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The Hamilton-Jacobi equation for the Brans-Dicke theory is solved by using a long-wavelength 
approximation. We examine the non-linear evolution of the inhomogeneities in the dust fluid case 
and the cosmological constant case. In the case of dust fluid, it turns out that the inhomogeneities 
of space-time grow. In the case of cosmological constant, the inhomogeneities decay, which is 
consistent with the cosmic no hair conjecture. The inhomogeneities of the density perturbation and 
the gravitational constant behave in a manner similar to those of space-time. 

§ 1. Introduction 

It is generally believed that a consistent theory of quantum gravity is correctly 
described by superstring theory. The classical theory of gravity is nothing but a low 
energy effective theory of superstring theory. The classical theory, which is predict­
ed by superstring theory, has the form of a scalar-tensor theory. The scalar field is 
the so-called dilaton. Therefore, it is necessary to consider the consequences of this 
extra scalar field at least in phenomena close to the Planck scale. If the dilaton field 
acquires a large mass due to an unknown dynamical mechanism, there will be no 
observable macroscopic difference between the superstring predicted theory and 
Einstein's general theory of relativity. However, recently, the possibility of the 
massless dilaton has been pointed out. 1

l If so, it is important to study the scalar­
tensor theory more seriously. The simplest scalar-tensor theory is the Brans-Dicke 
theory,2

l where the dilaton field acts like a dynamical gravitational constant. 
On the other hand, to circumvent the graceful-exit problem of old inflation, the 

Brans-Dicke theory is renewed in the inflational universe scenario as extend inflation. 
Moreover, Bellido et al.3

l investigated the stochastic inflation formalism in the context 
of the Brans-Dicke theory. They described the inhomogeneous universe with fluctua­
tions of the gravitational constant. The main idea of stochastic inflation is to solve 
the equations for the inhomogeneous fields in the de-Sitter space by separating both 
the gravitational and scalar fields into short wavelength quantum fluctuations, which 
oscillate on scales smaller than the Hubble radius, and long wavelength fluctuations 
which are treated as classical fields. Salopek and Bond4

) have developed a formalism 
to treat the long wavelength fluctuations in terms of the Hamilton-Jacobi equation, 
which is applicable not only to the inflational theory but also the late stage evolution 
of the density fluctuations as far as the typical scale of the fluctuation exceeds the 
Hubble radius. 

The so-called long wavelength approximation has a rather long history dating 
back to Lifshitz and Khalatonikov.5

l Later, Tomita developed the above approxima-
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tion as the Anti-Newtonian scheme.6> Recently, Salopek and co-authors elegantly 
formulated the long wavelength approximation in the context of Hamilton-Jacobi 
theory_1l.s> The direct method of Comer et al.9

> is also useful to calculate the higher 
order correction. Attempts to apply the formalism to the inflationary theory and the 
higher dimensional theory also exist. 10

> 

In this paper, we shall apply the long wavelength approximation to the Brans­
Dicke theory. We are interested in the non-linear evolution of the long-wavelength 
inhomogeneities. As the inhomogeneities of the Brans-Dicke field imply the in­
homogeneities of the gravitational constant, this is important for astrophysical 
phenomena. In our modest study, of course, we do not intend to make definite 
statements about astrophysics. However, it is important to investigate how the 
inhomogeneities of the gravitational coupling constant evolve. We start in § 2 by 
writing the Hamilton-Jacobi equation for the Brans-Dicke theory. The spatial 
gradient expansion is performed in § 3. As a matter field, the cosmological constant 
is interesting. This case is related to the cosmological no-hair conjecture. Section 
4 is devoted to these subjects. In § 5, discussion of the various problems is presented. 
In the Appendix, the results of the direct method are explained. 

§ 2. Hamilton-Jacobi equation for Brans-Dicke theory 

For simplicity, we will consider dust fluid matter. The action for the Brans­
Dicke theory with dust matter x is given by 

(1) 

where n is the Lagrange multiplier and m is the particle mass which is normalized to 
unity below. Here, w is the parameter of the theory. The Brans-Dicke field ¢ is 
considered as the effective gravitational coupling constant. The Hamilton-Jacobi 
equation for the Brans-Dicke theory is obtained using the Arnowitt-Deser-Misner 
(ADM) formalism in which the space-time is foliated by a family of space-like 
hypersurfaces. In the ADM formalism, the metric is parametrized as 

(2) 

where Nand N; are the lapse and shift functions, respectively, and Yii is the 3-metric. 
Using the above metric, we obtain the Hamiltonian form of the action as 

(3) 

where 

w+1 J 1 ¢ z 1 1 
2w+3 ru"Ykl + 2(2w+3) rrJ[~ - 2w+3 rrJ[J[~ 

(4) 
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H - - 2( ki) + lk (J A. + X ;- ra,7r ,j 7r Ylk,i7r 'f',i 7r X.;. (5) 

Here 7rii, 7rfJ and 1rx are conjugate to Yii. ¢ and x. respectively, and R denotes the 3-
dimensional scalar curvature. Variation with respect to the momentum yields the 
equations of motion 

1 ( . . N rp-N'rp,;) (6) 

(7) 

1( ·fu-N;u-Nil;)= rpfr7rk1[YikYil 2~;~\ YiiYkl]- 2w
1+3 Jrrij7r;. (8) 

Variation of the action (3) with respect to the field variables yields the evolution 
equations for the momentum. These are automatically satisfied provided that 

.. as 
l(lJ=--

arij • 
(9) 

satisfy the constraint equations and provided that the evolution equations (6) hold. 
Here, instead of solving the equations of motion for the momentum fields, we will use 
the Hamilton-Jacobi method. The Hamilton-Jacobi equation is 

1 ¢ ( as ) 2 1 1 as as 
+ 2(2w+3) IY a,p - 2w+3 IY Yii arij a,p 

+/1+rijx.a.j~; -/Yr/JR+w lj rija;,paj¢+2/YLJ¢=0. (10) 

The momentum constraint is a rather trivial condition which states that the generat­
ing functional is invariant under the spatial coordinate transformation. 

Hamilton-Jacobi formalism has a great advantage in its intimate relation to 
quantum gravity. The Wheeler-DeWitt equation for the Brans-Dicke theory is given 
by 

H1Jf=O, H;1Jf=O, 

where the canonical commutation relations 

[rij(x), 7rk
1(y)]=f (a/a/+ a/a/)a(x- y), 

[r/J(x), 7r"(y)]=ia(x- y), 

[x(x), 7rx(y)]=ia(x-y) 

(11) 

(12) 

(13) 

(14) 

are assumed. If we consider the WKB approximation, we get Eq. (10) as the lowest 
order equation. Research in this direction from the point of view of the long-
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784 ]. Soda, H. Ishihara and 0. Iguchi 

wavelength approximation is a project we will pursue in the future. 

§ 3. Long wavelength solution 

The heart of the long wavelength approximation is the following: For illustra­
tion, we take the metric in the synchronous form 

(15) 

At each point one can define a local scale factor a and a local Hubble parameter H 
by 

(16) 

where the dot denotes the time derivative. The Hubble parameter leads to the 
characteristic proper time on which the metric evolves. The characteristic comoving 
length on which it varies is denoted by L : a,.yjk ;:::;:_ L -l ru. The long wavelength 
approximation is the assumption that the characteristic scale of spatial variation is 
much longer than the Hubble radius, that is 

(17) 

Then we can drop the spatial curvature term in the Einstein equations in the lowest 
order. If we incorporate the curvature effect perturbatively, we obtain an under­
standing of the non-linear evolution of the inhomogeneities. This direct method is 
technically useful. We presented the analysis in the Appendix for the purpose of a 
check. For conceptual reasons, here, we take another approach, i.e., we consider the 
long-wavelength approximation in the context of the Hamilton-Jacobi formalism. 

Let us follow the method developed by Salopek and the co-authors. They 
expanded the generating functional in a series of terms according to the number of 
spatial gradients they contain: 

s = s<o> + s(2) + s<4> + s<s> + .... (18) 

As a result the Hamilton-Jacobi equation can be solved perturbatively as we will 
show. The lowest order Hamilton-Jacobi equation is 

1 as<o> as<o> [ w + 1 J 1 ¢ ( as<o> )2 

¢/Y Bru Brkt YikYit- 2w+fYuYkt + 2(2w+3) fr ~ 
1 1 as<o) as<o) .. as<o> 

2w+3 Jrru Bru -a¢-+/1+r"'x ... x.ra:x-=O. (19) 

It is difficult to obtain complete solutions of the Hamilton-Jacobi equation. Fortu­
nately, we need only the growing mode in the late stage or inflationary stage. Hence, 
we assume the quasi-isotropic ansatz 

(20) 
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The diffeomorphism invariance is automatically satisfied by this ansatz. Substitut­
ing the ansatz (20) into Eq. (19), we obtain 

4w+6 aH 
3w+4 ax· 

The solution of Eq. (21) becomes 

H(x) 4w+6 1 
3w+4 X ' 

(21) 

(22) 

where we have ignored the integration constant, because it is a decaying mode. 
Hereafter, we choose the comoving gauge X.;=O. In principle, we are free to choose 
the time slicing. For a dust fluid, a natural choice is the comoving gauge X.;=O. 

Fortunately, in this case, we can also take the synchronous gauge, and x has the 
meaning of time. Equations of motion give 

H 
2w+3 ¢' 

2w+2 
2w+3 Hr;,· · 

Their solutions are 

¢= x2/(3w+4) ¢(x)' 

rij= X(4W+4)/(3w+4) hij(X) ' 

(23) 

(24) 

(25) 

(26) 

where ¢(x) and hij(x) are arbitrary functions of spatial coordinates, which we call the 
seed scalar and seed metric, respectively. 

The second order Hamilton-Jacobi equation is given by 

2w+2 85<2> H 85(2) 
2w+3 rij 8y;j + 2w+3 ¢~ 

85(2) It c 
+~ -li¢R+w ¢ rija;¢aj¢+2v r.:::J¢=0. (27) 

To simplify the Hamilton-Jacobi equation, we utilize a conformal transformation of 
the three-metric and the Brans-Dicke scalar to define variables 

where Q and W satisfy 

aQ w+1 
ox 2w+3 HQ' 

aw 1 
ax 2w+3 HW. 

And then, 

(28) 

(29) 

(30) 

(31) 
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786 J Soda, H. Ishihara and 0. Iguchi 

Q= x<2w+2)!(3w+4)' (32) 

w = x21(3w+4) . (33) 

Hence, the Hamilton-Jacobi equation reduces to 

(34) 

This is easily integrated to 

(35) 

where we have ignored the irrelevant homogeneous solution. Now the equation of 
motion becomes 

(36) 

H 1 1 [ oS<2
J oS(2) J 

2w+3 ¢+ 2w+3 rr ¢-a¢- rij orij . (37) 

We expand¢ as ¢=¢<0J+¢<2J+···. 

(38) 

Up to second order, the solution is given by 

</J=x21(3w+4J¢+ (3w+4)
2 

X(2w+6)/(3w+4)F(h .j)) 
(5w+8)(2w+3)(2w+4) ' ' (39) 

where 

(40) 

Similarly, the metric is solved as 

r ··="V(4w+4)/(3w+4)h··+ (3w+4)
2 

'Y2P(h :i) 
.., " .., (5w+8)(2w+4)" ' 'P ' 

(41) 

where 

P(h, .j)) w + 1 ( w + 1 w - - kl 

2w+ 3 hijR h)-2Rij(h)- 2w+ 3 hij ¢ 2 ok¢ot¢h 

2w ::1 ;;::1;; 2w+2 h 1 hkt:i 2 ;; 
+ ¢ 2 Ui<pUj<p- 2W+ 3 ij ¢ <p; kl+ ¢ <p; ij. 

The inhomogeneities of the space-time grow as x<2w+4Jt<2w+a) in this case_ It is interest­
ing to see if this tendency will continue or not. Therefore, we proceed to higher order 
calculations. A higher order generating functional is obtained by 
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(42) 

where 

n-1 1 ¢ o5(2k) os<zn-2k) 
+ ~1 2(2w+3) rr _o_¢_ --''--co:-:¢-

n-1 1 1 os<zk> os<zn-zk> 
~1-=2-w-=-+:-3::- rr r ij -or_ij_ o¢ 

Using the conformal transformation method, we obtain the recursion relation 

s;s<zn> 
T+R(2n)=O. 

This leads to 

_ _ 3w + 4 fd3 R<zn>[ A.( ) ( )] 
- (2n+3)w+4n+4 X X X,"+' X 'Yij X . 

From this expression, we can guess the following formal expansion: 

ru= ~ Cnx(4w+4)/(3W+4)+(2w+4)1(3w+4)n ' 

n 

(43) 

(44) 

(45) 

(46) 

where Cn can be, in principle, determined perturbatively. This formal expansion 
indicates the growing nature of the inhomogeneities of space-time. It should be noted 
that this expression (46) coincides with that of general relativity in the limit w-+co. 

§ 4. Cosmological constant 

It is possible to show that the inhomogeneities grow or decay, as time increases, 

depending on the equation of state for perfect fluid matter. As we have investigated 
dust matter which satisfies the strong energy condition, here, we will study the 
cosmological constant model as a typical one which does not satisfy the strong energy 

condition. The action is given by 

(47) 

As is explained in the previous section, we can obtain the Hamilton-Jacobi equation: 

w + 1 J 1 ¢ f aS ) 2 

2w+3 YuYkl + 2(2w+3) Tr\ a¢ 
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It is our task to solve the above Hamilton-Jacobi equation using the long-wavelength 
approximation. The lowest equation becomes 

1 8S<0l 8S<Ol [ (t) + 1 J 1 _JJ__} 8S<Ol )2 
¢/r 8rij 8rkl rikrjl- 2(/)+:friirkl + 2(2(/)+3) Tr\~ 

1 1 8S<oJ 8S<o) r 
2(/)+ 3 Jrrij 8rij "8¢-+2Avr=O. (49) 

Here, we seek the quasi-isotropic solution again. For this purpose, we assume the 
ansatz 

s<o)=-2/ 
2~! 3 jd3x/rH(¢). 

Substituting Eq. (50) into Eq. (49), we get 

H
2 
=-2-( iJH )2 _.1_ H iJH + 2A 

¢2 3(/) iJ¢ (/) ¢ iJ¢ ¢ . 

Then, we obtain 

H =/ 12(/)A -~,112 
6(/)+5 'f' • 

Using the equations of motion, we obtain the lowest solution 

4A 2 

(2(/)+3)(6(/)+5) t ' 

(50) 

(51) 

(52) 

(53) 

(54) 

If (/) > 1/2, the space-time shows power-law expansion which is closely related to the 
extended inflationary scenario. The next order equation is 

(2 1) I 4A -1,-(i/2) 85(2
) +2 I 4A -t.l/2 85(2

) 

(/)+ V (2(/)+3)(6(/)+5) '~-' rij 8rij V (2(/)+3)(6(/)+5) '~-' ~ 

-/r¢R+/r¢riiiJ;¢oj¢+2/rLJ¢=o. 

Direct integration yields 

S <2J 2 (ds r[-~,st2R ((1)-1) ii:. -~,:. "'] (2(/)+ 7)AP xv- r '~-' - ¢1'2 r Ui'f'Uj'f' , 

where 

From the generating functional, the next order correction is calculated as 

-~,< 2l= 4A ts-2wR(h) 
'f' ((1)-1)(2(/)+7)(2(/)+3)2(6(/)+5) ' 

(55) 

(56) 

(57) 

(58) 
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(59) 

In contrast to the dust case, the inhomogeneities will decay if w > 1/2. This case 
corresponds to power law inflation. Recursive calculation gives higher order solu­
tions. It is not difficult to guess the expansion form for further correction: 

(60) 

Therefore, the inhomogeneities of the gravitational constant will decay in the power 
law inflation case. 

§ 5. Discussion 

It is known that the Brans-Dicke theory is the most permissible alternative to 
general relativity in the sense that it appears as a low energy theory of superstring 
theory naturally and it passed the classical tests such as the equivalence principle. 
Here, let us comment on the experimental constraints. Solar-system experiments 
yield the constraint w~500.11 > Recently, Fujii discussed the possibility of the quan­
tum violation of the weak equivalence principle to constrain w to be w ~ 106 for a 
certain force-range. 12

> Even if it were true locally, inhomogeneities of the gravita­
tional constant would be allowed. In these situations, the perturbative argument may 
not be applicable. Anyway, this direction of thought is still tentative although it is 
interesting and important. On the other hand, the time variation rate of the gravita­
tional constant is constrained experimentally: 11

> 

g ~1o-12 
In the isotropic and homogeneous flat Universe, the time variation of the gravitational 
constant becomes 

where H is the Hubble parameter. The constraint on w from the variation rate is not 
so severe in comparison to the solar-system experiments. 

Now we shall discuss the evolution of the gravitational constant in the in­
homogeneous case. First, let us consider the dust model and define the local Hubble, 

2w+2 1 {1- (w+3)(3w+4)2 
(2w+4)/(3W+4) u} 

3w+4 x 4(5w+8)(2w+3)(w+ 1) X ' 
(61) 

where 

(62) 
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Then, within the accuracy of the present approximation, the rate of variation of the 
gravitational constant is given by 

c= _ _jj_[1+ (3w+4Y x(2w+2)/(3w+4>Q(h ¢)] 
G w+ 1 6(5w+8)(w+ 1) ' ' (63) 

where 

(64) 

Due to the local curvature and the inhomogeneities of the Brans-Dicke field, the 
evolution of the effective coupling constant at that point is altered as in Eq. (62). 
This effect becomes dominant in the late stages. For example, in the case ¢ =0, the 
positive curvature enhanced the decreasing effect, and the negative curvature supres· 
sed the decreasing effect. In general, the inhomogeneities of the gravitational con­
stant itself influence the evolution rate of G. Thus the inhomogeneities become 
significant. Let us look at the evolution of the density of the dust: 

p~ y-(l/2)=_1_x-(6W+6)/(3W+4){1 + (w+3)(3w+4)
2 

x(2W+4)/(3W+4) u} • (65) 
/h 4(5w+8)(2w+3)(w+2) 

This shows that the high density region and the small gravitational constant region 
coincides. This may have some interesting consequences for astrophysics. 

In the case of the cosmological constant, the time evolution of the gravitational 
constant is given by 

where 

c 
G 

4 - [ (4w-1)(4w+3) I-2wR(h)J 
2w+ 1 H 1 

+ 6(w-1)(2w+ 1)(2w+3)(2w+7) t ' 

2w+ 1 [1 
2t 

2w(w + 2) 1-2w R(h)J 
3(w-1)(2w+ 1)(2w+3)(2w+7) t · 

(66) 

(67) 

In the case of power law inflation, the homogenization of the time variation rate of the 
gravitational constant occurs. 

§ 6. Conclusion 

As a fundamentally important theory, we have studied the Brans-Dicke theory 
using the long-wavelength approximation. First of all, we presented the Hamilton­
Jacobi equation for the Brans-Dicke theory which has a different structure from that 
of general relativity. The Hamilton-Jacobi equation thus obtained is considered as 
the semi-classical equation corresponding to the Wheeler-DeWitt equation for the 
Brans-Dicke theory. Applying the method of Salopek and co-authors, we have 
obtained approximate solutions up to the first order of curvature correction in the 
case of dust fluid and the cosmological constant. As the Brans-Dicke scalar can be 
regarded as the effective gravitational constant, the non-linear evolution of the 
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inhomogeneities of the Brans-Dicke field is interesting. In the above two cases, we 
investigated this problem. From the results, we can conclude that the in­
homogeneities of the gravitational constant will decay in the case of inflationary 
matter and grow in the case of ordinary matter which satisfies the dominant energy 
condition. We have also calculated the approximate solutions using the direct 
method of Comer et al. These calculations appear in the Appendix. 
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Appendix 
--Anti-Newtonian Formalism --

The equations of motion for the Brans-Dicke theory are 

G,_w=TMpu+ ~ (¢:w-gpu0¢)+ ;-(aP¢av¢- ~gpuaa¢aa¢), 

8Jr 
2w+3 TM' 

(68) 

(69) 

where TMPv is the energy momentum tensor of the matter. Hereafter we will consider 
irrotational dust fluid. In the synchronous gauge, we can write the above equations 
in the following way: 

KK/+ ~ Kki+<3lRki= ~ [ ¢i~-K/¢+ ~ 8ki(- ¢'-K¢+L1¢)] 

w ai"'a "·+4Jr ~ i +------;;;: 'f' k'f' ¢PUk, 

8Jr 
2w+3P' 

where p is the energy density of the dust fluid. 
Define 

We can write the above equations in the following way: 

(70) 

(71) 

(72) 

(73) 

(74) 
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-.E;~"+ ~ Kj;=- ~ ¢.;+ ~Kl¢1."-; ¢a;¢, 

___LK +.l-K2+1_.E i_E."+1_<3>R= _1_ (l__;p·+ K¢)+l.dq; 
at 2 4 k ' 4 ¢ 2 q; 

3 (J) ).2 (J) 1 (JkA..(J A.. -4 ----;;; <p + 4 ----;;; <p k <p ' 

___LK + .J: i.J:.k +l_K2= -~).2_(w+3) ji_ 
at k ' 3 ¢ 2 <p ¢ 

-(w+2)K: +(w+2) ~LJ¢;, 

___L.J: ;+K.J: ;_.J: ;J__=R ;_1_0 ;R+_l_(-~..:; _ _l_s- iAA..) at k k k q; k 3 k q; <p. k 3 Uk £.J<p 

(75) 

(76) 

(77) 

(78) 

We now consider these equations order by order in the gradient expansion. At 
lowest order, we neglect the terms which have two spatial derivatives, i.e., <

3
> R, LJ¢;, 

etc. Furthermore, we impose a quasi-isotropic nature .J:/=0. In this order, we obtain 
the solutions 

¢= ;j(x)t21(3w+4>, 

p= i(x) 4cv+6 t-<6w+6)1(3w+4>. 
8n 3w+4 

(79) 

(80) 

(81) 

Here, hij and i depend on the spatial coordinates. Substituting (79) ~ (81) into 
Eqs. (75)~(78) and keeping the next order terms, we obtain 

3w+4 t-wl<3w+4>[-(R·i _l_0_;R)+l (-~..: ~-l_o.iLJA..) 
5w+8 J :3 J if; 'P.J 3 J 'P 

(82) 

(3w +4)2 t<2w+6JI(3w+4)[1_¢R + 2(w + 1).d¢ -~()kif;() ¢] 
(5c:v+8)(2w+4)(2w+3) 2 2¢ k ' 

(83) 

3cv+4 t-wt(3w+4>[-R.i+ cv+1 o·iR+l_A..!! 
5w+8 J 2(2c:v+3) J ¢ <p,J 

+ cv ai-~..a-~.. cv + 1 a i w ak-~..a -~..] ----;;J 'P j<p 2(2w+3) j ¢ 2 'P k'P ' (84) 
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w+ 1 a i (l) ()kA..() "'] 
2(2w+3) i----;;J '+' k'+' · 

The above results completely agree with the Hamilton-Jacobi calculation. 
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