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Halogen hydrogen-bonded organic framework
(XHOF) constructed by singlet open-shell diradical
for efficient photoreduction of U(VI)
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Guangsheng Luo1 & Ning Wang 1✉

Synthesis of framework materials possessing specific spatial structures or containing func-

tional ligands has attracted tremendous attention. Herein, a halogen hydrogen-bonded

organic framework (XHOF) is fabricated by using Cl− ions as central connection nodes to

connect organic ligands, 7,7,8,8-tetraaminoquinodimethane (TAQ), by forming a Cl−···H3

hydrogen bond structure. Unlike metallic node-linked MOFs, covalent bond-linked COFs, and

intermolecular hydrogen bond-linked HOFs, XHOFs represent a different kind of crystalline

framework. The electron-withdrawing effect of Cl− combined with the electron-rich property

of the organic ligand TAQ strengthens the hydrogen bonds and endows XHOF-TAQ with high

stability. Due to the production of excited electrons by TAQ under light irradiation, XHOF-

TAQ can efficiently catalyze the reduction of soluble U(VI) to insoluble U(IV) with a capacity

of 1708 mg-U g−1-material. This study fabricates a material for uranium immobilization for

the sustainability of the environment and opens up a new direction for synthesizing crys-

talline framework materials.
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The design and synthesis of crystalline porous framework
materials has garnered numerous attention due to their
unique attributes and chemical versatility1. There are three

main types of crystalline porous frameworks, including covalent
organic frameworks (COFs), metal organic frameworks (MOFs),
and hydrogen-bonded organic frameworks (HOFs), which are
classified according to the types of bonding models2. COFs are
formed by the connection of covalent bonds and show a stable
structure3–5. MOFs are formed by the coordination bonds
between metallic nodes and organic linkers, which possess high
inherent crystallinity but low toughness6–8. Hydrogen bond
interaction stabilized frameworks include HOFs and supramole-
cular organic frameworks (SOFs), both of which are composed
only of organic moieties and have many unique advantages,
including mild synthesis conditions, solvent processability, and
easy reconstruction9,10. Although substances based on hydrogen
bond interactions are known, they have not received much
attention until recently due to their potential applications as
functional frameworks11,12. Current studies of hydrogen bond-
based crystalline porous frameworks are mainly focused on N···H
or O···H hydrogen bonds. However, the halogen group, as the
most electronegative element in the same period of the periodic
table, is more likely to form hydrogen bonds and work as a
connection node for the framework material13,14. Generally,
halogen bonds can be described as D···X─Y, in which X repre-
sents the halogen atom, D represents the hydrogen atom, and Y is
a highly electronegative atom, such as N, O, and F, that play a key
role in the control of intermolecular recognition and self-
assembly15,16. D···X─Y are used to construct unique supramole-
cular architectures that have been widely used in crystal fields,
such as molecular recognition, catalysis, and drug design17–21.
However, the D···X···D-type halogen-based hydrogen-bonded
organic framework is still rarely reported. Compared with the
D···X─Y bond, D···X···D shows the advantages of being easy to
self-assemble, convenient to functionalize, and highly tunable.
Thus, developing new connection types based on D···X···D is
important for expanding the family of crystalline porous frame-
works with undeveloped features and functions (Fig. 1a).

In addition, organic building blocks also affect the properties of
the framework materials. The organic building blocks not only
play the role of framework construction but also provide diverse
properties, including optical and electrical properties22,23. By
seeking suitable building blocks and functional organic groups,
crystalline porous framework materials can exhibit a strong
visible light absorption ability and fast charge carrier
mobility24,25. Therefore, it is of great significance to develop new
functional organic ligands for the construction of crystalline
porous frameworks. In 1907, Chichibabin first reported a quinoid
structure, p,p′-biphenylene-bis-(diphenylmethyl), whose reso-
nance structure is the singlet open-shell diradical form
(Fig. 1b)26,27. Compared with aromatic hydrocarbons, quinone
hydrocarbons exhibit extra double-bond properties outside the
aromatic ring, which is beneficial for electron delocalization28.
Thus, these materials can be used as organic semiconductor
materials29–31. Additionally, due to their unique electronic
structures, singlet open-shell diradicals exhibit interesting prop-
erties in photonics, electricity and magnetism32,33. As a con-
sequence, with the rejuvenation of free radical chemistry, singlet
open-shell diradicals have become a research hot spot, and their
applications in photocatalytic reactions have also been
explored34,35. However, the instability of diradicals hinders their
development36. Therefore, the design and synthesis of stable
singlet open-shell diradicals to construct organic frameworks
remains of significance and a great challenge.

Uranium, an important strategic resource, has limited
reserves37–39. The contamination of uranium in nuclear waste

liquids is harmful to human health and the ecological environ-
ment due to its chemical toxicity and radiotoxicity40. Thus, effi-
cient removal of uranium contamination and recovery of
uranium resources via a secondary mineralization strategy are
both of great significance to the sustainable development of the
nuclear industry and the environment41–46. In this work, based
on the 7,7,8,8-tetraaminoquinodimethane (TAQ) ligand and
chloride ion (Cl−), a crystalline framework material, designed as a
halogen hydrogen-bonded organic framework (XHOF), is con-
structed. Structural analysis shows that Cl− works as a connection
node to connect three adjacent ligands through three hydrogen
bonds to form a regular 3D structure framework, which repre-
sents a different kind of framework material (Fig. 1c). Compared
with MOFs, the halogen atom in XHOF replaces the metal atom
to work as a connection node47. Although the HOF also uses
hydrogen bonds to construct the framework, hydrogen bonds are
formed directly between the ligands, while the XHOF utilizes
central halogen atoms to connect the ligands. The light-induced
singlet open-shell diradical structure of TAQ provides excited
electrons to efficiently catalyze the reduction of highly soluble
U(VI) to insoluble U(IV), which endows XHOF-TAQ with high
potential for immobilizing uranium (Fig. 1d).

Results
Fabrication of XHOF-TAQ and characterization of the organic
ligand. Terephthalamide oxime (TPAO), the main raw material
used for the synthesis of XHOF-TAQ, was prepared by oximation
of terephthalonitrile (TPN) (Fig. 2a). The Fourier transform
infrared (FTIR) spectra for TPAO and TPN show that the nitrile
group of TPN is successfully oximated into amidoxime group in
TPAO, represented by the disappearance of the C≡N peak
(2230 cm−1) (Supplementary Fig. 1). The results from mass
spectrum (MS) analysis show that the main peak appears at 195,
which is responsible for TPAO, whose molecular weight is 194 Da
(Fig. 2b).

Subsequently, the synthesized TPAO and CuCl2·2H2O were
used to synthesize XHOF-TAQ by the solvothermal method, and
colorless octahedral crystals were obtained. Based on the usage of
Cl−, the yield of the crystals was calculated to be 46%. The
analysis of the chemical components of the crystal shows that the
C, H, N, and Cl contents are 40.53%, 5.14%, 23.59%, and 29.70%,
respectively, which match the contents in the chemical formula
C4H6N2Cl. Interestingly, the raw material TPAO contains O,
while there is no O in the crystal based on chemical component
analysis. Energy-dispersive X-ray spectroscopy (EDS) elemental
mapping analysis coupled with scanning electron microscopy
(SEM) confirmed the presence of Cl and N and the absence of O
in the crystal (Fig. 2c). This result indicates that the structure of
the organic ligand TPAO is changed during the synthesis process.
Based on the chemical component of the crystal, compared with
the structure of TAPO, the organic ligand in the crystal structure
is found to lose two hydroxyl groups (OH) and gain four
hydrogen atoms, which is consistent with the structure of TAQ.
The MS analysis for the organic ligand in the crystal shows that
one peak with a molecular weight of 163 Da is detected, which
corresponds to TAQ (Supplementary Fig. 2). The 1H NMR
spectrum of XHOF-TAQ shows that the hydrogen atoms on the
amino is twice the benzene ring, which further confirms the
structure of the TAQ ligand (Fig. 2d). These results all prove that
TAQ instead of TPAO participates in the synthesis of XHOF-
TAQ. The loss of the hydroxyl group from the oxime group is due
to the catalysis of Cu2+ during the solvothermal synthesis
process48,49. Other MCln compounds (M = Mn, Zn, Co, Ni, etc.)
have also been used to replace CuCl2 in the synthesis process, but
no observable crystal product has been synthesized, indicating
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that Cu2+ is essential for the synthesis of the crystalline
framework material for its catalytic activity. Compared with
TPAO, TAQ is not stable and easily oxidized in air26. The use of
TPAO as the initial substrate does not entail control of the oxygen
concentration for the reaction and can reduce the reaction
conditions for the synthesis of XHOF-TAQ. Furthermore, the
replacement of CuCl2 with other CuX2 compounds (X = F, Br,
and I) also leads to failure in the synthesis of crystal products
because the other halogen ions cannot take part in the synthesis
of such framework materials or the reaction conditions are not
suitable for the synthesis of such framework materials containing
other halogen ions.

Crystal structure and characterization of XHOF-TAQ. The fine
structure of XHOF-TAQ was determined by single-crystal X-ray
diffraction (SC-XRD) analysis. The crystal structure of XHOF-TAQ
exists as a C2/c space group in the monoclinic crystallized system.
Each asymmetric unit of XHOF-TAQ contains two Cl− ions and one
TAQ ligand. Although Cl shows a weaker tendency to form
hydrogen bonds than F, benefiting from the abundant amino groups
working as electron donors around the chloride ion, one Cl− forms
three hydrogen bonds with three amino hydrogen atoms from three
TAQ ligands (Fig. 3a). These Cl−···H3 hydrogen bonds form a stable
approximate plane triangle structure and endow the crystal with high
stability. The lengths of the three hydrogen bonds between Cl− and
the H atom are 2.33Å, 2.39 Å, and 2.44 Å, respectively. The planes
are spatially independent of each other, and the nearest distance
between the central Cl− of the plane is 4.36 Å, which indicates that
there is no interaction between the nearest Cl−, and, thus, more

halogen hydrogen bonds can be formed between Cl− and the organic
ligands to provide XHOF-TAQ with higher stability15. Finally, the
planes are further connected by TAQ ligands to form a 3D structure.
The structure has been deposited at the Cambridge Crystallographic
Data Centre (CCDC) under number 2096137. The X-ray photo-
electron spectra (XPS) analysis for CuCl2 and XHOF-TAQ reveal
that the binding energy of Cl− shifts simultaneously from 200.40 eV
and 198.82 eV in CuCl2 to 198.82 eV and 197.23 eV in XHOF-TAQ,
indicating that the outer layer electron density of Cl− is increased
(Fig. 3b and Supplementary Fig. 3). The increase in the electron
density of Cl− is attributed to the sharing of electrons from the
electron-rich organic TAQ ligand to maintain a localized negatively
charged center50. The electron-rich characteristic of TAQ is the
reason why it is easily oxidized in air. This kind of electron sharing
reduces the electron-rich property and increases the air stability of
TAQ in XHOF-TAQ.

The FTIR analysis of XHOF-TAQ shows that the major peaks are
consistent with the chemical groups present on the organic ligand in
the crystal (Supplementary Fig. 4). Powder X-ray diffraction (PXRD)
was used to identify the XHOF-TAQ phase, and the PXRD spectrum
of synthetic XHOF-TAQ is found to fit well with the simulation data,
indicating that the XHOF-TAQ phase is pure (Fig. 3c). The PXRD
patterns for XHOF-TAQ treated with different solvents show that no
framework collapse or phase transition occurs after contact with
solvents for 6 h, suggesting that XHOF-TAQ is highly stable under
diverse solvents (Supplementary Fig. 5). XHOF-TAQ also shows high
environmental stability. After being placed in air for one year, the
material still maintains its initial crystal structure (Supplementary
Fig. 6). A thermogravimetric analyzer (TGA) was used to test the

MOF HOF XOF XHOF

Fig. 1 Schematic diagram of the mechanism for U(VI) immobilization by XHOF-TAQ. a Different connection models of the organic framework materials.
b Resonance structures of the quinoid and diradical forms. c Illustration of the 3D structure of XHOF-TAQ. d Mechanism for electron and hole transfer
during the photoreduction of U(VI).
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thermal stability of XHOF-TAQ. The result shows that no significant
weight loss occurs before 280 °C, and continuous weight loss occurs
in the range of 280 °C to 363 °C, which is attributed to the
decomposition of the TAQ ligand (Fig. 3d). Finally, almost all the
weight is lost above 363 °C. The TGA analysis indicates that the
hydrogen bonds in XHOF-TAQ can also endow XHOF-TAQ with
good thermal stability, which is comparable to other framework
materials51,52.

Determination of the photoreduction mechanism for XHOF-
TAQ to U(VI). Conversion of soluble hexavalent uranium (U(VI))
to insoluble tetravalent uranium (U(IV)) is an efficient method for
uranium immobilization53–56. In consideration of the existence of the
photoinduced diradical form of TAQ, XHOF-TAQ is highly likely to
possess a photoreduction ability for immobilizing uranium. Thus, the
photoreduction ability of XHOF-TAQ to U(VI) was determined. The
result shows that with a dosage of 0.05 g L−1, XHOF-TAQ can
immobilize U(VI) in a solution with a high immobilization capacity
of 1708mg-U g−1-material. Compared with the other materials
available for the photoreduction of uranium, XHOF-TAQ exhibits a
high uranium immobilization capacity together with a fast uranium
immobilization speed of 34.16mg g−1 min−1 under light irradiation
(Supplementary Table 1). The change in the forms of uranium was
determined by detailed high-resolution XPS analysis. The result
shows that before the reduction, the characteristic peaks for U4f 5/2
and U4f 7/2 appear at 392.68 eV and 381.87 eV, respectively (Fig. 4a
and Supplementary Fig. 7). After the treatment of XHOF-TAQ and
light irradiation, new peaks for U4f 5/2 and U4f 7/2 of U(IV) appear
at 392.01 eV and 381.16 eV, respectively, indicating that U(VI) is
reduced to U(IV). The PXRD analysis for the used XHOF-TAQ
shows that the used material still maintains its initial crystal structure,
which proves the stability of the material and the feasibility of the
material for practical application (Supplementary Fig. 8).

The photoreduction mechanism for XHOF-TAQ to U(VI) was
investigated by experimental analysis together with density functional

theory (DFT) calculations. Electron paramagnetic resonance (EPR)
measurements of XHOF-TAQ show that a featureless wide signal
(ge= 2.00) is observed only in the presence of light (Fig. 4b). The
variable temperature EPR tests show that the intensity increases with
increasing temperature in the presence of light (Supplementary
Fig. 9). The fitting of the variable temperature EPR intensities by the
Bleaney-Bowers equation shows that the singlet-triplet energy gap
(ΔEs-t) is −1.22 kcal mol−1, which confirms the singlet diradical state
for XHOF-TAQ under light irradiation (Supplementary Fig. 10)57.
To further elucidate the electronic structure of XHOF-TAQ and
describe the exchange-correlation energies, DFT calculations were
performed using the Gaussian 09 package with the B3LYP (Becke,
three-parameter, Lee-Yang-Parr) hybrid function. The energy of the
TAQ singlet open-shell diradical state is lower than that of the
closed-shell state by 1.21 kcal mol−1, which proves the higher
potential of TAQ to form singlet open-shell diradical ground
electronic states. The electron spin density distribution of TAQ was
also calculated. The calculated singly occupied molecular orbital
(SOMO) for the α and β spin profiles shows a disjoint character
(Fig. 4c). The analysis of the spin density distribution of TAQ shows
that the carbon atoms in the ring have smaller amplitudes, while the
C7 and C8 atoms have much larger amplitudes, suggesting that the
diradical appears at C7 and C8 atoms (Fig. 4d). Based on all of the
above findings, TAQ can be described as having a resonant structure
between quinoid and biradical form.

Valence band XPS and UV-visible diffuse reflectance spectro-
scopy (DRS) for XHOF-TAQ were carried out to further confirm
the electron excitation process. The valence band XPS spectrum
shows that the edge of the valence band (Ev) of XHOF-TAQ is
2.56 eV (Fig. 4e). DRS analysis shows that the absorption edge of
XHOF-TAQ is 450 nm (Supplementary Fig. 11). The DRS
spectrum was converted to a TAUC plot by using the equation,
αðhvÞ ¼ ðαhνÞ2, where α, h, and ν are the absorption coefficient,
Plank’s constant, and light frequency, respectively. Then, by
extrapolating the tangent line to the X-coordinate, a positive
slope is observed, illustrating that XHOF-TAQ is an n-type
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semiconductor. Based on the TAUC plot, the band gap (Eg) of
XHOF-TAQ is estimated to be 2.43 eV, which is consistent with
the Eg value obtained from the DFT calculations for the density
of electronic states (Fig. 4f and Supplementary Fig. 12)58.
Accordingly, the conduction band (Ec) is calculated to be
0.13 eV, confirming the photoreduction ability of XHOF-TAQ
to U(VI). Under light irradiation, TAQ in XHOF-TAQ forms a
diradical structure, which produces excited electrons to catalyze
the reduction of U(VI) to U(IV).

Photocatalytic immobilization of U(VI). The efficiency of pho-
tocatalytic immobilization of U(VI) by using XHOF-TAQ in the
posttreatment of nuclear waste liquid was analyzed (Fig. 5a). Neither
irradiation with light alone nor XHOF-TAQ treatment alone leads to
a significant decrease in the concentration of U(VI), indicating that
both XHOF-TAQ and light irradiation are essential for the immo-
bilization of U(VI) and that XHOF-TAQ does not possess a uranium
adsorption ability. The photoreduction performance was optimized
by adjusting the XHOF-TAQ dosage from 0.01 to 0.20 g L−1 at
room temperature without removing oxygen (Fig. 5b). The results
show that the photoreduction efficiency exhibits dosage-dependent
characteristics. For an increase in the dosage from 0. 01 to 0.10 g L−1,
the catalytic efficiency is rapidly increased, while a further increase in
the dosage only leads to a small improvement in the photoreduction
efficiency. Approximately 92.0% immobilization efficiency is reached
within 90min under light irradiation with a catalyst dosage of
0.10 g L−1, whose immobilization capacity is calculated to be
921.7 mg-U g−1-material, indicating that XHOF-TAQ maintains a
high photoreduction ability for U(VI) under light irradiation.

Coexisting cations and anions have been reported to influence the
speciation of uranium or affect electron transport by binding to the
surface of the material42. The influence of environmental cations and
anions on the photoreduction efficiency was analyzed to determine

the environmental adaptability of XHOF-TAQ. For the anions, the
coexistence of CO3

2− can boost the photoreduction efficiency, while
Cl− and NO3

− only slightly influence the photoreduction efficiency
(Fig. 5c). For the cations, K+ boosts the photoreduction efficiency,
and Ba2+ shows no interference with the photoreduction efficiency
(Fig. 5d). The enhancement effect of K+ on the photoreduction
efficiency is attributed to the large ion radii, which provide a large
intermolecular space for electron transport59. With an approximately
50 times higher molar concentration for the other interfering cations
to U(VI), XHOF-TAQ still retains a photoreduction efficiency of
more than 71.6%. Cations such as Ni2+, Co2+, and Zn2+ can
interfere with the photoreduction ability by occupying the excited
electrons, which is proven by the immobilization of these metals
(Fig. 5e). However, from a calculation of the immobilization capacity,
the photoreduction ability for uranium is at least 3.68 times higher
than that for the other metals, proving the high selectivity of XHOF-
TAQ in the photoreduction of uranium. Even in the solution
containing multi-metal ions, which all exist with an approximately 50
times higher molar concentration, XHOF-TAQ still shows a
photoreduction efficiency of 72.0% to U(VI) within 120min (Fig. 5f).

Discussion
In this study, a crystalline framework material, XHOF, is syn-
thesized by using halogen ions as connecting nodes to form
multihydrogen bonds for the architecture of the framework,
which is different from the connection models of MOF, COF, and
HOF and represents an unexplored kind of framework material.
The electron-withdrawing effect of Cl− and the electron-rich
property of TAQ strengthens the hydrogen bonds for the archi-
tecture of the crystal structure and endows XHOF-TAQ with high
stability in different solvents. In addition, the TAQ ligand in
XHOF-TAQ possesses a singlet open-shell diradical structure
under light irradiation, which can release excited electrons to
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catalyze the reduction of soluble U(VI) to insoluble U(IV) for
immobilization of uranium from the liquid environment (Fig. 6).
With a low dosage of 0.10 g L−1, XHOF-TAQ exhibits a high
reducibility of 93.0%. Furthermore, due to its suitable band gap
and band position, XHOF-TAQ shows a selective photoreduction
ability for uranium. In summary, this study synthesizes an
XHOF-TAQ material based on connections formed by Cl−···H3

hydrogen bonds. Moreover, this is also the first report for the
introduction of chemically unstable singlet open shell diradicals
into framework materials by chemical reactions during a sol-
vothermal synthesis process. The findings of this study not only
provide a strategy for the immobilization of uranium but also
open up a new direction for the synthesis of framework materials
for potential applications.

Methods
Materials and characterization. TPAO was synthesized by the amidoximation of
terephthalonitrile (TPN) in organic solvent, as described below. All other chemicals
were obtained from commercial Macklin and used without further purification.
XRD was carried out by using a Haoyuan DX-2700BH X-ray diffractometer, and
the simulated powder pattern was output using Mercury software. The FTIR
spectrum (KBr pellets) was recorded using a PerkinElmer Frontier FT-NIR/MIR
spectrometer at room temperature. TG-DTA analysis was performed using a
Netzsch STA 449 F5 Jupiter thermal analyzer from room temperature to 800 °C
with a heating rate of 10 °C min−1 under a N2 atmosphere. The XPS spectra were
obtained using a Kratos AXIS SUPRA spectrometer. ICP-MS was conducted using
an Agilent ICPMS7899 instrument. The DRS spectra were measured using a Shi-
madzu UV-3600 spectrophotometer, and BaSO4 was used as a reflectance standard.
1H NMR spectra were acquired using a Brüker Advance 400, with DMSO-D6 and
TMS used as the solvent and internal standard, respectively. The MS data were
recorded using a Bruker ultrafleXtreme MALDI-TOF analyzer. The ESR data were
measured using a Bruker A300-12 spectrometer.

Preparation of TPAO. NH2OH·HCl (24.00 g, 0.34 mol) was first completely
dissolved in DMF (100 mL) solution, and then NaOH (6.00 g, 0.15 mol) and
Na2CO3 (7.80 g, 0.74 mol) were added to the solution at 45 °C. After vigorous
stirring for 2 h to neutralize the solution, the terephthalonitrile (TPN, 22.00 g,
0.17 mol) powder was added to the mixture. After stirring continuously for 16 h at

75 °C, the resulting mixture was centrifuged to separate the undissolved particles,
and then the supernatant was collected for use.

Fabrication of XHOF-TAQ. The synthesized TPAO (0.4 mL, 0.68 mmol) together
with CuCl2· 2H2O (0.17 g, 1.00 mmol) was added to DMF (5 mL), and then the
mixture was treated with ultrasonication at room temperature for 10 min After
that, the reaction solution was sealed in a 10 mL vial and heated at 95 °C for 5 days.
After cooling to room temperature, the reaction mixture was isolated by filtration,
washed with DMF, and then dried in air. Based on the usage of Cl−, the yield of the
product was calculated to be 46%. 1H NMR (400MHz, DMSO): δ 8. 04 (s, 1H),
9.39 (s, 1H), 9.64 (s, 1H); IR (KBr pellets): 3214 (s), 3036 (s), 1695(s), 1656(s),
1544(s), 1473(s), 879 (m), and 698(s); element analysis (calcd., found for
C4H6N2Cl): C (40.86, 40.53), H (5.14, 5.14), Cl (30.16, 29.70), N (23.84, 23.59).

X-ray crystallography. The diffraction data were measured using Bruker D8
Venture equipment at 150 K with Cu Kα radiation (λ= 1.54178 Å). The crystal
structure was solved using Olex2 software with the XS structure solution program
with direct methods, and then further refined with the XL refinement package
using least-squares minimization. All the nonhydrogen atoms were refined with
anisotropic thermal displacement coefficients. The hydrogen atoms were included
in idealized positions and refined by a riding model. The data details for XHOF-
TAQ are listed in Supplementary Table 2.

Computational method. All DFT calculations were performed by using Gaussian
09 software in the framework. All the molecular structures were computed with the
Becke three-parameter Lee-Yang-Parr (B3LYP) hybrid functional method to
describe the exchange-correlation energies. The Los Alamos LANL2DZ effective
core pseudopotentials (ECPs) were applied to Cl. The atoms in the ligands,
including C, N, and H, were calculated using high-level B3LYP calculations with 6-
31G+(d,p) basis sets. To confirm its identity as an energy minimum, vibrational
analysis was performed at each stationary point, and the natural bond orbital
method was also performed for the population analysis.

Photocatalysis experiments. For the photocatalysis experiment, a 300 W Xe lamp
(200–800 nm) with a light density of 1 kW m−2 was used as the source of simulated
sunlight irradiation at room temperature. The photocatalyst XHOF-TAQ was
added to 20 mL of 50 ppm uranium in DMF without sacrificial agents. The sus-
pension was stirred in the dark for 20 min to achieve reaction equilibrium. During
the photocatalysis process, 100 μL suspension was removed and filtered with a
nylon syringe membrane at regular intervals for monitoring the uranyl con-
centration. The concentration of U(VI) in the filtrate was determined by ICP-MS.

Data availability
The data supporting the findings of this study are available in the paper and its
Supplementary Information. Source data are provided along with this paper. The X-ray
crystallographic coordinates for the structure reported in this study have been deposited
in the Cambridge Crystallographic Data Centre (CCDC), under deposition number
CCDC-2096137. Source data are provided with this paper.
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