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1. Introduction

A network (or a graph) is a set of items, referred to as vertices or nodes, with
connections between them referred to as edges. The main tools for the study of
networks come from combinatorics and graph theory. But in the recent years
there is an increasing interest in the investigation of dynamical systems and
differential equation on networks, in particular in connection with problem
of data transmission and traffic management (see for example Garavello and
Piccoli [9], Engel et al. [6]). In this perspective, the study of control problems
on networks has interesting applications in various fields. Note that partial
differential operators on ramified spaces have also been investigated, see e.g.
[14,15].

A typical optimal control problem is the minimum time problem, which
consists of finding the shortest path between an initial position and a given tar-
get set. If the running cost is a fixed constant for each edge and the dynamics
can go from one vertex to an adjacent one at each time step, the corresponding
discrete-state discrete-time control problem can be studied via graph theory
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and matrix analysis. If instead the cost changes in a continuous way along
the edges and the dynamics is continuous in time, the minimum time problem
can be seen as a continuous-state continuous-time control problem where the
admissible trajectories of the system are constrained to remain on the network.
While control problems with state constrained in closures of open sets are well
studied [4,11,17,18] there is to our knowledge much fewer literature on prob-
lems on networks: we very recently became aware of the thesis of Schieborn
[16] devoted to the eikonal equation on networks, with an approach different
from the one presented below. We also would like to mention the very recent
preprint by Imbert, Monneau and Zidani [10] on an Hamilton–Jacobi approach
to junction problems and traffic flows, in which the authors assume that the
Hamiltonians associated with each edge do not depend on the state variable
but may jump at the crosspoints. Their assumptions and their technique for
proving the uniqueness of the viscosity solution greatly differs from ours, see
our comment at the beginning of Sect. 5.3. The results of Frankowska and
Plaskacz [7,8] do apply to some closed sets with empty interior, but not to
networks with crosspoints (except in very particular cases).

The aim of this paper is therefore to study optimal control problems
whose dynamics is constrained to a network and the related Hamilton–Jacobi–
Bellman equation. Note that other types of optimal control problems could be
considered as well, leading to other boundary conditions at the endpoints of
the network. In most of the paper, we will consider for simplicity the model
given by a star-shaped network, i.e. straight edges intersecting at the origin,
see Fig. 1. This simple model problem already contains most of the difficul-
ties that we have to face in more general situations. We shall briefly discuss
more general networks with a finite number of vertices in Remark 5.5. Since
the dynamics is constrained to the network, the velocities tangent to the net-
work vary from one edge to another, hence the set of the admissible controls
depends on the state of the system. If the set of admissible controls varies
in a continuous way, the corresponding control problem can be studied via
standard viscosity solution techniques (see Koike[12]). But for a network, the
set of admissible controls drastically changes from a point in the interior of
an edge, where only one direction is admissible (with possibly positive and
negative velocities), to a vertex (or crosspoint) where the admissible direc-
tions are given by all the edges connected to it. Therefore, even if the data
of the problem are regular, the corresponding Hamiltonian when restricted to
the network has a discontinuous structure. Problem with discontinuous Ham-
iltonians have been recently studied by various authors (see e.g. Bressan and
Hong [3], Deckelnick and Elliott [5], Koike [12], Soravia [19], Tourin [20]), but
the approaches and the results considered in these papers do not seem to be
applicable because of the particular structure of the considered domain.

Assuming that the set of the admissible control laws—i.e. the control laws
for which the corresponding trajectory remains on the graph—is not empty,
the control problem is well posed and the corresponding value function satis-
fies a dynamic programming principle. We introduce a first set of assumptions
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which guarantees that the value function is continuous on the network (with
respect to the intrinsic geodetic distance).

The next step is to introduce a definition of weak solution which may
ensure the uniqueness of the continuous solution via a comparison theorem.
While in the interior of an edge we can test the equation with a smooth test
function as in the standard case, the main difficulties arise at the vertices
where the network does not allow a regular differential structure. At a vertex,
we consider a concept of derivative similar to that of Dini’s derivative, see for
example [2], hence regular test functions are the ones which admit derivatives
in the directions of the edges adjacent to the node. Using the previously men-
tioned class of test functions, we give a definition of viscosity solution on the
network of the associated Hamilton–Jacobi equation, see (4.1). Note that at
the crosspoints of the network, the definition of the Hamiltonian has to be
particular, in order to take into account all the possible directions. It is worth
to observe that this definition reduces to the classical one of viscosity solution
if the graph is composed of two parallel segments entering in a node, see [2].

An important part of the present paper is devoted to proving comparison
principles under fairly general assumptions: for example, our results apply to
the case when on each edge of the network, the running cost is some power
of the velocity, with exponents that may vary (within a suitable set) from one
edge to another. In the proofs, the classical doubling technique of viscosity
solution theory, see [13], is still used, but here, the choice of the penalty term
in this argument requires a special care: we will see that the chosen penalty
function is generally not symmetric w.r.t. the doubled variables, and that, to
cope with the discontinuity in the Hamiltonians, it may depend on the small
parameter ε used in the method. In the simplest case, i.e. when the running
cost does not depend on the control, the penalty term will be connected to the
minimal time function with the dynamics frozen at the vertex; moreover, it will
be bounded from above and below by some factor times the squared intrinsic
geodetic distance, which, fixed one argument, is a regular test function of the
other argument in the sense mentioned above.

We conclude observing that this paper is a first attempt to study
Hamilton–Jacobi–Bellman equations and viscosity solutions on a network, and
many questions remain to be studied, such as sub and super optimality prin-
ciples, discontinuous viscosity solutions, stochastic control problems.

The paper is organized as follows: the control problem and the basic
assumptions are set in Sect. 2. In Sect. 3, we define useful notions. In Sect. 4,
we propose a definition of viscosity solutions of the Hamilton–Jacobi equation
on the network, and we prove that the value function of the control problem
is a viscosity solution. Comparison principles are studied in Sect. 5.

2. Setting of the problem and basic assumptions

We consider a planar network with a finite number of edges and vertices. A
network in R

2 is a pair (V, E) where
(i) V is a finite subset of R

2 whose elements are said vertices
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(ii) E is a finite set of regular arcs of R
2, said edges, whose extrema are

elements of V.
We say that two vertices are adjacent if they are connected by an edge. We say
that a vertex belongs to ∂V [resp., int(V)] if there is only one (resp., more than
one) edge connected to it. We assume that the edges cross each other trans-
versally. We denote by G the union of all the edges in E and all the vertices in
V. We denote by G the set G\∂V.

Except when explicitly mentioned, we focus for simplicity on the model
case of a star-shaped network with N straight edges, N > 1, see Fig. 1, i.e.

G = {O} ∪
N⋃

j=1

Jj ⊂ R
2, O = (0, 0), Jj = (0, 1)ej ,

where (ej)j=1,...,N is a set of unit vectors in R
2 s.t. ej �= ek if j �= k. Note

that ej = −ek is possible. Then, ∂V = {ej , j = 1, . . . , N} and int(V) = {O}.
We will use the notation ∂G ≡ ∂V. To avoid the trivial case of an interval, we
assume that there is at least a pair (j, k), j �= k s.t. ej is not aligned with ek.
The general case will be dealt with in a forthcoming paper, where we will also
consider structures made of several manifolds of different dimensions crossing
each other transversally.
Hereafter, the notation R+ stands for the interval [0,+∞).
For any x ∈ G, we denote by Tx(G) ⊂ R

2 the set of the tangent directions to
the network, i.e. Tx(G) = Rei,∀x ∈ Ji; Tei

(G) = R−ei and TO(G) = ∪N
i=1R+ei.

We now introduce the optimal control problem on G. We start by making some
assumptions on the structure of the problem.
Call B the closed unit ball of R

2 centered at O. Take for A a compact set of

Figure 1. A star shaped network G
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R
2 and a continuous function f : B ×A → R

2 such that

|f(x, a) − f(y, a)| ≤ L|x− y|, ∀x, y ∈ B, a ∈ A. (2.1)

The continuity of f implies that there exists M > 0 such that

|f(x, a)| ≤ M, ∀x ∈ B, a ∈ A. (2.2)

Denoting by A the class of the control laws, i.e. the set of measurable functions
from [0,+∞) to A, we consider the dynamical system

{
ẏ(t;x, α) = f(y(t;x, α), α(t)), t > 0,
y(0) = x,

(2.3)

for x ∈ G and α ∈ A. In order for (2.3) to make sense, additional assumptions
will be made below.

Remark 2.1. We have chosen to parametrize the dynamics by a function f
defined on B × A, i.e. on a much larger set than G × A. We could also have
defined f on G × A only. This would have been equivalent since by Whitney
extension theorem one can extend any Lipschitz function defined on G to a
Lipschitz function defined on B. In fact, all the assumptions made below on
f involve f |G×A only. Yet, it seemed to us that defining f on B × A led to
simpler notations.

We introduce the subset Ax ⊂ A of the admissible control laws, i.e. the
control laws for which the dynamics (2.3) is constrained on the network G:

Ax = {α ∈ A : y(t;x, α) ∈ G, ∀t > 0}.
We also define for x ∈ G,

Ax = {a ∈ A s.t. ∃θ > 0 : y(t;x, a) ∈ G,∀t, 0 < t < θ}.
From the continuity of f, we see that for all a ∈ Ax, f(x, a) ∈ Tx(G).

Assumption 2.1. There exist non empty closed subsets Aj of A, j = 1, . . . , N,
such that
1.

A =
N⋃

j=1

Aj

2. for j ∈ {1, . . . , N}, x ∈ Jj and a ∈ A, f(x, a) ∈ Rej if and only if a ∈ Aj

3. for j ∈ {1, . . . , N},
Aej

= {a ∈ Aj : f(ej , a) · ej ≤ 0} �= ∅, and inf
a∈Aej

f(ej , a) · ej < 0 (2.4)

4.

AO = ∪N
j=1{a ∈ Aj : f(O, a) ∈ R+ej} �= ∅ (2.5)

We easily obtain the following consequences of Assumption 2.1:
• for j ∈ {1, . . . , N}, x ∈ Jj ,

Ax = Aj (2.6)
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• for j ∈ {1, . . . , N}, x ∈ Jj , there exists τx > 0 such that, for all α ∈ Ax,

α(t) ∈ Aj for a.a. t ∈ [0, τx] (2.7)

• Ax is not empty for any x ∈ G. Hereafter, we will always consider α ∈ Ax

in (2.3).

Remark 2.2. Identity (2.6) says that the set of constant controls for which the
trajectories leaving x ∈ Jj stay in G for a positive time is nonempty and does
not depend on x ∈ Jj . In (2.7), we see that for small durations, an admissible
control law at x ∈ G\{O} cannot take values outside Ax (except maybe on a
negligible set of times). The identity in (2.5) characterizes the set of constant
controls for which the trajectories leaving O stay in G for a positive time. Note
that the identity in (2.5) is not a consequence of the previous points only when
some edges are aligned. The assumption in (2.4) at the vertices in ∂V tells us
that there exist controls which make the trajectory enter G; this assumption
is classical in the context of state constrained problems.

Assumption 2.2. There exist constants ζj > 0 and ζ
j
> 0, j = 1, . . . , N, s.t.

co(f(O,Aj)) = [−ζ
j
, ζj ]ej , ∀j = 1, . . . , N, (2.8)

where co(F ) stands for the closed convex hull of F.

Remark 2.3. Assumption 2.2 is on the controllability near O. We will see that
it implies the continuity of the value function.

Remark 2.4. If ej = −ek then, from (2.8) and the continuity of f, ζj = ζ
k

and
ζk = ζ

j
.

Example 2.1. Take A = ∪N
j=1Rej ∩B and f(x, a) = g(x)a where g : B → R is

a positive and Lipschitz continuous function: we can see that all the assump-
tions above are satisfied. In particular, let us check that (2.7) holds in the
present case: take x ∈ G\{O}, for example x ∈ J1 and α ∈ Ax. With M as in
(2.2), take τx = |x|/(2M). It is easy to see that y(t;x, α) ∈ J1 for t ∈ [0, τx].
This implies that

∫ t

0
e1 ∧ f(y(s;x, α), α(s))ds = 0 for t ∈ [0, τx], and therefore

e1 ∧ f(y(t;x, α), α(t)) = g(y(t;x, α))e1 ∧ α(t) = 0 for almost all t ∈ [0, τx].
Therefore, since g is positive, α(t) ∈ A1 = A ∩ Re1 = Ax for almost all
t ∈ [0, τx].

Example 2.2. Take N unit vectors (ej)j=1,...,N , with ej = (cos θj , sin θj), θj ∈
[0, 2π). Choose ζj , ζj

2N positive numbers such that ζj = ζ
k

and ζk = ζ
j

if
ej = −ek. Take A = ∪N

j=1Rej ∩ B; let ζ : R → R+ be a 2π-periodic and con-
tinuous function such that ζ(θj) = ζj and ζ(−θj) = ζ

j
, j = 1, . . . , N ; Choose

f(x, a) = g(x)ζ(θ)a where a = |a|(cos θ, sin θ) and g : B → R is a positive and
Lipschitz continuous function. We can see that all the assumptions above are
satisfied.
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Example 2.3. Choose N unit vectors (ej)j=1,...,N and 2N positive numbers
ζj , ζj

as in Example 2.2. Take A = ∪N
j=1Kej ,K = {−1, 1}. Choose

f(x, a) = g(x)
N∑

j=1

(
−ζ

j
1a=−ej

+ ζj1a=ej

)
ej

where g : B → R is a positive and Lipschitz continuous function. We can see
that all the assumptions above are satisfied.

Example 2.4. As a particular case of Example 2.3, one may take the cross
shaped network G = {O} ∪ ⋃4

j=1 Jj , J1 = (0, 1)e1, J2 = −(0, 1)e1, J3 =
(0, 1)e2, J4 = −(0, 1)e2, e1 and e2 being two orthogonal unit vectors. One may
choose A = Ke1 ∪Ke2,K = {−1, 1} and f(x, a) = g(x)a where g : B → R is
a positive and Lipschitz continuous function.

Finally, we consider a continuous functions 	 : B × A → R. We may
suppose for simplicity that

|	(x, a)| ≤ M, ∀x ∈ B, a ∈ A, (2.9)

where M is the same constant as in (2.2). From the compactness of B and A,
there exists a modulus of continuity ω� such that

|	(x, a) − 	(y, a)| ≤ ω�(|x− y|), ∀x, y ∈ B, a ∈ A. (2.10)

For λ > 0, we consider the cost functional

J(x, α) =
∫ ∞

0

	(y(t;x, α), α(t))e−λtdt.

The value function of the constrained control problem on the network is

v(x) = inf
α∈Ax

J(x, α), x ∈ G. (2.11)

Assumption 2.1 and the assumptions on 	 are enough for the dynamic pro-
gramming principle:

v(x) = inf
α∈Ax

{∫ t

0

	(y(s;x, α), α(s))e−λsds+ e−λtv(y(t;x, α))
}
. (2.12)

The proof is standard along the arguments in Propositions III.2.5 or IV.5.5
in [2].

Proposition 2.1. Under the assumptions above, the value function is continu-
ous on G.
Proof. The proof is rather standard. It is given in [1]. �

We now give an example in which the value function is discontinuous:
let (e1, e2) be an orthonormal basis of R

2,G = (0, 1)e1 ∪ {O} ∪ (0, 1)e2, A =
{0, e1, e2}, f(x, a) = a(1−2|x|). Take 	(x, a) = 1 if x2 = 0 and 	(x, a) = 1−|x|



420 Y. Achdou et al. NoDEA

if x1 = 0. Assumption 2.2 is not satisfied. It is easy to compute the value
function v at x = (x1, x2): we have

v(x1, 0) =
1
λ
, 0 < x1 ≤ 1,

v(0, x2) =
1
2λ

+
1 − 2x2

4 + 2λ
, 0 ≤ x2 <

1
2
,

v(0, x2) =
1 − x2

λ
,

1
2

≤ x2 ≤ 1.

The value function is discontinuous at O.
Hereafter, we will make a further assumption, mainly in order to obtain

comparison principles in Sect. 5 below. Let us use the notation

mO = min
a∈A

	(O, a). (2.13)

Assumption 2.3. The function 	 satisfies: for all j = 1, . . . , N,

(0,mO) ∈ co
(
(f(O, a), 	(O, a)) : a ∈ Aj

)
.

Note that from Assumption 2.2, 0 ∈ co
(
(f(O, a) : a ∈ Aj

)
, for any j =

1, . . . , N,

Example 2.5. From Assumption 2.2, Assumption 2.3 is always satisfied if
	(O, a) does not depend on a.

Example 2.6. In the examples 2.1–2.4, we can take 	(x, a) = q(x)|a|ν + p(x),
where ν ≥ 0 and q and p are continuous functions defined on G with q(O) ≥ 0.

3. Preliminary notions for weak solutions

3.1. Test functions

We introduce the class of the admissible test functions for the differential
equation on the network

Definition 3.1. We say that a function ϕ : G → R is an admissible test function
and we write ϕ ∈ R(G) if

• ϕ is continuous in G and C1 in G\{O}
• for any j, j = 1, . . . , N, ϕ|Jj

∈ C1(Jj).

Therefore, for any ζ ∈ R
2 such that there exists a continuous function z :

[0, 1] → G and a sequence (tn)n∈N, 0 < tn ≤ 1 with tn → 0 and

lim
n→∞

z(tn)
tn

= ζ,

the limit limn→∞
ϕ(z(tn))−ϕ(O)

tn
exists and does not depend on z and (tn)n∈N.

We define

Dϕ(O, ζ) = lim
n→∞

ϕ(z(tn)) − ϕ(O)
tn

. (3.1)

If x ∈ G\{O} and ζ ∈ Tx(G), we agree to write Dϕ(x, ζ) = Dϕ(x) · ζ.
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Property 3.1. For any ρ > 0,Dϕ(O, ρζ) = ρDϕ(O, ζ).

Indeed, denoting by τn = tn/ρ, limn→∞ z(tn)/τn = ρζ. Hence,

ρDϕ(O, ζ) = lim
n→∞

ϕ(z(tn)) − ϕ(O)
τn

= Dϕ(O, ρζ).

As shown below, property 3.1 is not true if ρ < 0.
If ϕ ∈ C1(R2), then ϕ|G ∈ R(G) and Dϕ(O, ζ) = Dϕ(O) · ζ for any ζ ∈
R+ej , j = 1, . . . , N. If ej = −ek for some j �= k ∈ {1, . . . , N},Dϕ(O, ej) =
−Dϕ(O,−ej).
If ϕ is continuous and ϕ|Ḡ∩Rej

is C1 for j = 1, . . . , N, then ϕ ∈ R(G) but the
converse may not be true if two edges are aligned: for example, if ej = −ek

for some j �= k ∈ {1, . . . , N}, the function x �→ b|x| belongs to R(G) and
Dϕ(O, ej) = Dϕ(O,−ej) = b.

Property 3.2. If ϕ = g ◦ ψ with g ∈ C1 and ψ ∈ R(G), then ϕ ∈ R(G) and

Dϕ(O, ζ) = g′(ψ(O))Dψ(O, ζ).

3.2. Relaxed vector fields

Definition 3.2. For x ∈ G, we define the set FL(x) as follows:

FL(x) ≡ co ((f(x, a), 	(x, a)) : a ∈ Ax), if x ∈ G\{O}, (3.2)

FL(O) ≡
N⋃

j=1

(
co
(
(f(O, a), 	(O, a)) : a ∈ Aj

) ∩ (R+ej × R)
)
, (3.3)

FL(ej) ≡ co
(
(f(ej , a), 	(ej , a)) : a ∈ Aj

) ∩ (R−ej × R). (3.4)

4. Viscosity solutions

Hereafter, unless explicitly mentioned, we make all the assumptions of Sect. 2.

4.1. Definition of viscosity solutions

We now introduce the definition of a constrained viscosity solution of

λu(x) + sup
(ζ,ξ)∈FL(x)

{−Du(x, ζ) − ξ} = 0, (4.1)

in G, where FL(x) is defined in (3.2–3.4).

Definition 4.1. • A bounded and upper semi-continuous function u : G →
R is a subsolution of (4.1) in G if for any x ∈ G, any ϕ ∈ R(G) s.t. u−ϕ
has a local maximum point at x, then

λu(x) + sup
(ζ,ξ)∈FL(x)

{−Dϕ(x, ζ) − ξ} ≤ 0; (4.2)

• A bounded and lower semi-continuous function u : G → R is a super-
solution of (4.1) if for any x ∈ G, any ϕ ∈ R(G) s.t. u − ϕ has a local
minimum point at x, then

λu(x) + sup
(ζ,ξ)∈FL(x)

{−Dϕ(x, ζ) − ξ} ≥ 0; (4.3)
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• A continuous function u : G → R is a constrained viscosity solution of
(4.1) in G if it is a viscosity subsolution of (4.1) in G and supersolution
of (4.1) in G.

Remark 4.1. At x ∈ G\{O}, the notion of sub, respectively super-solution in
Definition 4.1 is equivalent to the standard definition of viscosity sub, respec-
tively super-solution of the equation

λu(x) + sup
a∈Ax

{−f(x, a) ·Du− 	(x, a)} = 0.

This is true because any test function in R(G) is C1 in a neighborhood of x and
because max(ζ,ξ)∈FL(x){−Dϕ(x) ·ζ−ξ} is equal to supa∈Ax

{−Dϕ(x) ·f(x, a)−
	(x, a)}. Similarly, at x ∈ ∂V, the notion of supersolution in G is equivalent to
the standard definition.

4.2. An observation on a different possible formulation

Before stating the existence result, we would like first to observe that thanks
to Assumption 2.3, the present definition of viscosity solution is equivalent to
a more general one, which is well adapted for the proof of existence: for that,
we first define some larger relaxed vector fields:

Definition 4.2. For x ∈ G, we introduce the sets

f̃(x) =

⎧
⎪⎪⎨

⎪⎪⎩
η ∈ Tx(G) :

∣∣∣∣∣∣∣∣

∃(αn)n∈N, αn ∈ Ax,∃(tn)n∈N, tn → 0+

s.t.

lim
n→∞

1
tn

∫ tn

0

f(y(t;x, αn), αn(t))dt = η

⎫
⎪⎪⎬

⎪⎪⎭

and

f̃	(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(η, μ) ∈ Tx(G) × R :

∣∣∣∣∣∣∣∣∣∣∣∣

∃(αn)n∈N, αn ∈ Ax,∃(tn)n∈N, tn → 0+

s.t.

lim
n→∞

1
tn

∫ tn

0

f(y(t;x, αn), αn(t))dt = η,

lim
n→∞

1
tn

∫ tn

0

	(y(t;x, αn), αn(t))dt = μ

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

Proposition 4.1. (a) Under all the assumptions made in Sect. 2 except
Assumption 2.3,

f̃	(x) = FL(x), if x ∈ G\{O}, (4.4)

f̃	(O) ⊃ FL(O), (4.5)

f̃	(ej) = FL(ej). (4.6)

(b) Under all the assumptions made in Sect. 2,
1. For all ζ ∈ f̃(O)∩R+ej , there exists ξ ∈ R such that (ζ, ξ) ∈ FL(O).
2. For all ζ ∈ f̃(O),

min {μ : (ζ, μ) ∈ FL(O)} = min
{
μ : (ζ, μ) ∈ f̃	(O)

}
.

Proof. For keeping the section brief, the proof is postponed to Appendix A. �
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Remark 4.2. The conclusions in point (b) of Proposition 4.1 hold if we replace
Assumption 2.3 with the following: for any i = 1, . . . , N, the sets Ai are of
the form Ai = [−ζ

i
, ζi]ei with ζ

i
> 0 and ζi > 0, f(O, a) = a if a ∈ Ai, and

a �→ 	(O, a) is convex on Ai.

Corollary 4.2. Under all the assumptions made in Sect. 2 and in view of Prop-
osition 4.1 (in particular point b. for x = O), (4.2) is equivalent to

λu(x) + sup
(ζ,ξ)∈f̃�(x)

{−Dϕ(x, ζ) − ξ} ≤ 0, (4.7)

and (4.3) is equivalent to

λu(x) + sup
(ζ,ξ)∈f̃�(x)

{−Dϕ(x, ζ) − ξ} ≥ 0. (4.8)

The same is true if the assumptions in Remark 4.2 are satisfied.

Remark 4.3. A definition of viscosity solutions using (4.7) and (4.8) would be
more general in the case when Assumption 2.3 is not satisfied. However, we
were not able so far to prove a comparison result without Assumption 2.3;
thus, in the present work, there is no real reason for using the more general
(and more abstract) definition, except for the proof of existence below.

4.3. Existence

Theorem 4.3. Under all the assumptions made in Sect. 2, the value function
v defined in (2.11) is a constrained viscosity solution of (4.1) in G.
Proof. From Corollary 4.2, we are going to use the relaxed vector fields f̃	(x)
instead of FL(x), i.e. to use (4.7) instead of (4.2) and (4.8) instead of (4.3) in
the proof. We recall that v satisfies the dynamic programming principle (2.12).
The value function v is a subsolution: it is enough to check that v is a subso-
lution at x = O. Let ϕ ∈ R(G) be such that v − ϕ has a maximum point at
O, i.e.

v(O) − v(z) ≥ ϕ(O) − ϕ(z) ∀z ∈ BO(r) ∩ G.
For (ζ, ξ) ∈ f̃	(O), there exists αn ∈ AO and tn → 0+ such that

ζ = lim
n→∞

y(tn;O,αn)
tn

= lim
n→∞

1
tn

∫ tn

0

f(y(t;O,αn), αn(t))dt,

ξ = lim
n→∞

1
tn

∫ tn

0

	(y(t;O,αn), αn(t))dt.

Take T > 0 such that y(t) = y(t;O,α) ∈ BO(r) ∩ G for any t ≤ T and all
α ∈ AO. From (2.12)

ϕ(O) − ϕ(y(t;O,αn)) ≤ v(O) − v(y(t;O,αn))

≤
∫ t

0

	(y(s;O,αn), αn(s))e−λsds+ v(y(t;O,αn))(e−λt − 1).

By (3.1),

−Dϕ(O, ζ) = lim
n→∞

ϕ(O) − ϕ(tnζ)
tn

.
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Since tnζ = y(tn;O,αn)+ o(tn) and ϕ is Lipschitz continuous, we deduce that

−Dϕ(O, ζ) = lim
n→∞

ϕ(O) − ϕ(y(tn;O,αn))
tn

.

On the other hand,

lim
n→∞

1
tn

∫ tn

0

	(y(s;O,αn), αn(s))e−λsds = ξ.

Therefore

−Dϕ(O, ζ) − ξ ≤ lim
n→∞

1
tn

(
v(y(tn;O,αn))(e−λtn − 1)

)
= −λv(O).

Since the latter holds for any (ζ, ξ) ∈ f̃	(O), we conclude that v is a subsolu-
tion at x = O.
The value function v is a supersolution. Let ϕ ∈ R(G) be such that v − ϕ has
a minimum point at O, i.e.

v(O) − v(z) ≤ ϕ(O) − ϕ(z) ∀z ∈ BO(r) ∩ G.
We can always assume that ϕ(O) = v(O) and v(z) ≥ ϕ(z), ∀z ∈ BO(r) ∩ G.
From (2.12), for ε > 0 and t > 0, there exists α ∈ AO (depending on ε and t)
such that

v(O) + tε ≥
∫ t

0

	(y(s;O,α), α(s))e−λsds+ e−λtv(y(t;O,α))

≥
∫ t

0

	(y(s;O,α), α(s))ds+ e−λtv(y(t;O,α)) + o(t),

from the boundedness of 	.
For t sufficiently small, we get

ϕ(O) − ϕ(y(t;O,α)) −
∫ t

0

	(y(s;O,α), α(s))ds+ (1 − e−λt)v(y(t;O,α))

≥ −tε+ o(t).

There exist sequences tn → 0 and αn ∈ AO, ζ and ξ such that ζ =
limn→∞

y(tn,O,αn)
tn

and ξ = limn→∞ 1
tn

∫ tn

0
	(y(s;O,αn), αn(s))ds. Hence

(ζ, ξ) ∈ f̃	(O) ⊂ TO(G) × R.
We clearly have

−ε+ o(1) ≤ ϕ(O) − ϕ(y(tn;O,αn))
tn

− 1
tn

∫ tn

0

	(y(s;O,αn), αn(s))ds

+
(1 − e−λtn)

tn
v(y(tn;O,αn)).

But, as above, limn→∞
ϕ(O)−ϕ(y(tn;O,αn))

tn
= −Dϕ(O, ζ). Therefore,

λv(O) + sup
(η,μ)∈f̃�(O)

{−Dϕ(O, η) − μ} ≥ λv(O) −Dϕ(O, ζ) − ξ ≥ −ε.
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From the arbitrariness of ε, we get that

λv(O) + sup
(η,μ)∈f̃�(O)

{−Dϕ(O, η) − μ} ≥ 0.

We conclude that v is a supersolution at x = O. �

5. Comparison principle

5.1. Strategy

We define the geodetic distance on G by

d(x, y) =
{ |x− y| if x, y ∈ Jj , j = 1, . . . , N,

|x| + |y| if x ∈ Ji, y ∈ Jj , i �= j.

Below, we give comparison principles under suitable assumptions. In their
proofs, the main idea is to replace the standard penalizing term in the classi-
cal doubling of variables technique, see [2, p. 292], i.e. d2(x,y)

ε where d(x, y) is

the geodetic distance between x and y, by a term d̃2
ε(x,y)

ε where d̃ε is a suitable
nonsymmetric function such that x �→ d̃ε(x, y) and y �→ d̃ε(x, y) are regular in
the sense of Definition 3.1.
For the reader’s convenience, we first deal with the simplest case when the
running cost does not depend on a: in this case, the choice of d̃ε(x, y) is simple
(it does not depend on ε), so some of the main ideas appear more clearly. In
the second part, we give a more general result, for which the choice of the test
function is more delicate.

5.2. The simplest case: the running cost does not depend on a

Here we assume that the running cost does not depend on a, so Assumption
2.3 is automatically satisfied.
In this case, it is clear that for any x ∈ G,FL(x) = F(x) × {	(x)}, where

F(x) ≡ co (f(x, a) : a ∈ Ax) , if x ∈ G\{O}, (5.1)

F(O) ≡
N⋃

j=1

(
co
(
f(O, a) : a ∈ Aj

) ∩ R
+ej

)
=

N⋃

j=1

[0, ζj ]ej , (5.2)

F(ej) ≡ co
(
f(ej , a) : a ∈ Aj

) ∩ R
−ej , j = 1, . . . , N, (5.3)

where the last identity in (5.2) is a direct consequence of Assumption 2.2. It
is also easy to check that (4.2) is equivalent to

λu(x) + sup
ζ∈F(x)

{−Dϕ(x, ζ)} − 	(x) ≤ 0,

and that (4.3) is equivalent to

λu(x) + sup
ζ∈F(x)

{−Dϕ(x, ζ)} − 	(x) ≥ 0.

For proving the comparison principle, the following function will be useful:
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Definition 5.1. Let the function d̃: G × G → R+ be defined by
⎧
⎨

⎩
d̃(x, y) = |x|

ζ
i

+ |y|
ζj

if x ∈ Ji, y ∈ Jj , i �= j,

d̃(x, y) = ((x−y)·ei)+
ζ

i

+ ((x−y)·ei)−
ζi

if x, y ∈ Ji.

where ζ
i

and ζi are the constants appearing in (2.8).

The following lemma can be easily checked:

Lemma 5.1. d̃ is a Lipschitz continuous function on G × G. For a fixed x ∈
G, y �→ d̃2(x, y) belongs to the class R(G) of test functions. Similarly, for a
fixed y ∈ G, x �→ d̃2(x, y) belongs to the class R(G) of test functions. There
exist two positive constants m and M such that

md(x, y) ≤ d̃(x, y) ≤ M d(x, y).

Remark 5.1. The quantity d̃(x, y) can be seen as the minimal time to reach y
from x, staying on G, with velocities in ∪jco(f(O,Aj)). Note that, in general,

d̃(x, y) �= d̃(y, x).

Theorem 5.2. (Comparison principle) We assume that 	(x, a) does not depend
on a. Under all the assumptions made in Sect. 2, if u and v are respectively a
subsolution of (4.1) in G and a supersolution of (4.1) in G such that

u ≤ v on ∂G, (5.4)

then u ≤ v in G.
Proof. Note that u− v is bounded and upper semi-continuous on G.
We assume by contradiction that there exist x0 ∈ G, χ > 0 such that

u(x0) − v(x0) = max
G

(u− v) = χ,

and we consider

Φε(x, y) = u(x) − v(y) − d̃2(x, y)
2ε

, x, y ∈ G.
Let (xε, yε) be a maximum point of Φε; we have

χ = Φε(x0, x0) ≤ Φε(xε, yε).

From Φε(xε, xε) ≤ Φε(xε, yε), we get d̃2(xε,yε)
2ε ≤ v(xε) − v(yε) and since v is

bounded,

d̃(xε, yε) ≤ C
√
ε.

Hence xε, yε converge for ε → 0 to a point x and, by (5.4), x ∈ G. There-
fore we can assume that for ε sufficiently small, xε, yε ∈ G and, by standard
arguments, we can prove that

lim
ε→0

d̃2(xε, yε)
2ε

= 0.
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Moreover, x �→ u(x) −
(
v(yε) + d̃2(x,yε)

2ε

)
has a maximum point at xε and by

Lemma 5.1,

λu(xε) + sup
ζ∈F(xε)

{
−D

(
x �→ d̃2(x, yε)

2ε

)
(xε, ζ)

}
− 	(xε) ≤ 0. (5.5)

Similarly, y �→ v(y) −
(
u(xε) − d̃2(xε,y)

2ε

)
has a minimum at yε and by

Lemma 5.1,

λv(yε) + sup
ζ∈F(yε)

{
−D

(
y �→ − d̃2(xε, y)

2ε

)
(yε, ζ)

}
− 	(yε) ≥ 0. (5.6)

If xε = yε, subtracting (5.6) from (5.5) we get

λ(u(xε) − v(xε)) ≤ 0,

and letting ε → 0, we obtain the contradiction χ ≤ 0. Hence we can assume
xε �= yε.

1st case: xε �= O, yε �= O: From (5.5) and (5.6), taking into account
Remark 4.1, we get

λ(u(xε) − v(yε)) ≤ − sup
a∈Axε

{
−D

(
x �→ d̃2(x, yε)

2ε

)
(xε, f(xε, a))

}

+ sup
a∈Ayε

{
−D

(
y �→ − d̃2(xε, y)

2ε

)
(yε, f(yε, a))

}

+	(xε) − 	(yε). (5.7)

• If xε, yε are on the same edge, for example, xε ∈ J̄1 and yε ∈ J̄1, the
arguments are similar to those used in the classical theory of viscosity
solutions; we give them for completeness. We make out two subcases:

– if xε · e1 > yε · e1 then d̃2(xε, yε) = |xε − yε|2/ζ2

1
, hence by (5.7),

(2.1), (2.6) and (2.10),

λ(u(xε) − v(yε))

≤ d̃(xε, yε)
ζ
1
ε

(
sup

a∈Ayε

{
− xε − yε

|xε − yε| · f(yε, a)
}

− sup
a∈Axε

{
− xε − yε

|xε − yε| · f(xε, a)
})

+	(xε) − 	(yε)

≤ L
d̃2(xε, yε)

ε
+ ω�(|xε − yε|),

(note that (xε − yε)/|xε − yε| ∈ Txε
(G) = Tyε

(G)), which yields the
desired contradiction by having ε tend to 0.

– if xε · e1 < yε · e1 then d̃2(xε, yε) = |xε − yε|2/ζ2

1, and we can repeat
the argument immediately above.
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• If xε, yε are not on the same edge, for example xε ∈ J1\{O} and yε ∈
J2\{O} then d̃2(xε, yε) = (|xε|/ζ1

+ |yε|/ζ2)2, hence by (5.7)

λ(u(xε) − v(yε))

≤ d̃(xε, yε)
ε

(
1
ζ2

sup
a∈Ayε

{
yε

|yε| · f(yε, a)
}

− 1
ζ
1

sup
a∈Axε

{
− xε

|xε| · f(xε, a)
})

+	(xε) − 	(yε),

(note that xε/|xε| ∈ Txε
(G) and yε/|yε| ∈ Tyε

(G)). From (2.1), we get

λ(u(xε) − v(yε))

≤ d̃(xε, yε)
ε

(
1
ζ2

sup
a∈Ayε

{
yε

|yε| · f(O, a)
}

− 1
ζ
1

sup
a∈Axε

{
− xε

|xε| · f(O, a)
})

+	(xε) − 	(yε) + L
d̃2(xε, yε)

ε
. (5.8)

From (2.6) and Assumption 2.2,

− 1
ζ
1

sup
a∈Axε

{
− xε

|xε| · f(O, a)
}

+
1
ζ2

sup
a∈Ayε

{
yε

|yε| · f(O, a)
}

= −1 + 1 = 0,

and we obtain the desired contradiction from (5.8) and (2.10).

2nd case: xε = O and yε �= O: Assume for example that yε ∈ J2\{O}
(we proceed similarly in the other cases). Take ζ ∈ F(O) where F(O) is given
by (5.2). We know that co

(
f(O, a) : a ∈ Aj

)
is contained in Rej ; therefore,

δ(ζ) ≡ D{x �→ d̃(x, yε)}(O, ζ) = − yε

ζ2|yε| · ζ if ζ is aligned with e2 and ζ · e2 > 0
or δ(ζ) = |ζ|/ζ

j
if ζ ∈ F(O)∩Rej is not aligned with e2 or if ej is aligned with

e2 and ζ · e2 < 0.
From (5.5) and (5.6), we get

λ(u(O) − v(yε)) ≤ d̃(O, yε)
ε

(
− sup

ζ∈F(O)

{−δ(ζ)} + sup
a∈Ayε

{
yε

ζ2|yε|
· f(yε, a)

})

+ 	(O) − 	(yε).

From (2.1), we get that

λ(u(O) − v(yε)) ≤ d̃(O, yε)
ε

(
− sup

ζ∈f̃(O)

{−δ(ζ)} + sup
a∈Ayε

{
yε

ζ2|yε|
· f(O, a)

})

+	(O) − 	(yε) + L
d̃2(O, yε)

ε
.
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Thus, from (5.2), we get that

− sup
ζ∈F(O)

{−δ(ζ)} + sup
a∈Ayε

{
yε

ζ2|yε|
· f(O, a)

}

= − max
j=1,...,N

max
ζ∈[0,ζj ]ej

(−δ(ζ)) + sup
a∈A2

{
e2 · f(O, a)

ζ2

}

= − max
j=1,...,N

max
ζ∈[0,ζj ]ej

(−δ(ζ)) + ζ2/ζ2

= −1 + 1 = 0,

where maxj=1,...,N maxζ∈[0,ζj ]ej
(−δ(ζ)) is obtained for ζ = ζ2e2. This, with

(2.10), yields the desired contradiction.
3rd case: xε �= O and yε = O: Assume for example that xε ∈ J2\{O} (we

proceed similarly in the other cases). Take ζ ∈ F(O) where F(O) is given by
(5.2). We know that δ(ζ) ≡ D{y �→ d̃(xε, y)}(O, ζ) = − xε

ζ
2
|xε| · ζ if ζ is aligned

with e2 and ζ · e2 > 0 or δ(ζ) = |ζ|/ζj if ζ ∈ F(O) ∩ Rej is not aligned with
e2, or if ej is aligned with e2 and ζ · e2 < 0.

From (5.5) and (5.6), we get

λ(u(xε) − v(O))

≤ d̃(xε, O)
ε

(
− sup

a∈Axε

{
− xε

ζ
2
|xε| · f(xε, a)

}
+ sup

ζ∈F(O)

{δ(ζ)}
)

+	(xε) − 	(O).

This implies that

λ(u(xε) − v(O))

≤ d̃(xε, O)
ε

(
− sup

a∈Axε

{
− xε

ζ
2
|xε| · f(O, a)

}
+ sup

ζ∈F(O)

{δ(ζ)}
)

+ 	(xε) − 	(O) + L
d̃2(xε, O)

ε
.

from (5.2), we get that

sup ζ∈F(O) {δ(ζ)} − sup
a∈Axε

{
− xε

ζ
2
|xε| · f(O, a)

}

= max
j=1,...,N

max
ζ∈[0,ζj ]ej

δ(ζ) − sup
a∈A2

{
−e2 · f(O, a)

ζ
2

}

= max
j �=2

ζj

ζj

− 1 = 0,

which, with (2.10), yields the desired contradiction. �
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5.3. More general cases

Assumption 2.3 will enable us to use the argument of doubling the variables.
This is in contrast with [10], where the authors do not make this assumption
and have to rely on a special technique for proving the uniqueness of the vis-
cosity solution.
Since the difficulties for proving the comparison results come from the junction
point O, it will be helpful to freeze the state variables at O and define the local
Hamiltonians associated with the edges Jj :

Definition 5.2. For j = 1, . . . , N, let Hj : R �→ R and H+
j : R �→ R be the

Hamiltonians:

Hj(p) = sup
a∈Aj

(−pej · f(O, a) − 	(O, a)), (5.9)

and

H+
j (p) = sup

(ζ,ξ)∈co{(f(O,a),�(O,a)),a∈Aj}, ζ·ej≥0

(−p ζ · ej − ξ), (5.10)

Lemma 5.3. Under Assumption 2.3,

Hj(0) = −mO, ∀j = 1, . . . , N, (5.11)

where mO is defined in (2.13) and

Hj(p) = H+
j (p), ∀p ≤ 0. (5.12)

Proof. It is clear that Assumption 2.3 implies (5.11). It also implies that for
all p ≤ 0 and (ζ, ξ) ∈ co{(f(O, a), 	(O, a)), a ∈ Aj} such that ζ · ej ≤ 0,

−pej · ζ − ξ ≤ −mO ≤ H+
j (p),

and thus (5.12). �

5.3.1. Assumptions. In what follows, we will need to somehow compare the
local Hamiltonians on different sides of the junction O. For that, we will make
one among the two assumptions below:

Assumption 5.1. There exist 2N positive constants Kj , kj , j = 1, . . . , N such
that

Hj (−Kjp) ≤ Hi (kip), ∀p ∈ R+,∀i, j, i �= j. (5.13)

Assumption 5.2. For all j = 1, . . . , N, there exist real numbers aj ≥ 0, bj >
0, cj > 0, dj > 0, ζ−

j > 0, ζ+
j > 0, αj > 1 and γj > 1 with

2min
i
αi > max

k
γk, and 2min

k
γk > max

i
αi, (5.14)

such that

Hj(−p) +mO ≤
{
ajp

αj , 0 ≤ p ≤ ζ−
j ,

bj(p− ζ−
j ) + aj(ζ−

j )αj , p ≥ ζ−
j ,

(5.15)

and

Hj(p) +mO ≥
{
cjp

γj , 0 ≤ p ≤ ζ+
j ,

dj(p− ζ+
j ) + cj(ζ+

j )γj , p ≥ ζ+
j .

(5.16)
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Remark 5.2. For example, condition (5.14) holds if for all i = 1, . . . , N, 1 <
αi ≤ 2 and 1 < γi ≤ 2.

Remark 5.3. In Assumption 5.2, we suppose in particular that for large val-
ues of |q|, the local Hamiltonians Hj(q) are bounded from above or below by
affine functions, depending on the sign of q, [see the second lines of (5.15) and
(5.16)]. In fact, this part of the assumption is not mandatory for the compar-
ison principle. Indeed, what follows holds if for p ≥ 0,

Hj(−p) +mO ≤ ajp
αj ,

Hj(p) +mO ≥ cjp
γj .

However, Assumption 5.2 is coherent with the assumption made in Sect. 2 on
the compactness of A.

We now give a series of examples, which show that in fairly general situ-
ations, at least one of the two assumptions above holds.

Example 5.1. Under the assumptions made in Sect. 2, Assumption 5.1 holds
if 	(O, a) does not depend on a. Indeed, Hj(p) = ζ

j
p+ + ζjp− − 	(O), and we

can choose Kj = 1/ζj and kj = 1/ζ
j
. Therefore Assumption 5.1 covers the

simplest case treated in the previous section.

Example 5.2. Take N unit vectors (ej)j=1,...,N . Only for simplicity, we assume
that ej are pairwise linearly independent. Take A = ∪N

j=1Rej ∩ B. Take 2N
positive numbers ζ

j
and ζj and a positive valued Lipschitz continuous function

ϕ defined in B and bounded from below by a positive number. There exists
a function f : B × A → R

2 satisfying all the assumptions in Sect. 2, whose
restriction to A ∩ Rej is

f |a∈Rej
(x, a) = ϕ(x)

(
1{a·ej≤0}ζj

+ 1{a·ej≥0}ζj

)
a.

Let us assume that ϕ(O) = 1. We take

	(x, a) = q(x)|a|ν +m(x),

where ν > 1 and q and m are continuous functions defined on G with q(O) > 0:
we have

Hj(p) +m(O) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−ζjp− q(O) if ζjp ≤ −νq(O),

(ν − 1)q(O)
( |p|ζj

νq(O)

) ν
ν−1

if −νq(O) ≤ ζjp ≤ 0,

(ν − 1)q(O)
(

pζ
j

νq(O)

) ν
ν−1

if 0 ≤ ζ
j
p ≤ νq(O),

ζ
j
p− q(O) if ζ

j
p ≥ νq(O),

then Assumption 5.1 is satisfied, with for example, Kj = 1/ζj and kj = 1/ζ
j
.

Example 5.3. We keep everything as in Example 5.2, except that we suppose
that the running cost is such that

	|x∈Jj ,a∈Rej
(x, a) = m(x) + qj(x)|a|ν ,
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where qj : Jj → R+ are continuous functions such that qj(O) > 0 for all j. We
have

Hj(p) +m(O) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−ζjp− qj(O) if ζjp ≤ −νqj(O),

(ν − 1)qj(O)
( |p|ζj

νqj(O)

) ν
ν−1

if −νqj(O) ≤ ζjp ≤ 0,

(ν − 1)qj(O)
(

pζ
j

νqj(O)

) ν
ν−1

if 0 ≤ ζ
j
p ≤ νqj(O),

ζ
j
p− qj(O) if ζ

j
p ≥ νqj(O).

Let us choose the constants kj and Kj such that, for all i �= j,

Kjζj < kiζi
min

(
1,
qj(O)
qi(O)

)
.

Then, for p ≥ 0, we can make out three cases:
case 1. Kjp ≥ νqj(O)/ζj . Thus, kip ≥ νqi(O)/ζ

i
and

Hi(kip) −Hj(−Kjp) = (kiζi
−Kjζj)p+ qj(O) − qi(O)

≥ (kiζi
−Kjζj)

qj(O)
Kjζj

+ qj(O) − qi(O)

= qj(O)
kiζi

Kjζj

− qi(O) ≥ 0.

case 2. kip ≤ νqi(O)/ζ
i
. Thus Kjp ≤ νqj(O)/ζj , and easy algebra shows

that Hi(kip) −Hj(−Kjp) has the same sign as
(kiζi

p)ν/qi(O) − (Kjζjp)ν/qj(O), which is positive.
case 3. νqi(O)/(kiζi

) ≤ p ≤ νqj(O)/(Kjζj). Comparing Hi(kip)
and Hj(−Kjp) amounts to comparing respectively a linear function and
a convex function: since Hi(kip) ≥ Hj(−Kjp) at the endpoints of the
interval, the inequality is also true in the whole interval.

We have shown that Assumption 5.1 holds.

Example 5.4. We keep everything as in Example 5.3, except that the exponent
ν may depend on j:

	|x∈Jj ,a∈Rej
(x, a) = m(x) + qj(x)|a|νj .

It can be checked that, if qj(O) > 0 and νj ∈ (0, 1) for all j, then Assumptions
2.3 and 5.1 are both satisfied.
On the other hand, if qj(O) > 0 for all j and if there exists a real number s ≥ 0
such that ν∗

j ∈ (2s, 2s+1] for all j, where ν∗ is the conjugate exponent of ν,
i.e. 1/ν+1/ν∗ = 1, then Assumptions 2.3 and 5.2 are satisfied. This condition
can be expressed as follows: there exists some nonnegative real number s such
that νj ∈ [1 + 1

2s+1−1 , 1 + 1
2s−1 ), for all j (in the particular case when s = 0,

this means that νj ∈ [2,+∞), for all j). This example shows that, for Assump-
tion 5.2 to hold, the power laws of the local Hamiltonian Hj near p = 0 may
have different exponents, but that these exponents should not be too far from
each other.
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5.3.2. The comparison principle. As explained in Sect. 5.1, we need to modify
the geodetic distance in order to prove a comparison principle with the dou-
bling of variables technique.
If Assumption 5.1 holds the situation is simple, because it is enough to take
d̃(x, y) defined as follows:
{
d̃(x, y) = ki|x| +Kj |y|, if x ∈ Ji, y ∈ Jj , i �= j,

d̃(x, y) = ki((x− y) · ei)+ +Ki((x− y) · ei)−, if x, y ∈ Ji.

(5.17)

We see that function d̃ is similar to the one used in Sect. 5.2, and the proof of
the comparison follows exactly the same lines.
Under Assumption 5.2, the situation is quite different, because the Hamilto-
nians Hj(p) + mO may have different behaviors when p → 0, and we may
have limp→0+

Hi(p)+mO

Hj(−p)+mO
= 0. To cope with this difficulty, we need to have

the modified distance depend on ε. The following lemma plays an important
role in the proof of the comparison principle under assumption 5.2.

Lemma 5.4. Let Assumptions 2.3 and 5.2 hold. Let ηj and μj be respectively
defined by

ηj = max
(

0,
αj − min1≤k≤N γk

αj

)
, (5.18)

μj = max
(

1,
αj

2αj − max1≤k≤N γk

)
, (5.19)

there exists kj > 0 and Kj > 0 such that, if d̃ε(x, y) is defined by
{
d̃ε(x, y) = ki|x| +Kjε

ηj |y|μj if x ∈ Ji, y ∈ Jj , i �= j,

d̃ε(x, y) = ki((x− y) · ei)+ +Kiε
ηi (((x− y) · ei)−)μi if x, y ∈ Ji,

(5.20)

then, for all sequences (xε, yε) such that xε ∈ Jj and yε ∈ Ji with i �= j, and

limε→0
d̃2

ε(xε,yε)
ε = 0, it is possible to extract a subsequence such that

Hj

(
D

(
x �→ d̃2

ε(x, yε)
2ε

)
(xε, ej)

)
≥ Hi

(
D

(
y �→ − d̃2

ε(xε, y)
2ε

)
(yε, ei)

)
.

(5.21)

Proof. The proof mainly consists of studying real variable functions. For the
reader’s convenience, we give it in Appendix B. �

Remark 5.4. In general, d̃ε(x, y) �= d̃ε(y, x).

Preliminary observations

1. We note that from (5.14), we have

0 ≤ ηj <
1
2
, ∀j = 1, . . . , N. (5.22)
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2. From (5.22), limε→0
d̃2

ε(xε,yε)
ε = 0 implies that the geodetic distance

between xε and yε tends to 0 when ε → 0.
3. Moreover, max(ηj , μj −1) = 0 if and only if αj = mink γk and maxk γk =

αj , i.e. γk = αj for all k = 1, . . . , N.
The following lemma can be proved easily:

Lemma 5.5. The function d̃ε defined by (5.20) is a Lipschitz continuous func-
tion on G ×G. For a fixed x ∈ G, y �→ d̃2

ε(x, y) belongs to the class R(G) of test
functions. Similarly, for a fixed y ∈ G, x �→ d̃2

ε(x, y) belongs to the class R(G)
of test functions.

Theorem 5.6. (Comparison principle) Under all the assumptions made in
Sect. 2 and either Assumption 5.1 or 5.2, if u and v are respectively a subso-
lution of (4.1) in G and a supersolution of (4.1) in G such that

u ≤ v on ∂G, (5.23)

then u ≤ v in G.
Proof. When Assumption 5.1 holds, we have already said that the proof is
exactly the same as that given in Sect. 5.2. Therefore, we focus on the case
when Assumption 5.2 holds, in which a more involved argument is needed.
We assume by contradiction that there exist x0 ∈ G, χ > 0 such that u(x0) −
v(x0) = maxG(u− v) = χ, and we consider

Φε(x, y) = u(x) − v(y) − d̃2
ε(x, y)
2ε

, x, y ∈ G,

where d̃ε is defined by (5.20). Let (xε, yε) be a maximum point of Φε; we have

χ = Φε(x0, x0) ≤ Φε(xε, yε). From Φε(xε, xε) ≤ Φε(xε, yε), we get d̃2
ε(xε,yε)

2ε ≤
v(xε) − v(yε) and since v is bounded, d̃ε(xε, yε) ≤ C

√
ε. Remember now that

the exponents ηj in the definition of d̃ε belong to [0, 1/2), see (5.22). Hence
xε, yε converge for ε → 0 to a point x and, by (5.23), x ∈ G. Therefore we can
assume that for ε sufficiently small, xε, yε ∈ G and, by standard arguments,
we can prove that limε→0

d̃2
ε(xε,yε)

2ε = 0. Moreover, x �→ u(x)−(v(yε)+
d̃2

ε(x,yε)
2ε )

has a maximum point at xε and by Lemma 5.5,

λu(xε) + sup
(ζ,ξ)∈FL(xε)

{
−D

(
x �→ d̃2

ε(x, yε)
2ε

)
(xε, ζ) − ξ

}
≤ 0. (5.24)

Similarly, y �→ v(y) − (u(xε) − d̃2
ε(xε,y)

2ε ) has a minimum at yε and by Lemma
5.5,

λv(yε) + sup
(ζ,ξ)∈FL(yε)

{
−D

(
y �→ − d̃2

ε(xε, y)
2ε

)
(yε, ζ) − ξ

}
≥ 0. (5.25)

If xε = yε, subtracting (5.25) from (5.24) we get

λ(u(xε) − v(xε)) ≤ 0,
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and letting ε → 0, we obtain the contradiction χ ≤ 0. Hence we can assume
xε �= yε.
Up to subsequence extraction, we distinguish the following possible cases:

1st case: xε �= O, yε �= O: From (5.24) and (5.25), we get

λ(u(xε) − v(yε))

≤ − sup
a∈Axε

{
−D

(
x �→ d̃2

ε(x, yε)
2ε

)
(xε, f(xε, a)) − 	(xε, a)

}

+ sup
a∈Ayε

{
−D

(
y �→ − d̃2

ε(xε, y)
2ε

)
(yε, f(yε, a)) − 	(yε, a)

}
.

(5.26)

• If xε, yε are on the same edge, for example, xε ∈ J̄1 and yε ∈ J̄1, then we
have two subcases

– if xε · e1 > yε · e1, then d̃ε(xε, yε) = k1|xε − yε|, hence by (5.26),
(2.1), (2.6) and (2.10),

λ(u(xε) − v(yε))

≤ − sup
a∈Axε

{
−k1d̃ε(xε, yε)

ε

xε − yε

|xε − yε| · f(xε, a) − 	(xε, a)

}

+ sup
a∈Ayε

{
−k1d̃ε(xε, yε)

ε

xε − yε

|xε − yε| · f(yε, a) − 	(yε, a)

}

≤ L
d̃2

ε(xε, yε)
ε

+ ω�(|xε − yε|),

(note that (xε − yε)/|xε − yε| ∈ Txε
(G) = Tyε

(G)), which yields the
desired contradiction by having ε tend to 0.

– If xε · e1 < yε · e1, then d̃ε(xε, yε) = K1ε
η1 |xε − yε|μ1 and

∣∣∣∣∣D
(
y �→ − d̃2

ε(xε, y)
2ε

)
(yε, f(xε, a) − f(yε, a))

∣∣∣∣∣

≤ d̃ε(xε, yε)
ε

K1μ1ε
η1 |xε − yε|μ1−1|f(xε, a) − f(yε, a)| ≤ C

d̃2
ε(xε, yε)
ε

and we use the same argument as above.
• If xε, yε are not on the same edge, for example xε ∈ J1\{O} and yε ∈

J2\{O} then d̃2
ε(xε, yε) = (k1|xε| +K2ε

η2 |yε|μ2)2, hence by (5.26)

λ(u(xε) − v(yε))

≤ − sup
a∈Axε

{
−k1d̃ε(xε, yε)

ε
e1 · f(xε, a) − 	(xε, a)

}

+ sup
a∈Ayε

{
K2μ2ε

η2 d̃ε(xε, yε)
ε

|yε|μ2−1e2 · f(yε, a) − 	(yε, a)

}
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From (2.1), we get

λ(u(xε) − v(yε))

≤ −H1

(
k1d̃ε(xε, yε)

ε

)
+H2

(
−K2μ2ε

η2 d̃ε(xε, yε)|yε|μ2−1

ε

)

+C
d̃2

ε(xε, yε)
ε

+ ω�(|xε|) + ω�(|yε|)

= H2

(
D

(
y �→ − d̃2

ε(xε, y)
2ε

)
(yε, e2)

)
−H1

(
D

(
x �→ d̃2

ε(x, yε)
2ε

)
(xε, e1)

)

+C
d̃2

ε(xε, yε)
ε

+ 2ω�(d(xε, yε)),

and we obtain the desired contradiction from (5.21).

2nd case: xε = O and yε �= O: Assume for example that yε ∈ J2\{O} (we
proceed similarly in the other cases).
From (5.24) and (5.25), we get

λ(u(O) − v(yε))

≤ − sup
(ζ,ξ)∈FL(O)

{
D

(
x �→ − d̃2

ε(x, yε)
2ε

)
(O, ζ) − ξ

}

+H2

(
−K2μ2ε

η2 d̃ε(O, yε)|yε|μ2−1

ε

)
+ C

d̃2
ε(O, yε)
ε

+ ω�(|yε|).

But

sup
(ζ,ξ)∈FL(O)

{
D

(
x �→ − d̃2

ε(x, yε)
2ε

)
(O, ζ) − ξ

}

= max

(
max
j �=2

H+
j

(
kj d̃ε(O, yε)

ε

)
,H+

2

(
−K2μ2ε

η2 d̃ε(O, yε)|yε|μ2−1

ε

))

and the desired contradiction follows from (5.12).
3rd case: xε �= O and yε = O: Assume for example that xε ∈ J1\{O} (we

proceed similarly in the other cases). From (5.24) and (5.25), we get

λ(u(xε) − v(O))

≤ −H1

(
k1d̃ε(xε, O)

ε

)
+ sup

(ζ,ξ)∈FL(O)

{
−D

(
y �→ − d̃2

ε(xε, y)
2ε

)
(O, ζ) − ξ

}

+C
d̃2

ε(xε, O)
ε

+ ω�(|xε|).
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But

sup
(ζ,ξ)∈FL(O)

{
−D

(
y �→ − d̃2

ε(xε, y)
2ε

)
(O, ζ) − ξ

}

= max

(
max
j �=1

H+
j

(
D

(
y �→ − d̃2

ε(xε, y)
2ε

)
(O, ej)

)
,H+

1

(
k1d̃ε(xε, O)

ε

))
.

We have H+
i (q) ≤ Hi(q), for all q and i. Thus, the desired contradiction follows

from the identity

k1d̃ε(xε, O)
ε

= D

(
x �→ d̃2

ε(x,O)
2ε

)
(xε, e1),

and (5.21). �

Theorem 5.7. Under all the assumptions made in Theorem 5.6, if u and v are
respectively a subsolution of (4.1) in G and a supersolution of (4.1) in G then
u ≤ v in G.
The value function is the only constrained viscosity solution of (4.1) in G.
Proof. The proof resembles that of Theorem 5.6, with more technicalities
near ∂V, see [2, p. 278]. We skip it for brevity, but we only mention that
it makes use of the piecewise linear vector field η on G defined by η(x) =
−(4(xi − 1/4)11/4≤xi<1/2 + 1xi≥1/2

)
ei in Ji, which plays the role of the vec-

tor field η in the formula (5.21) in [2, p. 278]. �

Remark 5.5. Here, we briefly sketch how the function d̃ε should be modified
in order to extend Theorem 5.6 to more general networks with a finite number
of crosspoints (Oi)1≤i≤P .

The edges are still denoted (Ji)1≤i≤N . Let d̃�,ε(x, y) be the function defined
by (5.20) for x and y in the union of the edges adjacent to O�. Let Ji join
two crosspoints Oi,1 = Oj and Oi,2 = Ok (the order is arbitrary): we define
d̄i,ε(x, y) on J̄i × J̄i by

d̄i,ε(x, y) = ϕi(x, y)d̃j,ε(x, y) + (1 − ϕi(x, y))d̃k,ε(x, y),

where ϕi(x, y) is a smooth function such that

ϕi(x, y) = 1 if (x, y) ∈ [Oi,1, Oi,1 + 1/3(Oi,2 −Oi,1)]2,

ϕi(x, y) = 0 if (x, y) ∈ [Oi,2 + 1/3(Oi,1 −Oi,2), Oi,2]2,

0 ≤ ϕi(x, y) ≤ 1 in J̄2
i .

If only one endpoint of Ji is a crosspoint, say Oj , then d̄i,ε(x, y) = d̃j,ε(x, y)
for (x, y) ∈ J̄2

i . Note that d̄i,ε(x, y) �= d̄i,ε(y, x).
Let t �→ γ(t) be a path from x to y on Ḡ, such that the velocity γ′(t) can
vary only if γ(t) is at a crosspoint. Let (in)0,...,Nγ

be the indices of the
edges successively crossed by γ. Note that if Nγ > 1 then the whole edges
Ji1 , . . . , JiNγ −1 are crossed. Assume also that γ crosses (Oij

)1≤j≤Nγ−1 in that
order: Oij

and Oij+1 are the endpoints of Jij
. We define |γ|ε = d̄i0,ε(x,Oi1) +
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∑Nγ−1
j=1 d̄ij ,ε(Oij

, Oij+1) + d̄iNγ ,ε(OiNγ
, y), if Nγ ≥ 1 and |γ|ε = d̄i0,ε(x, y) oth-

erwise. Finally, we define d̄ε(x, y) = minpaths γ |γ|ε.
It is possible to check from the fact that the exponents ηj in (5.20) are strictly
less than 1/2, [see (5.22)], that if d̄ε(xε, yε) ≤ C

√
ε, then xε and yε lie either

on the same edge or belong to two different edges adjacent to a same cross-
point, so near (xε, yε), d̄2

ε is regular in the sense of Definition 3.1. The function
d̄ε(x, y) can thus be used in place of d̃ε(x, y) for extending Theorem 5.6 to the
case of a network made of a finite number of straight edges.

Remark 5.6. (Multivalued optimal feedback) The comparison principle has
many consequences: one of them is the existence of multivalued optimal feed-
back under suitable assumptions. We refer to [2] and references therein for a
complete introduction to this topic. Here, for brevity, we just give an example
of a result that can be obtained. Knowing the value function v, let us introduce
the sets of controls:

SD(x) =
{
a ∈ Ax, lim inf

t→0+

v(x+ tf(x, a)) − v(x)
t

+ 	(x, a) ≤ λv(x)
}
.

If the comparison principle holds, if the value function is Lipschitz continuous,
and if for each x ∈ G, there exists an optimal control, then the multivalued
feedback SD is fully optimal. This means that for all x ∈ G, every solution of

{
y(t) = x+

∫ t

0
f(y(s), α(s))ds, t ≥ 0,

α(s) ∈ SD(y(s)), for a.a. s > 0,

is optimal. The proof is very much alike that given in [2, Section III.2.5, see
in particular Theorem III.2.61].

Acknowledgments

This work was partially done when Fabio Camilli was visiting University Paris-
Diderot. This work was partially done when Alessandra Cutr̀ı was visiting the
University of Rennes 1 with the support of IRMAR. The work was partially
supported by the PRIN MIUR 2009: Metodi di viscosità, geometrici e di con-
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Appendix A. Proof of Proposition 4.1

Take first x ∈ G\{O}. In this case, the proof is standard (see [2], Lemma 2.41,
p. 129), but we give it for completeness.
We can assume that x ∈ J1. The inclusion FL(x) ⊂ f̃	(x) is obtained as
follows: take ζ =

∑J
j=1 μjf(x, aj), ξ =

∑J
j=1 μj	(x, aj) with aj ∈ Ax and∑

j μj = 1, 0 ≤ μj . For tn small enough, it is possible to construct a control
αn ∈ Ax such that αn(t) = aj for (

∑
k<j μk)tn < t ≤ (

∑
k≤j μk)tn: we have

1
tn

∫ tn

0
f(y(t;x, αn), αn(t))dt = 1

tn

∫ tn

0
f(x, αn(t))dt + o(1) =

∑
j μjf(x, aj) +
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o(1), so

lim
n→∞

1
tn

∫ tn

0

f(y(t;x, αn), αn(t))dt = ζ.

Similarly,

lim
n→∞

1
tn

∫ tn

0

	(y(t;x, αn), αn(t))dt = ξ.

Finally, for (ζ, ξ) ∈ FL(x), we approximate (ζ, ξ) by (ζm, ξm)m∈N, where
(ζm, ξm) is a convex combination of (f(x, a), 	(x, a)), a ∈ Ax, and we con-
clude by a diagonal process.
For the opposite inclusion, since x ∈ G\{O}, we know from (2.7) that there
exists τ > 0, such that for all α ∈ Ax, α(t) ∈ Ax for 0 ≤ t < τ. Therefore,

(
1
s

∫ s

0

f(x, α(t))dt,
1
s

∫ s

0

	(x, α(t))dt
)

∈ FL(x)

for s small enough. This and the continuity of f and 	 w.r.t. their first argu-
ment imply that f̃	(x) ⊂ FL(x). We have proved (4.4).
We now consider x = O. We first discuss the inclusion FL(O) ⊂ f̃	(O): we
take ζ =

∑J
j=1 μjf(O, aj), ξ =

∑J
j=1 μj	(O, aj) with aj ∈ A1 and we assume

that ζ ∈ R+e1. Up to a permutation of the indices, it is possible to assume
that there exists J ′, 1 < J ′ ≤ J such that f(O, aj) ∈ R+e1 for j ≤ J ′ and that
f(O, aj) ∈ R−e1 for j > J ′. Then by a similar argument as above, (ζ, ξ) ∈
f̃	(O). By a diagonal process, this implies that

co
(
(f(O, a), 	(O, a)) : a ∈ A1

) ∩ (R+e1 × R) ⊂ f̃	(O).

Similarly co
(
(f(O, a), 	(O, a)) : a ∈ Aj

) ∩ (R+ej × R) ⊂ f̃	(O), so we have
proved (4.5).
The proof of (4.6) is similar.
To prove points (b 1) and (b 2), we consider ζ ∈ f̃(O) and make out two cases:

• ζ = 0: from Assumption 2.2, FL(O) ∩ ({0} × R) �= ∅.
From Assumption 2.3, min {ξ : (0, ξ) ∈ FL(O)} = mO.
On the other hand, for all sequences tn → 0+ and αn ∈ AO,

lim inf
n→∞

1
tn

∫ tn

0

	(y(t;O,αn), αn(t))dt ≥ mO.

Therefore,

min {ξ : (0, ξ) ∈ FL(O)} ≤ min
{
ξ : (0, ξ) ∈ f̃	(O)

}
,

and this inequality is in fact an identity, because FL(O) ⊂ f̃	(O).

• ζ �= 0: we can suppose that 0 �= ζ ∈ R+e1. There exist sequences αn ∈ AO

and tn > 0 such that tn → 0+, limn→∞ 1
tn

∫ tn

0
f(y(t;O,αn), αn(t))dt = ζ.

Up to an extraction, we may assume that limn→∞ 1
tn

∫ tn

0
	(y(t;O,αn),

αn(t))dt = μ.
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Since 0 �= ζ ∈ R+e1, there exists sn, 0 ≤ sn < tn such that y(sn;O,αn) =
O and y(t;O,αn) ∈ J1 for all t, sn < t ≤ tn. From (2.7), this implies that
αn(t) ∈ A1 for all t, sn < t < tn. Hence,

(
1

tn − sn

∫ tn

sn

f(O,αn(t))dt,
1

tn − sn

∫ tn

sn

	(O,αn(t))dt
)

∈ co
(
(f(O, a), 	(O, a)) : a ∈ A1

) ∩ (R+e1 × R).

Therefore, since (0,mO) ∈ co
(
(f(O, a), 	(O, a)) : a ∈ A1

)
from Assump-

tion 2.3, we get that
(

1
tn

∫ tn

sn

f(O,αn(t))dt,
1
tn

∫ tn

sn

	(O,αn(t))dt+
sn

tn
mO

)

∈ co
(
(f(O, a), 	(O, a)) : a ∈ A1

) ∩ (R+e1 × R).

Up to the extraction of a subsequence, we may say that
1
tn

∫ tn

sn
	(O,αn(t))dt+ sn

tn
mO converges to a real number ξ.Moreover, from

the continuity of f,

ζ = lim
n→∞

1
tn

∫ tn

sn

f(y(t;O,αn), αn(t))dt = lim
n→∞

1
tn

∫ tn

sn

f(O,αn(t))dt,

and we see that (ζ, ξ) ∈ FL(O) ∩ (R+e1 × R), which proves point (b 1).
We also see that

ξ ≤ lim
1
tn

∫ tn

0

	(O,αn(t))dt = μ,

where the last identity comes from the continuity of 	. We have proved
point (b 2), since ξ ≤ μ is true for all μ such that (ζ, μ) ∈ f̃	(O).

Appendix B. Proof of Lemma 5.4

Since mO plays no role in the proof, we may assume that mO = 0.
We are going to prove that it is enough to choose the constants kj and Kj

such that

1. If there does not exist i ∈ {1, . . . , N} such that αi = γk for all k =
1, . . . , N,

kj ≥ max
i

(
μi

(
ai(ζ−

i )αi + djζ
+
j

)

djζ
−
i

Ki,
μibi
dj

Ki

)
, ∀j = 1, . . . , N. (5.27)

2. In the opposite case, let γ be the common value of the γk: then, ∀j =
1, . . . , N,

kj ≥ max

(
max

i

(
μi

(
ai(ζ−

i )αi + djζ
+
j

)

djζ
−
i

Ki,
μibi
dj

Ki

)
, max
i:αi=γ

Ki

(
ai

cj

)1/γ
)
.

(5.28)
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Consider a sequence (xε, yε) such that xε ∈ J1 and yε ∈ J2 and
limε→0

d̃2
ε(xε,yε)

ε = 0: it is clear from the observations above that
limε→0 xε = limε→0 yε = O.
We make out two cases:

Case 1. max(η2, μ2 − 1) > 0. In this case, limε→0 ε
η2 |yε|μ2−1 = 0. With

k1 and K2 fixed such that (5.27) holds, we can take ε small enough such that
k1d̃ε(xε,yε)

ε ≤ ζ+
1 implies that μ2K2εη2 |yε|μ2−1d̃ε(xε,yε)

ε ≤ ζ−
2 : therefore, up to

subsequence extraction, we can make out three subcases
Subcase 1. k1d̃ε(xε,yε)

ε ≤ ζ+
1 and μ2K2εη2 |yε|μ2−1d̃ε(xε,yε)

ε ≤ ζ−
2 : we have

H1

(
D

(
x �→ d̃2

ε(x, yε)
2ε

)
(xε, e1)

)
≥ c1

(
k1
d̃ε(xε, yε)

ε

)γ1

,

H2

(
D

(
y �→ − d̃2

ε(xε, y)
2ε

)
(yε, e2)

)
≤ a2

(
μ2K2ε

η2 |yε|μ2−1d̃ε(xε, yε)
ε

)α2

.

Therefore

H1

(
D

(
x �→ d̃2

ε(x, yε)
2ε

)
(xε, e1)

)
≥ H2

(
D

(
y �→ − d̃2

ε(xε, y)
2ε

)
(yε, e2)

)

will be true if

c1k
γ1
1 ≥ a2(μ2K2)α2εα2η2+γ1−α2 |yε|α2(μ2−1)d̃ε(xε, yε)α2−γ1 . (5.29)

1. If γ1 ≥ α2, then d̃ε(xε, yε)α2−γ1 ≤ (K2ε
η2 |yε|μ2)α2−γ1 , so a sufficient

condition for (5.29) is that

c1k
γ1
1 ≥ a2μ

α2
2 K2α2−γ1

2 ε(2α2−γ1)η2+γ1−α2 |yε|(2α2−γ1)μ2−α2

= a2μ
α2
2 K2α2−γ1

2 εα2η2ε(α2−γ1)(η2−1)|yε|(2α2−γ1)μ2−α2 . (5.30)

But μ2 ≥ α2/(2α2 − γ1) and 0 ≤ η2 < 1/2. Therefore, the three expo-
nents in the right hand side of (5.30), namely α2η2, (α2 − γ1)(η2 − 1) and
(2α2 − γ1)μ2 − α2 are nonnegative. Moreover they cannot vanish at the
same time, because it would imply that η2 = 0, μ2 = α2/(2α2 − γ1), γ1 =
α2 and then μ2 = 1, which would contradict max(η2, μ2 − 1) > 0. Hence,
having fixed kj and Kj satisfying (5.27), (5.29) is obtained as soon as ε
is small enough.

2. If γ1 < α2, then lim d̃α2−γ1
ε (xε, yε) = 0. Moreover, there exists a constant

C such that, for small values of ε,

a2(μ2K2)α2εα2η2+γ1−α2 |yε|α2(μ2−1) ≤ Cεα2η2+γ1−α2 .

Since η2 ≥ (α2 − γ1)/α2 and lim d̃α2−γ1
ε (xε, yε) = 0, the right hand side

of (5.29) tends to zero as ε tends to zero. To get (5.29), it is enough to
take ε small enough.
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Subcase 2. k1d̃ε(xε,yε)
ε > ζ+

1 and μ2K2εη2 |yε|μ2−1d̃ε(xε,yε)
ε ≤ ζ−

2 : we have

H1

(
D

(
x �→ d̃2

ε(x, yε)
2ε

)
(xε, e1)

)
≥ d1

(
k1
d̃ε(xε, yε)

ε
− ζ+

1

)
+ c1(ζ+

1 )γ1 ,

H2

(
D

(
y �→ − d̃2

ε(xε, y)
2ε

)
(yε, e2)

)
≤ a2

(
μ2K2ε

η2 |yε|μ2−1d̃ε(xε, yε)
ε

)α2

.

Let us define q by q = μ2K2εη2 |yε|μ2−1d̃ε(xε,yε)
ε . We have d̃ε(xε,yε)

ε =
ε−η2 |yε|1−μ2q

μ2K2
. We wish to prove that

d1

(
k1
ε−η2 |yε|1−μ2q

μ2K2
− ζ+

1

)
+ c1(ζ+

1 )γ1 ≥ a2q
α2 , (5.31)

for all q such that μ2K2ζ+
1

k1
εη2 |yε|μ2−1 ≤ q ≤ ζ−

2 . Note that this interval is non
empty if ε is small enough because limε→0 ε

η2 |yε|μ2−1 = 0.
For q = μ2K2ζ+

1
k1

εη2 |yε|μ2−1, we have already seen in the subcase 1 that
(5.31) is true provided ε is small enough. To be more precise, we have
d1

(
k1

ε−η2 |yε|1−μ2q
μ2K2

− ζ+
1

)
+ c1(ζ+

1 )γ1 ≥ c1(ζ+
1 )γ1 which is larger than a2q

α2 =

a2

(
μ2K2ζ+

1
k1

εη2 |yε|μ2−1
)α2

for ε small enough.

By the convexity of q �→ a2q
α2 and the linearity of q �→ d1

(
k1

ε−η2 |yε|1−μ2q
μ2K2

− ζ+
1

)
+ c1(ζ+

1 )γ1 , it is then enough to prove (5.31) for q = ζ−
2 , i.e. that

d1

(
k1
ε−η2 |yε|1−μ2ζ−

2

μ2K2
− ζ+

1

)
+ c1(ζ+

1 )γ1 ≥ a2(ζ−
2 )α2 . (5.32)

But for ε ≤ 1, since |yε| ≤ 1, (5.32) is a consequence of the condition:

d1

(
k1

ζ−
2

μ2K2
− ζ+

1

)
≥ a2(ζ−

2 )α2 ,

which is implied by (5.27).
Subcase 3. k1d̃ε(xε,yε)

ε > ζ+
1 and μ2K2εη2 |yε|μ2−1d̃ε(xε,yε)

ε ≥ ζ−
2 : we have

H1

(
D

(
x �→ d̃2

ε(x, yε)
2ε

)
(xε, e1)

)
≥ d1

(
k1
d̃ε(xε, yε)

ε
− ζ+

1

)
+ c1(ζ+

1 )γ1 ,

H2

(
D

(
y �→ − d̃2

ε(xε, y)
2ε

)
(yε, e2)

)
≤ b2

(
μ2K2ε

η2 |yε|μ2−1d̃ε(xε, yε)
ε

− ζ−
2

)

+a2(ζ−
2 )α2 .

We set q = d̃ε(xε,yε)
ε : q takes its values in

[
ζ−
2

μ2K2
ε−η2 |yε|1−μ2 ,+∞

)
. We wish

to show that for q in this interval,

d1

(
k1q − ζ+

1

)
+ c1(ζ+

1 )γ1 ≥ b2
(
μ2K2ε

η2 |yε|μ2−1q − ζ−
2

)
+ a2(ζ−

2 )α2 . (5.33)

In Subcase 2, we have already seen that (5.33) holds for
q = ζ−

2
μ2K2

ε−η2 |yε|1−μ2 .
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The desired inequality (5.33) will hold in the whole half-line if furthermore
d1k1 ≥ b2μ2K2ε

η2 |yε|μ2−1. This is a consequence of d1k1 ≥ b2μ2K2, which is
implied by (5.27).

Case 2. max(η2, μ2 − 1) = 0. From η2 = 0, we deduce that α2 ≤ mink γk

and from μ2 = 1 we deduce that maxk γk ≤ α2. This implies that for all
k, γk = α2. Let γ = α2 be the common value of the γk. Thus the constants
ki,Kj are chosen such that (5.28) holds.

We are led to comparing H1(
k1d̃ε(xε,yε)

ε ) and H2(−K2d̃ε(xε,yε)
ε ), where

H2(−p) ≤
{
a2p

α2 , 0 ≤ p ≤ ζ−
2 ,

b2(p− ζ−
2 ) + a2(ζ−

2 )α2 , p ≥ ζ−
2 ,

and

H1(p) ≥
{
c1p

α2 , 0 ≤ p ≤ ζ+
1 ,

d1(p− ζ+
1 ) + c1(ζ+

1 )α2 , p ≥ ζ+
1 .

Up to the extraction of a subsequence, we can make out three cases:
Subcase 1. k1d̃ε(xε,yε)

ε ≤ ζ+
1 : from (5.28), we know that k1 ≥ ζ+

1

ζ−
2
K2 which

implies that K2d̃ε(xε,yε)
ε ≤ ζ−

2 . We have to compare c1

(
k1d̃ε(xε,yε)

ε

)α2

and

a2

(
K2d̃ε(xε,yε)

ε

)α2

. From (5.28), we know that k1 ≥
(

a2
c1

) 1
α2
K2, which implies

that

c1

(
k1d̃ε(xε, yε)

ε

)α2

≥ a2

(
K2d̃ε(xε, yε)

ε

)α2

.

Subcase 2.
ζ+
1

k1
≤ d̃ε(xε,yε)

ε ≤ ζ−
2

K2
: we wish to prove that

d1

(
k1d̃ε(xε, yε)

ε
− ζ+

1

)
+ c1(ζ+

1 )α2 ≥ a2

(
K2d̃ε(xε, yε)

ε

)α2

.

We have already seen that the inequality is true for d̃ε(xε,yε)
ε = ζ+

1
k1
. By con-

vexity, it is enough to prove the inequality for d̃ε(xε,yε)
ε = ζ−

2
K2
. But from (5.28),

k1 ≥ K2

ζ−
2

(
a2
d1

(ζ−
2 )α2 + ζ+

1

)
, which implies the desired result.

Subcase 3. d̃ε(xε,yε)
ε ≥ ζ−

2
K2

: the desired inequality comes from the one
proven in Subcase 2 and the fact that k1d1 ≥ K2b2.
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