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Abstract—Various scientific computations have become so com-
plex, and thus computation tools play an important role. In this
paper, we explore the state-of-the-art framework providing high-
level matrix computation primitives with MapReduce through
the case study approach, and demonstrate these primitives with
different computation engines to show the performance and
scalability. We believe the opportunity for using MapReduce in
scientific computation is even more promising than the success
to date in the parallel systems literature.

I. INTRODUCTION

As cloud computing environment emerges, Google has
introduced the MapReduce framework to accelerate parallel
and distributed computing on more than a thousand of in-
expensive machines. Google has shown that the MapReduce
framework is easy to use and provides massive scalability
with extensive fault tolerance [3]. Especially, MapReduce fits
well with complex data-intensive computations such as high-
dimensional scientific simulation, machine learning, and data
mining. Google and Yahoo! are known to operate dedicated
clusters for MapReduce applications, each cluster consisting
of several thousands of nodes. One of typical MapReduce
applications in these companies is to analyze search logs to
characterize user tendencies. The success of Google prompted
an Apache opensource project called Hadoop [12], which is
the clone of the MapReduce framework. Recently, Hadoop
grew into an enormous project unifying many Apache sub-
projects such as HBase [13] and Zookeeper [14].
Massive matrix/graph computations are often used as pri-

mary means for many data-intensive scientific applications.
For example, such applications as large-scale numerical anal-
ysis, data mining, computational physics, and graph rendering
frequently require the intensive computation power of matrix
inversion. Similarly, graph computations are key primitives for
various scientific applications such as machine learning, infor-
mation retrieval, bioinformatics, and social network analysis.
HAMA is a distributed framework on Hadoop for massive
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Fig. 1. The overall architecture of HAMA.

matrix and graph computations. HAMA aims at a power-
ful tool for various scientific applications, providing basic
primitives for developers and researchers with simple APIs.
HAMA is currently being incubated as one of the subprojects
of Hadoop by the Apache Software Foundation [11].
Figure 1 illustrates the overall architecture of HAMA.

HAMA has a layered architecture consisting of three compo-
nents: HAMA Core for providing many primitives to matrix
and graph computations, HAMA Shell for interactive user
console, and HAMA API. The HAMA Core component also
determines the appropriate computation engine. At this mo-
ment, HAMA supports three computation engines: Hadoop’s
MapReduce engine, our own BSP (Bulk Synchronous Par-
allel) [10] engine, and Microsoft’s Dryad [4] engine. The
Hadoop’s MapReduce engine is used for matrix computations,
while BSP and Dryad engines are commonly used for graph
computations. The main difference between BSP and Dryad
is that BSP gives high performance with good data locality,
while Dryad provides highly flexible computations with the
fine control over the communication graph.
To manipulate distributed metadata and transaction control
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Row Column Families
matrix name (alias) actual matrix path

metadata attribute:created date
attribute:owner
attribute:purpose

TABLE I
HBASE TABLE SCHEMA FOR HAMA.ADMIN.TABLE.

in an atomic way, HAMA makes full use of Zookeeper,
Hadoop’s counterpart for Google Chubby [5]. In addition,
HAMA provides flexible data management interface, where
the default interface is HBase on top of Hadoop Distributed
File System (HDFS).
We summarize the contributions of HAMA as follows.
• Compatibility: HAMA can take advantage of all func-
tionalities of Hadoop and its related packages, since
HAMA preserves compatibility with the existing Hadoop
interfaces.

• Scalability: Due to HAMA’s compatibility, HAMA can
fully utilize large-scale distributed Internet infrastructures
and services such as Amazon EC2 without any modifi-
cation.

• Flexibility: To leverage the flexibility needed to support
different computation patterns, HAMA provides simple
computation engine interface. Any computation engine
conforming to this interface can be plugged in and
out freely. Currently, three computation engines, namely
MapReduce, BSP, and Dryad, are available for use.

• Applicability: Primitives offered by HAMA can be ap-
plied to various applications that require matrix and graph
computations. As a practical example, Me2day [6], a
famous social networking service in Korea similar to
twitter, is now about to use HAMA to cluster users based
on a very large set of data.

Among three different computation engines currently provided
by HAMA, this paper focuses on the MapReduce engine
mainly used for matrix computations. Specifically, we share
our experience of implementing high-dimensional matrix com-
putations with the MapReduce framework and present our
preliminary results. We also investigate the scalability of the
proposed approach in comparison to MPI.

II. CASE STUDY: PRIMITIVES FOR LINEAR ALGEBRA
In many cases, complex scientific applications require solu-

tions of linear algebra. As a case study, this section describes
two basic primitives, matrix multiplication and finding linear
solution, and goes into details of their implementations with
the MapReduce framework.

A. Representing matrices on HBase
In order to manipulate matrices on HDFS, we choose

HBase as a No-SQL database. The HBase project was origi-
nally initiated by Powerset in 2007, modeling after Google’s
Bigtable [7]. Now, it becomes one of the famous Apache
Hadoop subprojects. Unlike traditional RDBMSes, HBase has

Row Column Families
matrix row index column vector

metadata alias:name
attribute:columns
attribute:rows
attribute:type
eival:value
eival:ind
eivec:value
cache:value

TABLE II
HBASE TABLE SCHEMA FOR ACTUAL MATRIX.

a column-oriented, semi-structured data structure, which can
be distributed over more than 1000 nodes with high scalability.
To represent matrices on HBase, we have designed two

structures, a management table and an actual matrix structure.
We named the management table as hama.admin.table and
the specific matrix structure as hama.matrix xxx. Table 1
and 2 illustrate the schema of the management table and the
actual matrix, respectively. The management table shown in
Table 1 consists of three metadata column families, and an
“actual matrix path” which indicates the specific matrix in
Table 2. In particular, “attribute:purpose” specifies whether the
matrix is an actual matrix or it is an adjacent matrix represen-
tation for a graph. The matrix data structure shown in Table 2
includes necessary metadata for storing column/row size, the
type, and eigen pairs, as well as column vectors per row index.
Unlike “attribute:purpose” in Table 1, “attribute:type” in Table
2 represents whether the chosen matrix is a sparse matrix or
a dense matrix. An algorithm can be optimized based on the
type of a matrix.
Note that this matrix representation is effective in handling

temporary matrices when computing a job. This is because the
mapper and the reducer can only look into the matrix with alias
provided by the management table, while system components
internally manipulate temporary matrices.

B. Multiplication of two matrices
We propose two approaches to matrix multiplication: iter-

ative approach and block approach. The former is suitable
for sparse matrices, while the latter is appropriate for dense
matrices with low communication overhead. Assume that
square matrix A and B are used for multiplication in the
following algorithms.
1) Iterative approach: The iterative approach is simple

and naive. Initially, each map task receives a row index of
B as a key, and the column vector of the row as a value.
Then, it multiplies all columns of i-th row of A with the
received column vector. Finally, a reduce task collects the i-th
product into the result matrix. The pseudo-code of the iterative
approach is illustrated in Algorithm 1.
2) Block approach: To multiply two dense matrices A and

B, we should build the “collectionTable” in the preprocessing
phase of MapReduce. The collectionTable is an 1-D repre-
sentation, transformed from the original 2-D representation
of two matrices. Each row of the collectionTable has two
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Algorithm 1 Multiplication with the iterative approach
INPUT: key, /* the row index of B */
value, /* the column vector of the row */
context /* IO interface (HBase) */

void map(ImmutableBytesWritable key,
Result value, Context context)

{
double ij-th = currVector.get(key);
SparseVector mult /* Multiplication */

= new SparseVector(value).scale(ij-th);
context.write(nKey, mult.getEntries());

}

INPUT: key, /* key by map task */
value, /* value by map task */
context /* IO interface (HBase) */

void reduce(IntWritable key,
Iterable<MapWritable> values,
Context context)

{
SparseVector sum = new SparseVector();
for (MapWritable value : values) {

sum.add(new SparseVector(value));
}

}

submatrices of A(i,k) and B(k,j) with the row index of
(n2

∗ i) + (n ∗ j) + k, where n denotes the row size of
matrix A and B. We call these submatrices a block. Each map
task walks only on the collectionTable instead of the origi-
nal matrices, and thus it significantly reduces required data
movement over the network. The following code shows the
block algorithm after preprocessing. Each map task receives
a blockID as a key, and two submatrices of A and B as its
value, and then multiplies two submatrices, A[i][j] ∗ B[j][k].
Afterward, a reduce task computes the summation of blocks,
s[i][k]+ = multipliedblocks. The pseudo-code of the block
approach is depicted in Algorithm 2.

C. Solving linear system with Conjugate Gradient approach

The next case study is to obtain the solution (x) of a linear
equation of

Ax = b (1)

where b is a known vector, and A is a known, square,
symmetric, and positive-definite matrix as a pre-requisite. Such
a pre-requisite is not commonly found, but it is often used
for solving partial differential equations, structural analysis,
and circuit analysis. HAMA provides two methods for this
problem: Cramer’s rule method and Conjugate Gradient (CG)
method. The cramer’s rule method is used for dense matrices,
and the CG method is suitable for sparse matrices [8]. These
methods are automatically chosen according to the type of a
matrix. In this section, we briefly introduce the idea behind
the CG algorithm, and describe how the CG algorithm works
well on MapReduce.

Algorithm 2 Multiplication with the block approach
INPUT: key, /* the blockID */
value, /* two submatrices of A and B */
context /* IO interface (HBase) */

void map(ImmutableBytesWritable key,
Result value, Context context)

{
SubMatrix a = new SubMatrix(value,0);
SubMatrix b = new SubMatrix(value,1);
SubMatrix c = a.mult(b); /* In-memory */
context.write(new BlockID(key.get()),

new BytesWritable(c.getBytes()));
}

INPUT: key, /* key by map task */
value, /* value by map task */
context /* IO interface (HBase) */

void reduce(BlockID key,
Iterable<BytesWritable> values,
Context context)

{
SubMatrix s = null;
for (BytesWritable value : values) {

SubMatrix b = new SubMatrix(value);
if (s == null) { s = b; }
else { s = s.add(b);}

}
context.write(...);

}

CG method is based on the quadratic form as,

f(x) =
1

2
xTAx− bTx+ c (2)

A is a symmetric matrix as we mentioned before.

f ′(x) =
1

2
ATx+

1

2
Ax− b = Ax− b (3)

If the gradient f ′(x) sets to zero, we obtain Equation (1)
we want to solve. That is, the solution of Equation (1) is a
critical point of Equation (2) under the assumption that A is a
symmetric and positive-definite matrix. This is a simple idea
behind the CG method.
Fundamentally, the CG method is similar to the Gradient

Descent with smoothing and adaptive step size. Like Gradient
Descent method, the CG method is able to find the solution
with high accuracy through iteratively adjusting the search
direction and the step size until the gradient becomes zero.
Accordingly, estimating the appropriate search direction and
step size is a key to find the solution quickly. For the CG,
search direction is obtained from the conjugate direction
method, and the step size is simply calculated by the line
search method. In other words, the conjugate direction method
finds the search direction as a line, and then the line search
tries to discover a minimum along the line.
The pseudo-code of the CG method is described in Al-

gorithm 3, where w, d, g, and alpha denote weight vector,
conjugate direction, gradient, and step size, respectively. In
this algorithm, we use Fletcher form [8] in order to compute
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search direction. Basically, we use matrix multiplication and
transpose primitives running in parallel, which are already
implemented in HAMA. In this way, we often reuse many
primitives to implement a new feature.
Due to CG’s iterative dependencies, we devised nested-

map interface as shown in Algorithm 3. The nested-map
interface allows a single map task to iterate recursively until
the termination condition is met. Its input is assigned from
HBase directly without the shuffling process between mapper
and reducer.
In practice, the CG method can be applied to various areas.

For instance, in Artificial Intelligence, it is efficiently used to
minimize the training error using the quadratic error metrics
such as Euclidean function. Particularly, for MLP (Multi Layer
Perception) [19], it is often used to optimize the weight
vector of relevant networks. For various applications running
in an iterative way as well as the CG method, MapReduce
is often better with respect to scalability compared to other
computation alternatives such as MPI and OpenMP. In the
next section, we show the scalability of matrix multiplication
and the CG method with MapReduce and MPI as well as their
overall performance.

III. EVALUATIONS

The evaluation of HAMA has been performed on 16-nodes
TUSCI (TU Berlin SCI) Cluster [9]. Each node consists of two
Intel P4 Xeon processors and 1GB of main memory. In par-
ticular, all nodes are connected with high-speed SCI (Scalable
Coherent Interface) network interface in a 2D torus topology.
Since SCI interconnections provide very low network latency,
it can mitigate the data locality problem of Hadoop [2].
In this evaluation, we compare three different versions of

matrix multiplication and CG algorithm with 30% sparse
matrices, varying the matrix dimension from 500 to 5000. The
first version uses the MapReduce engine (Hadoop MapReduce
0.20.0), and the second uses a variant of the MapReduce
engine called HPMR [2] which supports prefetching and pre-
shuffling. The last version is the MPI implementation for
which we used Compaq Extended Math Library (CXML) [18]
(version 5.2, previously known as DXML) of Hewlett-Packard
(HP), based on LAPACK and BLAS. The first and second
version belong to the computation engine family provided
by HAMA. For MapReduce and HPMR, we configured that
HDFS maintains four replicas for each data block, whose size
is 128 MB. The number of mapper and reducer is 16 and 1,
respectively. For MPI (version mpich2), we assigned a single
task for each node. We left a single processor idle for each
node in order to maintain a redundancy for fault tolerance.
Figure 2 illustrates the elapsed execution time and the scaleup
of performing matrix multiplication with iterative method and
CG algorithm, varying the matrix dimension from 500 to 5000.
The scaleup means the normalized speedup by the smallest
dimension with fixed nodes, such that

scaleup(dimension) = log(
T (dimension)

T (500)
)

Algorithm 3 Conjugate Gradient method in HAMA
/* Invoked once by nested map interface */
void initialize() {

g = b.add(-1.0, A.mult(x).getRow(0));
d = g.mult(-1); /* d = -g */
SparseMatrix q = A.mult(d);
alpha = g.transpose().mult(d)

/ d.transpose().mult(q);
x = x.add(d.mult(alpha));

}

/* Using nested-map interface */
void map(ImmutableBytesWritable key,

Result value, Context context)
{

/* For line search */
g = g.add(-1.0, mult(x).getRow(0));
alpha_new = g.transpose().mult(d)

/ d.transpose().mult(q);
/* Find the conjugate direction */
d = g.mult(-1).add(d.mult(alpha));
q = A.mult(d);
alpha = g.transpose().mult(d)

/ d.transpose().mult(q);
/* Update x with gradient(alpha) */
x = x.add(d.mult(alpha));

/* Termination check method, such that
length of direction is sufficiently
small or x is converged into fixed
value */

if (checkTermination(d, x.getRow(0)))
{

context.write(new BlockID(key.get()),
new BytesWritable(x.getBytes()));

}
context.write(new BlockID(key.get()),

null);
}

where T denotes the execution time. The scaleup can be
viewed as a metric which indicates the scalability. The scaleup
is inversely proportional to the scalability.
Figure 2(a), (b) show the average execution time (confidence

level = 95%) and its scaleup of matrix multiplication with
an iterative method, and Figure 2(c), (d) depict the average
execution time (confidence level = 95%) over one iteration
and its scaleup of the CG algorithm. As we expected, MPI
shows the lowest execution time result among all versions
owing to its light-weight characteristics of the library we
used. However its scaleup shows more sharp increase and
always above than others, especially, when the dimension
is larger than 1000. This scalability problem is due to its
dramatic increase in synchronous communications required
for maintaining iterative dependencies. Although the execution
time of MapReduce and HPMR is slower than that of MPI,
the performance gap with MPI is gradually shrinking after
the dimension becomes larger than 1000 as shown in Figure
2(a), (c). Especially, HPMR, a variant of MapReduce for
high performance, outperforms the native MapReduce with
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(a) Execution time of Matrix multiplication (b) Scaleup of Matrix multiplication

(c) Execution time of CG method (d) Scaleup of CG method
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Fig. 2. The comparison of average execution time and scaleup with Multiplication and CG.

the smoothly increased curve.
In practice, it is possible that one or more nodes experience

a fault or heavy overload during the execution time. For
evaluating this situation, we explicitly created a situation
of a single node failure and overloaded a node randomly.
Figure 3 illustrates the average elapsed execution time and the
average delayed time compared to the normal execution time
(confidence level = 95%) shown in Figure 2, when a single
node is overloaded randomly. Since MPI shows abnormal
execution behaviors on a single node failure, we compare the
average execution time only when a single node is overloaded.
As depicted in Figure 3(a), HAMA maintains the good per-

formance compared to MPI, and especially HPMR of HAMA
excels MPI where the dimension is larger than 4000. In addi-
tion, Figure 3(b) shows significant performance degradation of
the MPI implementation compared to others. This is because
HAMA takes advantage of fault-tolerance facility such as
speculative execution of MapReduce which automatically han-
dles the failure without programmer’s concerns. Additionally
HPMR has an advanced fault-tolerance functionality called D-
LATE [2]; when a node crashes or shows slow responses, the
MapReduce engine reassigns this straggler task to another fast

live node, and resumes the execution. However, MPI continues
to execute regardless of the slow execution of node. The
Amdahl’s Law gives the insight that the overall execution time
increases due to the single slow task.

IV. CONCLUSION
We have proposed the high-dimensional matrix/graph com-

putation framework called HAMA. HAMA provides compat-
ibility with Hadoop, scalability for the large problem size,
flexibility with the plug-in engine interface, and applicability
for various scientific applications. In particular, through the
case study on linear algebra, we have shown that the matrix
primitives running on the MapReduce engine is easy to use.
Finally, we demonstrated that HAMA shows better scalability
than the MPI implementation, maintaining relatively good
performance. Especially, in the case where a node is facing
the fault, HAMA gives better performance than MPI as the
problem size becomes larger.
However, MapReduce is not always appropriate for arbitrary

algorithms. That is why we provide the flexible computa-
tion engine interface. The graph traversal algorithm such as
Breadth First Search (BFS) is a counterexample against the
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Fig. 3. The comparison of average execution time with CG, when a single node is overloaded.

MapReduce algorithm [10]. As the next step, we plan to
propose several graph computation primitives with our BSP
engine like Pregel [1].
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