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HAMILTON-JACOBI EQUATIONS WITH SINGULAR
BOUNDARY CONDITIONS ON A FREE BOUNDARY
AND APPLICATIONS TO DIFFERENTIAL GAMES

MARTINO BARDI AND PIERPAOLO SORAVIA

Abstract. A class of Hamilton-Jacobi equations arising in generalized time-
optimal control problems and differential games is considered. The natural
global boundary value problem for these equations has a singular boundary
condition on a free boundary. The uniqueness of the continuous solution and
of the free boundary is proved in the framework of viscosity solutions. A local
uniqueness theorem is also given, as well as some existence results and several
applications to control and game theory. In particular a relaxation theorem
(weak form of the bang-bang principle) is proved for a class of nonlinear dif-
ferential games.

0. Introduction

In this paper we study viscosity solutions of Hamilton-Jacobi (HJ) equations
of the form

(0.1) H(x,DU) = 0,
for Hamiltonians admitting the representation

(0.2) H (x, p) :=minma\{-f(x, a, b)-p - h(x, a, b)}   for all jc ,/? € R   ,
beB a£A

with A,B compact, f,h sufficiently smooth, and h satisfying the condition

(0.3) h(x,a,b)>h0>0   for all x e RN, a e A, b e B.
We prove two types of uniqueness results which seem to be characteristic of

this particular class of HJ equations. The first problem we consider is
' H(x, DU) = 0   infiVT",

(0.4) \  U = g on&^,
U(x) -* +ce       as x —y x0 e dQ,

where 3~ and g are given, f7~ c R^ is closed. Under very general assumptions
we show that there exists at most one pair ( U, Q) such that U is continuous
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206 MARTINO BARDI AND PIERPAOLO SORAVIA

in fi\y and up to dET, Q D 9~ is open, and the boundary value problem is
satisfied in the viscosity sense. This says that dQ has to be considered as a free
boundary, whose determination is part of the problem which is to be solved.
We also give some sufficient conditions under which such a solution pair exists.
This result bears some similarities with one due to Giusti [26] for the equation
of surfaces of prescribed mean curvature.

The second problem we consider is the local uniqueness around d¿7~ of
solutions to

(H(x,DU) = 0   incf\ST,
[    ' \u = g ond^,
for some open set <f having nonempty intersection with the closed set &~. We
prove this under a one-sided condition involving the solutions to compare and
the boundary data g, but with no assumptions on ¿T.

The whole work is motivated by the theory of optimal control and differen-
tial games and we use both viscosity solutions methods and differential games
methods. Indeed our uniqueness results are obtained by giving a representation
formula for the solution U as the value function of a differential game with
dynamics y = f(y, a, b), running cost « , terminal set ET, and terminal cost
g . Also the set Q in (0.4) can be characterized in terms of differential games
and turns out to be independent of h and g. Throughout the paper we will
discuss the game theoretic meaning of most assumptions and results. We just
mention here that the crucial hypothesis (0.3), saying that the running cost is
always positive, is typical of a class of important applied problems, including
the min-max capture time in pursuit-evasion games and the classical minimal
time problem in control theory.

Several applications of our PDE results to the theory of control and games
are given in §7. In particular we prove a rather general relaxation theorem
(which can be viewed as a weak form of the bang-bang principle) which to our
knowledge is the first one holding for differential games.

The boundary value problem (0.4) was first studied in [4] as the natural one
for the minimal time function (h = 1, g = 0, B a singleton), and in [7] for
pursuit-evasion games. However both these papers consider dQ as a given fixed
boundary and (0.4) as a Dirichlet problem. The idea that Q and U could in
fact be determined simultaneously has been pointed out by Falcone and one
of the authors in [5], where the convergence of a discrete approximation to the
minimal time function is studied.

The local uniqueness of positive solutions of (0.5) was discovered by Evans-
James [22] for the minimal time problem with Iff = {0}, and our result follows
their ideas. The interest of this problem for the synthesis of optimal controls
has been pointed out by Hermes [28].

The paper is organized as follows. In § 1 we recall all the necessary definitions
and notations of game theory and recall the connection with viscosity solutions
of the Bellman-Isaacs PDE. We introduce Kruzkov's change of variable [36]
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HAMILTON-JACOBI EQUATIONS 207

u(x) = 1 - exp(-U(x)), which is fundamental in the whole paper and which
transforms (0.4) into a problem in all of RN\¿f. Finally, we discuss briefly the
possibility of representing a Hamiltonian in the form (0.2), (0.3) (Remark 1.5).
In §2 we prove some preliminary results on Dirichlet problems (comparison
between semicontinuous sub- and supersolutions and a representation formula)
which extend the work of various authors, e.g. Ishii [31], Crandall-Ishii-Lions
[18], Evans-Ishii [21], and which are of independent interest. In §3 we state
and prove the representation formula for the solution pair of (0.4). §4 deals
with the local uniqueness of solutions to (0.5). In §5 we take a smooth ¿f,
introduce a condition on the directions of the family of vector fields / on
dS?~, and show that these assumptions imply the local Lipschitz continuity of
the solution to (0.4). In §6 we put together results from all the previous sections
to prove the existence of solutions to (0.4). §7 contains miscellaneous remarks
on applications and related problems, e.g. the regularity of the free boundary,
discontinuous solutions and so on. A more complete summary of the contents
can be found at the beginning of each section.

The theory of viscosity solutions of HJ equations was initiated by M. Cran-
dall and P. L. Lions [19], see also Crandall-Evans-Lions [17] and P. L. Lions
[38] where the connection with control theory was first remarked. The exten-
sion to possibly discontinuous solutions starts with the work of Ishii [32, 34]
and Barles-Perthame [8]. The recent paper of Crandall-Ishii-Lions [18] pro-
vides some very general comparison results and an updated list of references.
There are by now many papers which apply this theory to control problems:
see the references in [4] and e.g. Capuzzo Dolcetta-Ishii [15], Cannarsa-Soner
[14], Soner [42]. Applications to the theory of differential games have been
studied by Barron-Evans-Jensen [9], Evans-Souganidis [23], Evans-Ishii [21],
Lions-Souganidis [39], Souganidis [43], Berkovitz [11, 12], Subbotina-Subbotin-
Tret'jakov [44], Subbotin-Tarasyev [45].

For the classical theory of differential games see Isaacs [30], Fleming [24],
Friedman [25], Hajek [27], Elliott-Kalton [20], Krassovski-Soubbotine [35],
Basar-Olsder [10].

1. Definitions, notations and preliminary results

We begin by recalling the definition of the value for a class of differential
games following Elliott-Kalton [20]. We consider the system in R^, controlled
by two players,

(1.1) y(t) = x+ f'f(y(s),a(s),b(s))ds,
Jo

where a and b belong respectively to the following sets of admissible controls:

sé := {a: R+ —► A measurable},       38 := {b: R+ —y B measurable},

and A, B c R are two given sets. A solution of this system for given a and
b will be indicated by y (■) or y(-).  Consider the target set JcR* and
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208 MARTINO BARDI AND PIERPAOLO SORAVIA

define
tx = tx(a, b) := inf{t:y(t) eS^}<+oo,

where tx = +ce if yx(-) never reaches the target. Let the payoff of the game
be

P(x,a, b) := fxh(yx(t), a(t), b(t))dt + g(yx(tx)).
Jo

The set of admissible strategies for the first player is

A := {a:33 -* j/:b(t) = b'(t) for all t < t'
implies a[b](t) = a[b'](t) for all t < t'}.

The (lower) value of the game is defined by

V(x) := inf sup P(x, a[b], b).
a^bea

In the special case when h = 1 and g = 0, V is the capture time

T(x) := inf sup t (a[b], b).

The following assumptions will hold throughout the paper:
ÍA and B are compact ; ST is closed ;

/: R^ x A x B —y RN ; h:RN x A x B -> R are continuous;
\f(x, a, b) - f(y, a, b)\ < L\x - y\; h(x, a, b) > I;
g:Sf -y [G; +ce[ is continuous.

We remark that if h(x, a, b) > h0 > 0 we can rescale the problem in order to
get h0 = 1 . We note that (HI) implies V(x) > G. Moreover, we can choose
A > 0 and co: R+ x R+ -+ R+ such that œ(-, R) is continuous, increasing,
co(0, R) = 0, and we have the estimates

• \f(x,a,b)\<K(l + \x\) for all x, a, b,
(1.2)     I  \h(x, a, b) -h(y, a, b)\ < co(\x-y\, R)   whenever |x|, \y\ < R

and for all a, b.
We now define the (lower) capturability set, namely the set of starting points

of the game such that the first player has a strategy which forces the system into
the target in finite time, no matter what control the second player chooses, i.e.

31 := {x: T(x) < +ce}.

Lemma 1.1. Assume (HI). Then 3? = {x: V(x) < +ce}.
Proof. The estimate V(x) > T(x) + G implies 3? D {x: V(x) < +ce}. On the
other hand if x e 3Î there exists a strategy a0 such that for all b e 38 we
have tx(a0[b], b) <CX. Then by Gronwall's Lemma

\yx(t)\<C2   foralli<?x, be 38,

which implies P(x, a0[b], b) < C3 for all b e 38 .   D
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HAMILTON-JACOB! EQUATIONS 209

Now we define the Kruzkov transform of the value function by setting y/(r) =
1 - exp(-r), and

vix).= { ^(FW)   ifxe3¿,
\ 1 elsewhere.

It is important to remark that v is bounded and it is itself the value function
of a differential game, namely

(1.3) v(x) := inf sup y/(P(x, a[b], b)),
a€Abe&

where the payoff is

y/(P(x,a,b))= fxh(yx(t),a(t),b(t))
Jo

• exp ( - / h(yx(s), a(s), b(s))ds) dt

+ CXP ( ~ io' h{yx<"S) ' U{S) ' b{S)) dS) ^(* W*^ •

We are now going to associate a Hamilton-Jacobi equation to the differential
game. We recall Ishii's extension to discontinuous functions of the definition of
viscosity solution [32]. Let F:QxRxR^>RN , Q c R^ , and ux, u2: Q -+ R
be respectively an upper and a lower semicontinuous function. ux, u2 are
respectively a viscosity subsolution and supersolution of F(x, u, Du) = 0 in
Q if for all tp e C (Q) such that ux-tp has a local maximum at y, respectively
u2 - tp has a local minimum at y, we have F(y, ux(y), Dtp(y)) < 0, and
respectively F(y, u2(y), Dtp(y)) > 0. For a function u: Q —>■ R, the upper and
lower semicontinuous envelopes are defined by

u*(x) := Urn sup u(y),        ut(x) := liminfw(y).
y—>x y~*x

u is a viscosity solution of F(x, u, Du) = 0 in Q if u   is a subsolution and
ut is a supersolution.

The relevant Hamiltonians for our problem are

(1.4) H(x, p) := minmax{-/(j>c, a, b) ■ p - h(x, a, b)},
b€B   a€A

and

x, r,p) := min max {-/(x, a, b) • p - h(x, a, b) + (h(x, a, b) - l)r}.
b£B   a€A

Lemma 1.2. Assume (HI). Then the following conditions are satisfied by F = H,
¿F:
,. c, F:R   xRxR-tR      is continuous,

r —y F(x, r, p)   is nondecreasing for ail x, p;

\F(x,r,p)-F(y,r,q)\
< A(l + \x\)\p -q\ + \q\L\x -y\ + p(\x -y\,R)
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210 MARTINO BARDI AND PIERPAOLO SORAVIA

far all x, y, p, q e RN ,\x\,\y\ < R,  \r\ < R, R > 0, with p sharing the
properties of œ in (1.2).
Proof. Define l(x, a, b) := h(x, a, b) - 1. Fix b' e B such that for all a

¿?(y ,r,q)> -f(y, a, b') • q - h(y, a, b') + l(y, a, b')r.

Now fix a  such that

%?(x,s,p)< -f(x, a , b')-p - h(x, a , b') + l(x, a , b')s.

Using (HI) and (1.2) we get

&(x,s,p)-MT{y ,r,q)<K(l + \x\)\p -q\ + \q\L\x -y\ + co(\x -y\,R)
+ |r|w(|A: - y\, R) + sup l(x, a, b)(s - r).

a;b

This implies (1.5) and (1.6) with p(s, R) = (1 + R)œ(s, R). The proof for H
is the same.   D

Proposition 1.3. Assume (HI).
(i) If 31 is open and V is locally bounded, then V is a viscosity solution of

(1.7) H(x,DV) = 0   in3t\Sf.

(ii) v is a viscosity solution of

(1.8) v+JT(x,v,Dv) = 0   inRN\ST.
Proof. The proof is based on the dynamic programming principle and can be
obtained by combining the arguments in [23] and [34].   D

Remark 1.4. It is also easy to check, using e.g. Lemma 5 in [4] and the definition
of viscosity solution, that any solution of H(x, DW) = 0 in Q, where Q is
open, is such that w = y/(W) is a solution of w + ^(x, w, Dw) = 0 in Q.

Remark 1.5. We have not been able to characterize the Hamiltonians which
admit a representation like (1.4) with h positive, while, without this sign re-
striction, there are very general results by Evans-Souganidis [23] and Ishii [33].
We can just prove that if a Hamiltonian is of the form

(1.9) F(x,p) = 4>(x,p)-h'(x)
with 4> satisfying

f 4>(x,p)-(p(x,q)<K(l + \x\)\p - q\,
;i.io) (j)(x, Xp) = X<t>(x, p)   for all A > 0 ; x, p, q e RN,

{ \</>(x, p) - <p(y, p)\ < L\x -y\   for all x, y e RN, \p\ = 1,

then it can be represented in the form (1.4) with h = h' and suitable A, B,
and / satisfying (HI) (see Lemma 5.4 in [23]). Vice-versa any Hamiltonian of
the form (1.4) with h independent of a, b and satisfying (HI) can be written
in the form (1.9) with <p satisfying (1.10).
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HAMILTON-JACOBI EQUATIONS 211

We end this section by introducing two more notations:

B(x,r):={yeRN:\x-y\ < r},

and for A c RN and n > 0

B(X, n) := {x:dist(.x, A) < n}.

2. Comparison of semicontinuous sub- and supersolutions
In this section we prove a comparison result between bounded sub- and su-

persolutions of the Dirichlet problem for the equation

u + F(x, u, Du) = 0   incf,

where <f is an arbitrary open set and F satisfies the structural conditions (1.5),
(1.6). To do this we implement the program of Crandall-Ishii-Lions [18] by a
suitable choice of test functions which follows [4]. Here however we follow a
suggestion of one of the referees of [4] and introduce a modification inspired
by Ishii [31] which allows us to assume that the functions to compare are just
continuous on dcf, instead of uniformly continuous as in [4]. The comparison
theorems provide both uniqueness and continuity of viscosity solutions as soon
as they are continuous on the boundary. This will be exploited in the existence
theory in §6 and at the end of the present section to generalize a representation
formula of Evans-Ishii [21] which we will need in §§3-4.

Lemma 2.1. Assume F satisfies (1.6). Then F satisfies the following prop-
erty (P): There exists a Lipschitz continuous everywhere differentiable function
p: RN —y R+ and a constant C such that

F(x,r,p)-F(x,r,p + ADp(x))<ÀC   forallxet?, a€[0,1], reR,

and lim|jc|_+00 ¿/(x) =+00.

Proof. As in the proof of Theorem 2 in [4] we can take

k(\x\)     if|x|<e,
log(|x|)   if \x\ > e,

where k e CX(R) satisfies jfc(O) = k'(0) = 0, k(e) = 1, and k'(e) =l/e.   O

Lemma 2.2. Let Q be an open set in Rn, and let FA:flxR" —► R satisfy
property (P) in Lemma 2.1. Let z be a viscosity subsolution of z+FA(x, Dz) =
0 in Q, and let w e CX(Q) satisfy w(x) + FA(x, Dw) > 0 and \Dw\ < C for
all x e Q, such that w(x) < z(x). Assume that

sup limsup(z(x) - w(x)) < sup(z - w) < +ce.
yedCi Í13*—y il

Then z <w in Q.
Proof. See Lemma 1 and Remark 3 in Crandall-Ishii-Lions [18].   D

Pix) := {
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212 MARTINO BARDI AND PIERPAOLO SORAVIA

Theorem 2.3. Suppose F satisfies (1.5), (1.6) and (f c R^ is open. Let
vx, v2:cf —> R be respectively a viscosity sub- and supersolution of

v + F(x, v, Dv) = 0   incf,

and assume that they are bounded, continuous in each point of dcf, and vx <v2
on d(f. Then vx < v2 in cf.
Proof. Following [18] we consider

FA(x ,y,p,q):=F(x, vx(x), p) - F(y, v2(y), -q)

and observe that z(x, y) := vx(x) - v2(y) is a viscosity subsolution of

z + FA(x,y,Dxz,Dyz) = 0   in cfx cf.

For ß, m > 0 define R(ß) = ((sup z + l)/)S]_1/m and let ~ß := ~ß(m) be such
that R(ß) > maxdlt;,!^ , H^HJ for all ß < ß . Define oß(s) = p(s, R(ß)),

Q := Qß := {(x, y) e R2N : \x\, \y\ < R(ß), \x-y\< o~x(ß/2)} xx(tfxtf),

w(x,y) := weß(x, y) := ((e4L + \x-y\2)l/2L)/e + ß((x)m + (y)m),

where (x) := (1 + \x\ )x/ , e > 0, and m e ]0, 1] will be chosen later. Note
that

a := a(e, ß) := sup(z - w) < A < +ce   for all e, ß > 0.
a

If lim inf(£^(0 0) a < 0, we have for a sequence en —> 0, ßn —y 0

z(x, x) < w(x ,x) + a<en + 2ßn(x)m + a   for all x e cf n B(0, R(ßn)),

which implies the desired conclusion z(x, x) < 0 for all x ecf. Then we will
assume

a(e,j8)>ö7>0   for alle, ße ]0,e0],
and show that z and w satisfy the assumptions of Lemma 2.2 in Q for a
sequence en -* 0, ßn —► 0, therefore reaching the same conclusion as above.
In the points where z(x, y) = vx(x) - v2(y) > w > 0, the monotonicity of F
in r implies

FA(x ,y,p,q)>F(x,vx(x),p)- F(y, vx(x), -q),

so that, using ( 1.6), we get for (x, y) e Q,

w(x, y) + FA(x, y, Dxw, Dyw)

> w(x,y) - L\x-y\2((e4L + \x -y\2)x/2l-x)/(eL) - L\x -y\ \y\ßm(y)m-2

- p(\x - y\, R(ß)) - A( 1 + \x\)mß\x(x)m-2 + y(yf-2\
> ßi(x)m + (y)m) - -imßiL + K)((x)m + (y)m) - ß/2,

which can be made > 0 choosing m < [6(L + A)]-1 .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HAMILTON-JACOBI EQUATIONS 213

It remains to check the condition supô£i(z -w) <ä~. Suppose by contradic-
tion that (x , y) e dQ satisfies z(x , y) - w(x , y) > a/2 > 0, and observe
first of all that pc'| = R(ß) or \y'\ = R(ß) and the definition of R(ß) imply

z(x , y) - w(x , y) < sup z - ßR(ß)m = -1,

a contradiction. Thus we can choose â, 0 < Ô < aZ (ß/2), such that |x'-y'| <
ô implies \Vj(x') - v¡(y')\ < 57/2, i = 1,2, because either x or y , say x ,
belong to dcf where both vi are continuous. This leads to a contradiction
because z'x ,x')<0 implies

z(x , y) - w(x , y) < z(x , y) - z(x , x) = v2(x) - v2(y) < a/2.

On the other hand if \x - y'\ > ô we use

z(x' ,y')>weJ¡(x' ,y'),

and get a contradiction for each fixed ß > 0 by taking e small enough so that
the right-hand side is larger than the left-hand side.   G

Corollary 2.4. Assume (HI). Let Q D Sf be an open set, let vx, v2:Q\^ -» R
be respectively a viscosity sub- and supersolution of

v+^(x,v,Dv) = 0   inQ\¿T,

and suppose they are bounded, continuous in each point of dQ and dS?~ and
vx <v2 on dQxjdSf '. Then vx <v2 in Q\&~. In particular, if v is continuous
on dSf, then it is continuous in RN\Sf and it is the unique bounded viscosity
solution of

v+^(x,v,Dv) = 0   inRN\ST,
v = ¥(g) on d&~,

assuming the data continuously.
Proof. The first statement follows from Lemma 1.2 and Theorem 2.3. By
Proposition 1.3, v* and vt are respectively a sub- and a supersolution of the
equation, they are bounded because v is, and they coincide on dS7' by the
continuity of v there. Then v* < vt in R \£T, and v is continuous. The
last statement is now easy to prove.   D

We conclude this section with a representation formula for solutions of
Dirichlet problems which generalizes a result of Evans-Ishii [21, Theorem 4.1].

Proposition 2.5. Assume (HI). Let QcR    be an open set and define

xx := inf{i:y(r) 6 R*\Q} < +ce.

If u e C(Q) is a bounded viscosity solution of u + %?(x, u, Du) = 0 in Q,
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214 MARTINO BARDI AND PIERPAOLO SORAVIA

then

u(x) = inf sup { fX h(yx(t), a[b](t), b(t))
aeAbe<%  [f0

• exp ( -1 h(yx(s), a[b](s), b(s)) dsj dt

+ exp ( - I*" h(yx(s), a[b](s), b(s)) ds^ju(yx(xx))\.

(Note that only values of u on dQ appear in the right-hand side.)
Proof. For e > 0 set Qe := {x e Q:dist(x, dQ) > e,\x\ < 1/e}, and let
C£ e C0C(RN) be such that ££ = 1 on QE, ££ = 0 on R^\Q, and 0 < ££ < 1
everywhere.  Extend u to be a continuous and bounded function defined on
R   . Then m is a viscosity solution of

u+inf sup{-fE(x, a, b) • Du-mE(x, a, b) + (h(x, a, b) - l)u} = 0   in R   ,
beß aeA

where /„ := fL, m„ := h„ + hy(l - Ç.) and h, := hC.  Another viscosity
C & o o t* o o

solution of this equation is

u(x) = inf sup \  /    m (y , a[b] ,b)exp(- /  h(y , a[b] ,b)ds)dt\,
a^b&3§ \Jo \      Jo f       )

by the arguments of the proof of Proposition 1.3. We can apply Theorem 2.3
with cf = R and get (w£)* < u < (ue)t, that is u = ue. The rest of the proof
is the same as in [21, Theorem 4.1]: by the dynamic programming principle [21,
Theorem 3.1] and the definition of /£,  hE, mE, one can write for all e > 0

u(x) = inf sup \        h(y , a[b], b)
a£Abe& I Jo

•™p(- I h(yx,a[b],b)dsjdt

+ exp ( - £ h(yx , a[b], b) ds^j u(yx(zx))} ,

where xx is the first exit time from QE, and then for each x e Q one shows
that the last formula coincides with (2.1) as e goes to 0. For the details of this
last part see [21].   D

3. Representation formulas for the global problem

The main result of this section is the following.

Theorem 3.1. Assume (HI). If there exist an open set Q D y and a func-
tion U e C(Q\y) bounded below and continuous on d¿7~ which is a viscosity
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solution of

(3.1)
' H(x,DU) = 0   inQ\T,

U = g on d^,
U(x) —y +ce        as X —y x0e dQ,

then Q = 3i and U = V.

Remark 3.2. This theorem can also be used as a comparison result alternative to
Theorem 2.3. Its main advantage and novelty is that we do not assume Q = 3f
a priori, therefore showing that the right concept of solution for the boundary
value problem (3.1) is not just U for given Q, but the pair (Q, U). Observe
that Q = 3$ does not depend on h and g .

Proof. Let (Q, If) satisfy the hypotheses of the theorem, and u = y/(U). We
observe that u e C(£2\t) and by Remark 1.4 and Proposition 2.5 we have

(3.2)   u(x) = inf sup ( fX h(yx, a[b], b)
a€àb€&  (J0

•expi -1 h(yx,a[b],b)dsjdt

+ exp ( -1x h(yx, a[b], b) dsj u(yx(xx)) j ,

with rx := inf{r:yx(r) e d(Q\^)}.
First of all we prove that Q c 31. Let x e Q\07~ and 0 < e < 1 - u(x). By

(3.2) we can choose ä e A such that

u(x) + e >l-exp(- j X h(y,ä[b], b)dsj(l -u(y(rx)))   for all be 38.

This implies y(xx) e d^ and xx < y/~x[(u(x)+ e - y/(G)/[l = x(G))]) for all
b e38 . Therefore we have x e3? .

Suppose now that there exists x e 3? xx dQ. Fix e > 0 and 5 e A such that
v(x) < 1 - e and

(3.3) ip(P(x,ä[b],b))<l-e   for all be 38.

Therefore choose C, > 0 such that tx(a[b], b) < C{ for all b € 38 and then
by Gronwall's Lemma

\yx(t)\<(l + \x\)exp(KCx)=:R   foralli^,  be 38.

Let C2:= supB{0R)xAxB \f(z, a, b)\, \\y(g)\\R := sup{\ip(g(x))\ : xed^xx
B(0, R)},and n < min{e, l-\\vig)\\R}. Fix also ô > 0 suchthat dist(z, dQ)
<ô and z eQf)B(0,R) imply

(3.4) u{z) > I - r, > \\yf(g)\\R.
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For each control b e38 define
o(b) := sup{s < tx(a[b], b): dist(yx(s), dQ) = Ô, yx(t) e Q for / > s}.

We want to prove the following statement: there exists b e 38 such that,
setting o := o(b) and a[b](-) = a[b'](o + •), where

b(t), t<o,
b(t-o),    t>o,

we have
(3.5) tm{a[b], b) = xy{a)(a[b], b)   for all b e 38.
In fact, if (3.5) holds, we then have, by the definition of o, (3.2), (3.3), and
(3.4)

/« := {

1 f   fhw
r¡ < u(y(o)) < sup { /      h(y, S[b], b)

bea [Jo

• exp I - /  h(y, a[b], b) ds J dt

+ exp ( - j m h(y, S[b], b) dsj u(y(xy(g))) \

= sup{xp(P(y(a),à[b],b))}
b€&

< sup{^(/'(x, a[b], b))} < 1 -e,
be&

which gives a contradiction with the choice of n and therefore
(3.6) 3?xldQ = 0.

We suppose by contradiction that (3.5) does not hold and define for b0e38 :
b0(t), t<o(b0)=:t0,b.(t):--

1 bx(t-tQ),    t>tQ,
whereto, does not verify (3.5). Then we continue recursively setting

h    m-=í^(í)' t<oibn)=:tn,
"+1 \bn+xit-tn),    t>t„,

where bn+x does not verify (3.5). We now observe that tn+x-tn > 26 /C2 by the
choice of 5 and therefore, if b(t) := bn(t) for t <tn, then tx(a[b], b) > Cx,
which is a contradiction.

Now by (3.6) and M = (Q xx 31) U (int(i2c) n 3Î), so it is the union of two
disjoint relatively open sets. But if x e int(Qc) n 3$ there is a continuous arc
in3i joining x to 3~ c Qxx3î , and then Qd3? .To prove u = v , let x e 3?
and 0 < e < 1 - u(x). By (3.2) we have for some ä e A

1 > u(x) + s> / ' h(y, a[b], b) exp Í - / h(y, a\b] ,b)ds\ dt

+ exp(-i"h(y, ä[b], b) dsj u(y(xx))   for all be 38.
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Therefore xx < +ce and y(xx) e dET, that is

xx(a[b], b) = tx(ä[b], b)   for all be 38.
As a consequence we have

u(x) + e> ip(P(x,ä[b],b))   for all be 38,
which by (1.3) implies u(x) > v(x). The proof of the opposite inequality is
completely analogous, using first (1.3) and then concluding by (3.2).   D

The following result is implicit in the proof of Theorem 3.1.

Corollary 3.3. Assume (HI). Let u e C(RN\^) be a viscosity solution of

j u + ßf(x,u,Du) = 0   inRN\F,
\u = y/(g) on dZT,

u bounded below. Then 3i = {x: u(x) < 1} u7 and u = v.

4. REPRESENTATION FORMULAS FOR LOCAL SOLUTIONS

In this section we give some local uniqueness result and representation for-
mulas for continuous solutions of H(x, DV) = 0 in Q\3r, where Q is any
open set having nonempty intersection with &~, and we assume the condition
U = g only on d!T and just a lower bound on the rest of the boundary. The
first result of this type has been discovered very recently by Evans-James [22] for
the minimum time problem with ZT = {0} , and our proof is a generalization
of theirs. Some applications will be given in §§6 and 7.

Theorem 4.1. Assume (HI). Let x0 e d!T and define Br := B(x0, r), Mr :=
maxÄ xAxB \f(x, a, b)\. Suppose U e C(Br\9~) is a viscosity solution of

(H(x,DU) = 0   inBr\¿T,
\ U = g ond^xxB,,

such that

(4.2) ¿r(x0)<r/A/r + a minify.

Define o(s) := sup{\U(x) - U(x0)\:x e Bs\¿7~}, s < r. Then any other con-
tinuous function satisfying (4.1), (4.2) coincides with U in ¿?r<V^ for each r
such that

(4.3) o(r') + r'/M < r/Mr +   min   U - g(xn).r        i     r     d(Br\j-) ov   0'

If moreover

(4.4) g(x) >   min   U   for all xëôJ,
d(B,\r)

then

(4.5) U(x) = V(x)   for all x e Br,\F.
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Remark 4.2. The first statement is purely local and it holds for /, h, g, ¿7"
defined only in Br.  Then one can get a representation formula of the form
(4.5) for every extension of f,h,g,&~ out of Br which verifies (HI) and
(4.4).
Proof. Replacing U by U - minö(ß, ^ U we can assume without loss of gen-
erality that nrina(B > ̂ U = 0. We will prove the second statement; the first
statement will then follow substituting y with dOT xx Br if necessary. We also
drop the subscript r of Mr. Let u = y/(U). Then by Proposition 1.3 and
Remark 1.4 u is a viscosity solution of

j u + JT(x,u,Du) = 0   in5r\y,
\ u = tp(g) on ay.

Therefore by Proposition 2.5

(4.6) u(x) = inf sup I  /    h(y , a[b], b)
a^beéë lio

• exp ( - /  h(yx, a[b], b)ds) dt

+ CXP ( ~ / ' H^x ' a[b] ' è) dS) U^x^x^ j '

where xx := inf{t:yx(t) e d(Br\3r)}. We have to prove that u(x) = v(x) for
all xefi^J. We set

xx.z(a,b):= inf{t:yx(t) = z}   and   p(s) = sup{u(x):x e Bs\3^}.

We observe that by (4.2) p(0) - |^(g(x0))| < ip(r/M) and therefore for some
ô < 1 we have p(0) < ôip(ôr/M)_for all ô < ô < 1 . Let / satisfy (4.3) as a
strict inequality and choose ô e [S, 1 [ such that

(4.7) p(r)<ô<p(ô(r-r')/M).

Now suppose that x € Br,\T , z e dB¿\5^ , and xx z(a, ô) < +ce . Therefore
we have

z-x= fX! f(yx(t),a(t),b(t))dt
Jo

and then
(4.8) (r-r')IM<xx.z(a,b).
Let
(4.9) 0<2e<(l-ô)y/(â(r-r')/M).
By (4.6) we fix a, e A such that

(4.10)
^T* A(yx, a[¿] ,b)exp(- I h(yx, a, [è], b) ds\ dt

+ exp(-     X h(yx,ax[b], b)ds)u(yx(xx)) < u(x) + e   for all be 38,
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and therefore, using h > 1, u > 0, (4.7), and (4.9) we get

ipixx) + e<viôir-r')/M).

If we now suppose that z = yxixx) e dBr\9~ for some bx, then by (4.8)

xx(ax[bx], bx) < ô(r - r')/M < xx.z(ax[bx], bx)

and we find a contradiction. So we have proved that xx(ax[b], b) = tx(ax[b], b)
for all b e 38 , and therefore by (4.10)

ip(P(x, ax[b], b)) <u(x) + e   for all be 38,

which implies v(x) < u(x) for all x e ¿?r<\y.
To prove the equality we suppose that v(xx) < u(xx) for xx e (Br,\tT).

Then for n > 0 and a2 e A we have

(4.11) xp(P(xx,a2[b],b)) + t]<u(xx)   for all be 38.

Thus tx < tx , ^(g) > 0, /i > 1, and (4.7) give i//(xx) + n < ii/(ô(r - r')/M).
Again as before we deduce that

*xi(*2[b], b) = tx(a2[b], b)   for all be 38.

Therefore (4.11) implies a contradiction and we can conclude that u = v in
Br,\^.   u

The next theorem is an immediate consequence of Theorem 4.1.

Theorem 4.3. Assume (HI). Suppose there is an open set Q D y and U e
C(Q\y), U bounded below, which is a viscosity solution of

(H(x,DU) = 0,    ZHf2\y,
{ u = g on &y

Define d(x) := dist(x, dQ), M(x) := sup{|/(z, a, b)\: (z, a, ¿>) € £(x, d(x))
xAxB}, a«äf (T^s) := sup{|i/(z)- f/(x)|: z e B(x, s)\y}, s < d(x). Assume
that

(4.12) g(x) < d(x)/M(x) + inf U   for all x e d^'.

Then there exists an open set Q', ^ciî'ciî, such that U(x) = V(x) for all
x e f2'\y. Moreover dist(x, <9Q') > r for all r satisfying

ox(r) + r/M(x) < d(x)/M(x) + inf U - g(x).

Remark A.A. Note that if g = 0 on dy and U > 0, then conditions (4.2)
and (4.4) in Theorem 4.1 and (4.12) in Theorem 4.3 are automatically satisfied.
This is the case, for instance, in time-optimal control and pursuit-evasion or
survival games. If one drops condition (4.12), then the conclusion of Theorem
4.3 is false (see the example in Remark 4 of [4]).
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5. CONTROLLABILITY AND CAPTURABILITY CONDITIONS
AND REGULARITY OF  V

In this section we prove a regularity result for the value function V which
generalizes those obtained by Bardi-Falcone [5] for the minimum time function
with a bounded target and by the authors [7] for the capture time. We consider
a capturability condition on the vector field / on the boundary of the target and
show that it is necessary and sufficient for the Lipschitz continuity of the capture
time T. Under this condition we prove that V is continuous and moreover
that it is locally Lipschitz if h and g are themselves locally Lipschitz in the
space variables uniformly on the controls. Some regularity of the boundary of
the target is also needed. More precisely we consider the following hypotheses:

(H2) y is the closure of an open set with C2 boundary,

for all x 6 #y, there exists ax e A such that fix, ax,b) •
(H3)        n(x) < 0 for all b e38 ; where «(x) is the exterior normal to

y at x.
Similar conditions have been considered by Fleming [24], Friedman [25] and

Hajek [27]. (H3) is the counterpart for smooth targets and games of the classical
"positive basis condition" in control theory due to Petrov [41]. This analogy is
made precise in [5, §5].

Lemma 5.1. Assume (H1)-(H3). Then
(i) for all R> 0 there exist SR, CR > 0 such that

T(x) < CRd(x)   for all x e B(5r, SR) n B(0, R),
where d(x) = dist(x, d£T).

(ii)  3? is open.

Proof, (i) We observe that by a compactness argument for all R > 0 there exist
ÇR > 0 and 0 < SR < ¿¡R/(2K) log(l + R) such that

f(x,ax,b)-Dd(x)<-tlR   forallèe5, x e B{?~, ôR) x~xB(0, R).
Then we proceed with the same proof as that of Proposition 1, part (i) in [7] to
get the conclusion with CR = 2/¿¡R .

(ii) As in Proposition 1 of [7].   D

We now prove the regularity result.

Proposition 5.2. Assume (H1)-(H3). Then V is continuous in 3$\!7~.
Proof. Let x0 € 3Î and by (ii) in Lemma 5.1 we choose n > 0 such that
B(xQ, t]) c 3?. Let x e B(x0, r\) ; suppose first that V(x) > V(x0). We now
denote N := (2 + |x0|)exp(A(F(x0) -G+l)), âN, CN as in Lemma 5.1, and
C(x0) = exp(L(V(x0)-G + e)), 0 < e < 1. We can suppose that r\ < ôN/Ç(x0).
Choose a e A such that

/ *° h(yx , a[b] ,b)dt + g(yx (tx )) < V(x0) + e   for all be 38.
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Then we have, by the choice of N,
yx(tx(a[b\,b))edJ'xxB(0,N),

-*o      0

and
t  (a[b], b) < V(xA + e-G   for all b e 38.

Redefining a[b] after tr Ca[b], b) if necessary, we can use (H2) and (H3) as
in [5, 7] to get

(5.1)       \tXg(ä[b],b)-tx(ä[b],b)\<CNax0)\x-x0\ + e   for all be 38.
We also have by Gronwall's Lemma that

It is easy to see that (5.1) and (5.2) imply
rtr

h(yx,ä[b],b)dt + g(yx(tx))IJo

<  i'x°h(yx ,â[b],b)dt + g(yx(tx))

+ (F(x0) + e - G)cü(í(x0)|x - x0|, A£(x0))
+ œg(K2C(xQ)\x - x0|, AA2C(x0)) + A3C(x0)|x - x0| + e

for all b e 38 and e > 0, where œ (•, R) is the modulus of continuity of g
in y xxB(0, R). Thus

V(x) < V(x0) + (V(x0) - G)co(C(x0)\x - x0|, NC(x0))v0; -r \r v-^0'       wy"yV'sV^0''l-A-       -*0l ' •*"»v-*0'

+ wi(A2C(x0)|x - x0|, AA2C(x0)) + A3C(x0)|x - x0\.
Using an analogous argument in the case V(x) < V(x0) we can conclude the
proof.   D

Remark 5.3. The previous proof also shows that if for all R > 0
(5.3)
\h(x,a,b)-h(y ,a,b)\<LR\x-y\   for all x, y e B(0, R), aeA, beB,
and
(5.4) |^(x)-^(y)|<LÄ|x-y|   for all x, y e B(0, R),
then V is locally Lipschitz continuous in 3$\ET.

Remark 5.4. We can give the following local version of Proposition 5.2 by mak-
ing minor changes to its proof. Assume (HI) and for x0 e d¿T, r > 0, suppose
that dy n B(x0, r) is a C   manifold with y lying on one side of it and

min max/(x, a, b) • n(x) < 0   for all x e #y xxB(xn, r).
a€A   beB K   °      ^

Then V is continuous in 5(y, ô) n B(x0, r/2)\y for some ô > 0. If more-
over h and g satisfy (5.3) and (5.4), then V is Lipschitz continuous in the
same set.

We conclude this section with the following:
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Proposition 5.5. Assume (HI) and (H2). Let 1/2 < a < 1, x0 e dET, and
suppose that T(x) < Cda(x) for all x e B(x0, r), where d(x) = dist(x, d£f).
Then

min max f(x¡,, a, b) • n(xA < 0.
a€AbeBJX0 ' °;

Proof. It is an easy extension of the proof of [5, Theorem 5.5] and we omit
it.   G

6. EXISTENCE OF SOLUTIONS

(6.1)

In §3 we proved that there is at most one pair (U, Q) satisfying the boundary
value problem (3.1). In the present section we will put together the results of
§§2, 4 and 5 to give sufficient conditions under which the pair (V, 31) is the
desired solution. The next theorem says that the whole problem reduces to the
continuity of V on dSf.

Theorem 6.1. Assume (HI) and suppose that V is continuous on dET. Then
3? is open, V is continuous in 3Ï\ET and it is the unique viscosity solution
bounded below and continuous on dET of

' H(x,DV) = 0   in3¿\ET,
V = g ondST,
V(x) -y +ce as x -y xQe d3f.

Proof. Since V is continuous on dET, v is also. Then Corollary 2.4 applies
and gives the continuity of v in R \ET. Thus 3Î = {x:v(x) < 1} is open,
and V = -log(l - v) is continuous in 3?\Ef and tends to +ce on d3?.
By Proposition 1.3 V satisfies (6.1). If U is another solution of (6.1) then
u := y/(U) satisfies

u + ßf(x, u,Du) = 0   in3t\S?,
tí = Wig) on dSf,
u(x) —y 1 as x —► x0 e d3$'.

Thus u = v by Corollary 2.4 and the proof is complete.   G

Remark 6.2. The fact that the continuity of V on dEf implies that 3$ is
open, V is continuous, and V —y +ce on d3l can be proved directly by
the arguments of Proposition 5.2 and of [7, Proposition 1]. This is indeed
well known for the minimal time function in control theory, as well as the
equivalence between the continuity of T and the property of small time local
controllability (see Bacciotti [1] and Bressan [13]). This last property has been
extensively studied in recent years for control systems and target y = {0} by
geometric methods (see e.g. Sussmann [46], Bacciotti [3], and the references
therein).

Corollary 6.3. Assume (H1)-(H3) and g = 0. Then all the conclusions of The-
orem 6.1 hold.
Proof. It suffices to recall Proposition 5.2 (and indeed Lemma 5.1 is enough).   G
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Corollary 6.4. Assume (HI). Suppose there exist an open set Q D Ef and U e
C(Q\ET) which is bounded below, satisfies H(x, DU) = 0 in Q\Ef~ in the
viscosity sense, coincides with g on dET, and verifies the compatibility condition
(4.12). Then all the conclusions of Theorem 6.1 hold.
Proof. By Theorem 4.3, V = U in a neighborhood of y, which gives the
desired continuity of V on dEf.   G

We end this section with a local existence result which follows easily from
Theorem 4.1 and Remark 5.4.

Theorem 6.5. Assume (HI) and (H2). Let y, c dET be such that

min max/(x, a, b) • n(x) < 0   and   g(x) = 0   onEK..
aeA  beB

Then for each compact JÍ c y, there exist ô > ô' > 0 such that V is a
continuous viscosity solution of

(6.2)
Hix,DV) = 0   in B(3f, S)\&~,

0 onETQ,{Z
and any continuous nonnegative solution of (6.2) coincides with V in
B(JT,ô')\Er.    D

7. APPLICATIONS TO THE THEORY OF CONTROL
AND DIFFERENTIAL GAMES

In this section we give a number of remarks about the results of the previous
sections. In particular we point out some applications to the theory of control
and differential games which are often entirely new for differential games, while
for control problems they are mostly just new proofs of known results. We state
most of the results in the game-theoretic setting and the corresponding control-
theoretic statements can be easily recovered by taking B as a singleton. All the
following results assume the continuity on dy of some value functions. We
recall that for the minimal time function in control theory this is equivalent to
small time local controllability (see Remark 6.2).

We begin by giving a sufficient condition under which two different games
have the same outcome.

Theorem 7.1: Equivalence of games. Let Ef and g be given and assume that
the games (f,h,A,B) and (f, h', Â, B') satisfy (HI). Let V' and 3?'
be respectively the value function and the capturability set of the second game.
Suppose V is continuous on dET and

minmax{-/(x, a, b) • p - h(x, a, b)}
beB  aeA

(7.1) = minmax{-/(x, a, b)-p - h'(x, a, b)}
beB' aeA'

for all x, p e RN . Then V = V' and 31 =31'.
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Proof. The continuity of V on dEF implies the continuity everywhere by The-
orem 6.1. Then the conclusion follows from Theorem 3.1 because the two games
have the same Hamiltonian.   G

If in this theorem we take f = f, h' = h and Ä d A, B' d B, such that
(7.1) is satisfied, then we obtain a relaxation result which can be viewed as a
generalized weak version of the classical bang-bang principle. We can see this
better in the following corollaries and remarks.

Corollary 7.2: Nonlinear relaxation theorem. Assume (HI). Let

(7.2) h(x,a,b) = h(x)
and

(7.3) fix,a,b) = fxix,a) + f2ix,b).
Let A!, B' be compact and such that

(7.4) fx(x,A') = cofx(x,A),    f2(x, B') = co f2(x,B)      for allx eRN,
where coA indicates the closed convex hull of X. If either V or V1 is contin-
uous on dEf, then V = V1 and 3Î =3î'.
Proof. We observe that

maxq-p = max q-p   and    minq-p = n\\n q-p.
qeQ qecoQ qeQ qecoQ

Then by (7.4)

max f.(x, a) • p =    max    q -p = max/, (x, a) -p   for all p e R  ,
aeA' qef{x,A') aeA

and
min fAx, b)-p = min fAx, b)-p   forallpeR .
beB' beB  z

Thus (7.2) and (7.3) imply (7.1).    D

We remark that the decoupling condition (7.3) is satisfied in the classical
pursuit-evasion problem. We note also that in the special case h = 1, g = 0,
we have T = T', so that

(7.5) 3f(s) := {x: T(x) < s} = 3?'(s) := {x: T'(x) < s}.

Note that 31 (s) is the set of starting points of the game such that the first
player has a strategy which forces the system into the target in time t < s, no
matter what the second player does. 3?'(s) has the same interpretation for the
game where the controls are taken in A' and B'. The corresponding objects
in control theory are the sets from which one can reach y in time t < s, and
therefore the conclusion (7.5) can be compared to other nonlinear relaxation
theorems such as Corollary 20.2 of Hermes-LaSalle [29] and Theorem 2 of
Bressan [47], which are proved by completely different methods (see also the
references therein).
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Corollary 7.3: Affine relaxation theorem. Assume (HI), (7.2), and

(7.6) f(x,a,b) = fx (x) + f2(x)a + f3(x)b,

where f¡(x),  i = 2, 3, are N x M matrices. If Á ,B' are compact,

(7.7) A' = coA,        B' = coB,

and either V or V' is continuous on dEF, then V = V' and 3% = 3Î1.
Proof. It is easy to see that (7.6) and (7.7) imply (7.4).   G

Using the remarks preceding the corollary, one can see the connection be-
tween the classical bang-bang principle of LaSalle [37] for linear control systems
and Corollary 7.3.

Remark I.A. Other sets of admissible controls. If instead of sf , 38 we consider
as admissible controls the sets sf' ,38' of piecewise constant controls, then
one can check that the dynamic programming principle still holds and therefore
the corresponding value function V' is a viscosity solution in 3$'\ET (see
Proposition 1.3). Thus, if V' is continuous on dEf, by Theorems 6.1 and 3.1
we get V = V' and 3? = 3?', and it is not hard to see that (H2) and (H3)
imply the desired continuity of V' if g = 0. A similar result has been proved
by Bacciotti [2] for linear control systems. The above argument and the same
conclusion hold if we take sf' to be the set of relaxed controls and we restrict
ourselves to control problems (i.e. B a singleton). Capuzzo Dolcetta-Ishii [15]
and Loreti [40] used the theory of viscosity solutions in the same way to prove
results of this kind for infinite horizon control problems. The argument does not
hold in general for differential games because the problem with relaxed controls
may have a different Hamiltonian (see e.g. [20]).

The two following applications are restricted to game theory. The definition
of V is not symmetric for the two players and indeed it describes a game where
the first player has a slight advantage over the other one, so that V is called the
lower value of the game. We call T the set of admissible (i.e. nonanticipating)
strategies for the second player and define the upper value of the game:

V(x) := sup inf P(x, a, ß[a]) ;

3? is the corresponding upper capturability set.
A classical problem in the theory of differential games is the "existence of

value", namely the coincidence of V and V under the following Isaac's con-
dition:

(7.8) H(x, p) = H(x, p) := maxmin{-/(x, a, b) ■ p - h(x, a, b)}
aeA   beB

for all x, p e R .
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Results of this type have been one of the main contributions of the theory of
viscosity solutions to differential games: see Barron-Evans-Jensen [9], Evans-
Souganidis [23], and Souganidis [43]. For our problem we have the following
result which generalizes Theorem 2 in [7].

Corollary 7.5. Assume (HI).
(i) Comparison of upper and lower value: if V and V are continuous on

dEF, then 3Ï c3$ and V(x) < V(x) for all xe3t.
(ii) Existence of value: if (7.8) holds and V is continuous on dEF, then

3£ =3 and V =V.
Proof, (i) by the same arguments we mentioned in §1, V is a viscosity solution
of _

H(x,DV) = 0   in 3Î\EF.
The conclusion is then obtained by taking the Kruzkov transform of V and
V, observing that %? > %f and applying Corollary 2.4.

(ii) By the argument in the proof of Theorem 6.1, V is a continuous solution
of (3.1) and therefore Theorem 3.1 provides the conclusion.   G

It is possible to show that if g = 0 (H2) and (H3) are sufficient conditions
for the continuity of V as well.

Remark 7.6. Other definitions of value. It may be interesting to compare Elliott-
Kalton's concept of value defined in § 1 with any one among the many others
known in the literature [24, 25, 35, 11]. If another concept of the value V'
satisfies the dynamic programming principle, then it is a viscosity solution of
H(x, DV) = 0 in 3t'\EF. If v' is continuous on dEF and goes to +ce on
d3f', then our theory implies that 31' = 31 and V' = V.

Remark 1.1. Discontinuous value functions. It is easy to see that a lack of local
controllability on some points of dEF leads to value functions which do not
tend to + ce on d3l or which are discontinuous. The first event occurs for
instance for the minimum time function in the classical Zermelo Navigation
Problem reported by Caratheodory [16, §458]. The second event can be easily
obtained by a simple modification of Zermelo's problem; another example can
be found in Basar-Olsder [10, Chapter 5].

Clearly our global theory does not apply in these cases, but the local theory
of §4 does apply near points of dEF where there is some controllability. For in-
stance Theorem 6.5 applies to both the examples above, and characterizes T as
the unique continuous solution of the Bellman equation in some neighborhood
of the "good" part of dEF .

The only global uniqueness result for discontinuous solutions we know of
at the present time is obtained by combining the Kruzkov transform with a
theorem of Barles-Perthame [8], and it holds for the minimum time problem
with smooth target. Its extension to games and to more general control problems
seems out of reach at the moment.
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Remark 7.8. Approximation problems. Some ideas of this paper have already
been used in [5] for proving the convergence of a discrete approximation to the
minimum time function. The local theory in §4 can be used to approximate any
given problem by one having a bounded invariant set, which is a necessary con-
dition for implementing the approximation algorithm on a computer (see [6]).
More general results involving differential games will be tackled in the future.
We recall that the methods of comparison theorems for viscosity solutions can
also be used for estimating the rate of convergence of various approximations
(see e.g. Capuzzo-Dolcetta-Ishii [15]).

Remark 1.9. On the free boundary d3ê . In general the free boundary d3i does
not have any regularity. In fact for any given Qd EF, EF closed, Q open and
connected, we now show an example of controlled system f(x, a) such that
3f = Q. It suffices to define d(x) = dist(x, Qc) and take

f(x,a) = d(x)a,       aeB(0,l)cRN.

We can also choose a globally bounded dynamics by setting f(x, a) =
(d(x)M)a.

In the theory of free boundary problems it is often possible to derive some
additional conditions which the solution has to satisfy on the free boundary.
Here we can do this for the transform of the capture time, v = 1 - exp(-T),
which satisfies the Dirichlet boundary condition v = 1 on d3? and

minmax{-/(x, a, b) • Dv} = 0   on d3$,
beB  aeA

in the viscosity sense. Similar boundary conditions have been introduced by
Soner [42] for control problems with state-constraints (see also [40] and the
references therein).

REFERENCES

1. A. Bacciotti, Sulla continuit'a delta funzione tempo minimo, Boll. Un. Mat. Ital. B IS (1978),
859-868.

2. _, Linear systems with piecewise constant controls, Boll. Un. Mat. Ital. A 18 (1981),
102-105.

3. -, Fondamenti geometrici delta teoría della controllability Quad. Unione Mat. Italiana,
vol. 31, Pitagora, Bologna, 1985.

4. M. Bardi, A boundary value problem for the minimum time function, SIAM J. Control 27
(1989), 776-785.

5. M. Bardi and M. Falcone, An approximation scheme for the minimum time function, SIAM
J. Control 28 (1990), 950-965.

6. _, (in preparation).
7. M. Bardi and P. Soravia, A PDE framework for differential games of pursuit-evasion type,

in Differential Games and Applications (T. Basar and P. Bernhard, eds.), Lecture Notes in
Control and Inform. Sei. 144, Springer-Verlag, 1990, pp. 62-71.

8. G. Barles and B. Perthame, Discontinuous solutions of deterministic optimal stopping time
problems, RAIRO Model. Math. Anal. Numér. 21 (1987), 557-579.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



228 MARTINO BARDI AND PIERPAOLO SORAVIA

9. E. N. Barren, L. C. Evans and R. Jensen, Viscosity solutions of Isaacs' equations and differ-
ential games with Lipschitz controls, J. Differential Equations 53 (1984), 213-233.

10. T. Basar and G. J. Olsder, Dynamic non-cooperative game theory, Academic Press, New
York, 1982.

11. L. D. Berkovitz, Differential games of generalized pursuit and evasion, SIAM J. Control 24
(1986), 361-373.

12. _, Characterization of the values of differential games, Appl. Math. Optim. 17 (1988),
177-183.

13. A. Bressan, Sulla funzione tempo minimo nei sistemi nonlineari, Atti Accad. Naz. Lincei
Mem. Cl. Sei. Fis. Mat. Natur. Sez. la 66 (1979), 383-388.

14. P. Cannarsa and H. M. Soner, On the singularities of viscosity solutions to Hamilton-Jacobi-
Bellmann equations, Indiana Univ. Math. J. 36 (1987), 501-524.

15. I. Capuzzo Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deter-
ministic control theory, Appl. Math. Optim. 11 (1984), 161-181.

16. C. Caratheodory, Calculus of variations and partial differential equations of the first order,
2nd english ed., Chelsea, New York, 1982.

17. M. C. Crandall, L. C. Evans, and P. L. Lions, Some properties of viscosity solutions of
Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), 487-502.

18. M. C. Crandall, H. Ishii and P. L. Lions, Uniqueness of viscosity solutions revisited, J. Math.
Soc. Japan 39 (1987), 581-596.

19. M. C. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans.
Amer. Math. Soc. 277 (1983), 1-42.

20. R. J. Elliott and N. J. Kalton, The existence of value in differential games, Mem. Amer.
Math. Soc. No. 126 (1972).

21. L. C. Evans and H. Ishii, Differential games and nonlinear first order PDE on bounded
domains, Manuscripta Math. 49 (1984), 109-139.

22. L. C. Evans and M. R. James, The Hamilton-Jacobi-Bellman equation for time-optimal
control, SIAM J. Control 27 (1989), 1477-1489.

23. L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solu-
tions of Hamilton-Jacobi equations, Indiana Univ. Math. J. 33 (1984), 773-797.

24. W. Fleming, The convergence problem for differential games, J. Math. Anal. Appl. 3 (1961),
102-116.

25. A. Friedman, Differential games, Wiley, New York, 1971.
26. E. Giusti, On the equation of surfaces of prescribed mean curvature, Invent. Math. 46 (1978),

111-137.
27. O. Hajek, Pursuit games, Academic Press, New York, 1975.
28. H. Hermes, Feedback synthesis and positive, local solutions to Hamilton-Jacobi-Bellman

equations, Analysis and Control of Nonlinear Systems (C. I. Byrnes, C. F. Martin and
R. E. Saecks, eds.), North-Holland, Amsterdam, 1988, pp. 155-164.

29. H. Hermes and J. P. LaSalle, Functional analysis and time optimal control, Academic Press,
New York, 1969.

30. R. Isaacs, Differential games, Wiley, New York, 1965.
31. H. Ishii, Uniqueness of unbounded viscosity solutions of Hamilton-Jacobi equations, Indiana

Univ. Math. J. 33 (1984), 721-748.
32. _, Perron's method for Hamilton-Jacobi equations, Duke Math. J. 55 (1987), 369-384.
33. -, Representation of solutions of Hamilton-Jacobi equations, Nonlinear Anal. T.M.A. 12

(1988), 121-146.
34. -, A boundary value problem of the Dirichlel type for Hamilton-Jacobi equations, Ann.

Scuola Norm. Sup. Pisa Cl. Sei. (4) 16 (1989), 105-135.
35. N. Krassovski and A. Soubbotine, Jeux différentiels, Mir, Moscow, 1977.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HAMILTON-JACOBI EQUATIONS 229

36. S. N. Kruzkov, Generalized solutions of the Hamilton-Jacobi equations of the eikonal type.
I, Math. USSR-Sb. 27 (1975), 406-445.

37. J. P. LaSalle, The time-optimal control problem, in Theory of Non-Linear Oscillations, vol.
5, Princeton Univ. Press, Princeton, N.J., 1958, pp. 1-24.

38. P. L. Lions, Generalized solutions of Hamilton-Jacobi equations, Pitman, Boston, 1982.
39. P. L. Lions and P. E. Souganidis, Differential games, optimal control and directional deriva-

tives of viscosity solutions of Bellman's and Isaacs' equations, SIAM J. Control 23 (1985),
566-583.

40. P. Loreti, Some properties of constrained viscosity solutions of Hamilton-Jacobi equations,
SIAM J. Control 25 (1987), 1244-1252.

41. N. N. Petrov, Controllability of autonomous systems, Differential Equations 4 (1968), 311—
317.

42. H. M. Soner, Optimal control problems with state-space constraints, I & II, SIAM J. Control
24 (1987), 551-561 and 1110-1122.

43. P. E. Souganidis, Max-min representations and product formulas for the viscosity solutions of
Hamilton-Jacobi equations with applications to differential games, Nonlinear Anal. T.M.A.
9(1985), 217-257.

44. N. N. Subbotina, A. I. Subbotin and V. E. Tret'jakov, Stochastic and deterministic control.
Differential inequalities, Problems Control Inform. Theory 14 (1985), 405-419.

45. A. I. Subbotin and A. M. Tarasyev, Stability properties of the value function of a differen-
tial game and viscosity solutions of Hamilton-Jacobi equations, Problems Control Inform.
Theory 15(1986), 457-463.

46. H. Sussmann, A general theorem on local controllability, SIAM J. Control 25 (1987), 158-
194.

47. A. Bressan, On a bang-bang principle for nonlinear systems, Suppl. Boll. Un. Mat. Ital. 1
(1980), 53-59.

Dipartimento di Matemática Pura ed Applicata, Università di Padova, via Belzoni 7,
1-35131 Padova, Italy

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


