to the TEM device in order to keep the sections
relatively intact.

Preparation of the solid mixtures by grinding. In a typical preparation proce-
dure, C-[CH2-(OCH2CH2)29-NH3

þCl� ]4 (20mg, 4� 10� 3mmol) and I-C10F21
(10mg, 1.6� 10� 2mmol or 20mg, 3.2� 10� 2mmol, respectively) were ground
in an agate mortar for 5min. The mixture was allowed to stand overnight at room
temperature, then ground for further 5min and finally characterized by DSC,
attenuated total reflectance-FTIR and POM.

Preparation of the iodoperfluorodecane complex from solution. I-C10F21
allowed preparation of complexes with C-[CH2-(OCH2CH2)29-NH3

þCl� ]4 from
solution, as isopropanol was found to be a common solvent for both compounds.
The complexes were prepared by dissolving I-C10F21 and C-[CH2-(OCH2CH2)29-
NH3

þCl� ]4 in isopropanol in a final concentration of 10mgml� 1 and stirred
overnight. After stirring, the solvent was evaporated at room temperature and
atmospheric pressure in a glass vial.

Preparation of the complex by exposing to iodoperfluorododecane

vapours. No common solvent was found for I-C12F25 and C-[CH2-(OCH2CH2)29-
NH3

þCl� ]4. The latter compound was dissolved in isopropanol and cast on a glass
substrate to form a film of sub-millimetre thickness by solvent evaporation.
Alternatively, the C-[CH2-(OCH2CH2)29-NH3

þCl� ]4 solution was placed on a
Teflon plate and inserted on a glass substrate or into a flask. In both cases the
melted material was exposed to I-C12F25 vapours at 100 �C for 3 h. After cooling to
room temperature, the material was detached from the substrate, collected and
characterized. No separate I-C12F25 or C-[CH2-(OCH2CH2)29-NH3

þCl� ]4 XPS
peaks (Fig. 2b,c) were detected, which suggests that the halogen-bonded complex is
stoichiometric. Note that even relatively thick samples could be complexed.
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5. Gröschel, A. H. et al. Precise hierarchical self-assembly of multicompartment
micelles. Nat. Commun. 3, 710 (2012).

6. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers.
Science 335, 813–817 (2012).

7. ten Brinke, G., Ruokolainen, J. & Ikkala, O. Supramolecular materials based on
hydrogen-bonded polymers. Adv. Polym. Sci. 207, 113–177 (2007).

8. Rauwald, U. & Scherman, O. A. Supramolecular block copolymers with
cucurbit[8]uril in water. Ang. Chem. Int. Ed. 47, 3950–3953 (2008).

9. Mugemana, C. et al. Metallo-supramolecular diblock copolymers based on
heteroleptic cobalt(III) and nickel(II) bis-terpyridine complexes. Chem.
Commun. 46, 1296–1298 (2010).

10. Houbenov, N. et al. Self-assembled polymeric supramolecular frameworks.
Angew. Chem. Int. Ed. 50, 2516–2520 (2011).

11. Mansky, P. et al. Large-area domain alignment in block copolymer thin films
using electric fields. Macromolecules 31, 4399–4401 (1998).

12. Liedel, C., Pester, C. W., Ruppel, M., Urban, V. S. & Böker, A. Beyond
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