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HAMILTON-JACOBI EQUATIONS WITH STATE CONSTRAINTS

I. CAPUZZO-DOLCETTA AND P.-L. LIONS

Abstract. In the present paper we consider Hamilton-Jacobi equations of the
form H(x, u, Vu) = 0 , x e Q , where Q is a bounded open subset of R" ,
H is a given continuous real-valued function of (x, s, p) G Q x R x Rn and
Vu is the gradient of the unknown function u. We are interested in particular
solutions of the above equation which are required to be supersolutions, in a
suitable weak sense, of the same equation up to the boundary of Í2 .

This requirement plays the role of a boundary condition. The main moti-
vation for this kind of solution comes from deterministic optimal control and
differential games problems with constraints on the state of the system, as well
from related questions in constrained geodesies.

I. Introduction

This paper is concerned with the study of some particular solutions of general
Hamilton-Jacobi equations of the form

(1) H(x,u,Vu) = 0   inQ

where Q is a given domain of R and H—often called the Hamiltonian—is
a real-valued function on Q x R x R that we will always assume to be at least
continuous on Q x R x RN . Finally, we will denote the Fréchet differential of
u by Vu.

The solutions of ( 1 ) we consider are viscosity solutions "inside Q " and vis-
cosity supersolutions (i.e. solutions of H > 0) on 9Q. The property that u
is a viscosity supersolution on dQ (see §11 for precise definitions) plays the
role of a boundary condition. For the main facts about viscosity solutions of
(1), we refer the reader to M. G. Crandall and P.-L. Lions [8], M. G. Crandall,
L. C. Evans and P.-L. Lions [6] (some are briefly recalled in §11). While this pa-
per is mostly self-contained, some knowledge of viscosity solutions is certainly
advised.

The main reason why one is interested in such solutions concerns the applica-
tions to optimal control theory: roughly speaking, the study of optimal control
problems where one restricts the class of controls to those which constrain the
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644 I. CAPUZZO-DOLCETTA AND P.-L. LIONS

state of the system inside Q (so-called state-constrained problems) leads to vis-
cosity solutions of (1) which are "supersolutions on dQ" and this is an easy
consequence of the dynamic programming argument. For the general relations
between optimal control problems, dynamic programming and viscosity solu-
tions we refer to P.-L. Lions [23, 24]. The relations between state-constrained
problems and viscosity supersolutions on dQ are described in M. Soner [32]
(see also §X).

In §11 we define precisely solutions of (1) in Q which are supersolutions
on dQ and we give a few elementary properties, one of which is of particular
interest for optimal control problems. We show that if u is the maximum
viscosity subsolution of (1) in C(Q) (i.e. u e C(Q), is a viscosity solution
of (1) H(x, u, Vu) < 0 and any such subsolution is below u), then u is a
viscosity solution of ( 1 ) and a viscosity supersolution on Q.

In §111, we present some uniqueness results for such solutions which are ob-
tained by applying the method of proof used by Soner [32] for a particular class
of equations.

Next (§V), we give further uniqueness results by introducing a new assump-
tion based upon the use of distance-like functions. A similar use has been
introduced for problems without boundary conditions in M. G. Crandall and
P.-L. Lions [9, 10] and for Neumann type boundary conditions and equations
like ( 1) in P.-L. Lions [25]. Here, the distance-like functions have to be carefully
chosen.

§§IV and VI are devoted to the existence question. It is worth pointing out
that restrictions upon H are necessary in view of the counterexamples we give
in §11 and that one cannot expect the same generality as in M. G. Crandall and
P.-L. Lions [9, 10]. We first give general existence results (§IV) when H grows
to +00 as \p\ -* oo (at least near dQ ), while other existence results involving
different assumptions (near <9Q ) are proved in §VI.

In §VII we present some approximations of the particular solutions of ( 1 )
we are interested in, §VIII is concerned with asymptotic problems related to
ergodic state-constrained control problems. In §IX we consider an extension
of the preceding problems to the case of solutions of ( 1 ) which are viscosity
supersolutions of ( 1 ) on a part of dQ and satisfy Dirichlet boundary conditions
on the complement.

In the last section we apply the results of the preceding sections to various
problems of the calculus of variations, optimal control and differential games.
In particular, we show various properties such as Lipschitz continuity of the
value functions of some control and differential games problems.

II. Elementary properties

We first recall a few basic definitions. Let Q be a smooth open subset of R
and let 4> e C(Q). For x e Q the subdifferential of <f> at x is the (possibly
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HAMILTON-JACOBI EQUATIONS WITH STATE CONSTRAINTS 645

empty) closed convex set defined by

(2) D-<f>(x) = \c:eRN liminf <Rly)-Kx)-{i,y-x)>0
x,yen \y - *\ j

Similarly, the superdifferential of tp at x—denoted by D+tf>(x)—is defined by
imposing that the lim sup of the same quantity appearing in (2) is nonpositive.
Let us point out explicitly that if ¿¡ e D~<p(x) with x edQ, then ¿¡ + cn(x) e
D~4>(x) for all c > 0, where n(x) is the unit outward normal vector to 9Í1
at x. We may now give the

Definition. A function u e C(Q) is a viscosity subsolution of ( 1 ) on X, where
X = Q or Z = ñ,if

(3) H(x,u(x),t))<0,    WxeX,^eD+u(x).

A function u e C(Q) is a viscosity supersolution of (1) on X if

(4) H(x,u(x),Ç)>0,    \/xeX,VA;eD~u(x).
Finally, zz is a viscosity solution of ( 1 ) on X if it is both a subsolution and
supersolution on X.

This is the usual notion as given in [8, 6] and we refer to these papers for
the main properties of viscosity solutions. As in [8, 6] one can show, using the
smoothness of Q, that the above definition is equivalent to

Equivalent definition. A function u e C(Q) is a viscosity subsolution of (1) on
X if for all 4> e C (Q) at any local maximum point x of u - <p on X the
following holds:

(5) H(x,u(x),V<f>(x))<0.
A function u e C(Q) is a viscosity supersolution of ( 1 ) on X if for all 4> e
C (Q) at any local minimum point x of u - <p on X , the following holds:

(6) H(x,u(x),V<p(x))>0.

Remarks. Let us observe explicitly that if u is a viscosity supersolution of ( 1 )
on Q then, in general, u is not a viscosity supersolution in œ, where œ is a
subdomain of Q.

It is worth mentioning also that in R. Jensen [21], M. G. Crandall and R.
Newcomb [13], P. E. Souganidis [33] various conditions on H are given which
insure that if zz € C(Q) is a viscosity supersolution of (1) in Q then u is
a viscosity supersolution on dQ or on some part of dQ. These conditions
involve some variations of the following condition:

H(x,t,p + Xn(x)) > H(x ,t,p),    Vx e dQ, t e R, p e RN, X > 0.

In the rest of this paper we shall be mostly interested in functions u which
are subsolutions of (I) in Q and supersolutions of (I) in Q, according to the
above definition.
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646 I. CAPUZZO-DOLCETTA AND P.-L. LIONS

Let us explain now the relations between viscosity supersolutions of ( 1 ) in Q
and viscosity supersolutions of the Neumann problem

(7) H(x,u,Vu) = 0   in Q,    du/dn = 0   on dQ.

According to P.-L. Lions [25] (see also B. Perthame and R. Sanders [29]), u e
C(Q) is a viscosity supersolution of (7) if it is a viscosity supersolution of (1)
in Q and it satisfies

(8) H(x, u(x),£)>0,    VxedQ,VxeD~u(x) suchthat (£, n(x)) <0.

Proposition ILL Let u e C(Q). If u is a viscosity supersolution of (I) on
Q, then u is a viscosity supersolution of (7). Conversely, if u is a viscosity
supersolution of (7) and if H(x, u(x), p) is a nondecreasing function of \p\
for all xedQ, then u is a viscosity supersolution of (I) on Q.
Proof. The first statement is obvious since (4) implies (8). Conversely, let u
be a viscosity supersolution of (7) and x e dQ. It is enough to check that

H(x, u(x), O > 0,    V£ e D~u(x), (i, n(x)) > 0.

Let us decompose Ç as

£ = £' + (£, n(x))n(x),    with ({', n(x)) = 0.

By an extension lemma proven in [25] we have

H(x, u(x), Ç - X0n(x)) > 0.

Now, if 2(£, n(x)) > X0 then \A¡ - X0n(x)\ < \c¡\ and therefore

H(x, u(x), £) > H(x, u(x), Ç - X0n(x)) > 0.

On the other hand, if 0 < (¡A,, n(x)) < X0/2 < X0, then £,' e D~u(x) and
therefore, taking the assumption on H into account and the fact that |£| > |<^'|,
we obtain

H(x,u(x),c;)>H(x,u(x),c;')>0.   a

Remark. In order to explain the above result, let us point out that if u is a
viscosity supersolution of ( 1 ) on Q which is differentiable on Q, then

D~u(x) = {t¡eRN\¡A\ = Du(x) + cn(x), c > 0),    for x e dQ.

Hence,

H(x, u(x), Vu(x)) = 0,        H(x, u(x), Vu(x) + cn(x)) > 0

for all c > 0 and x edQ. If H is differentiable with respect to p , this implies
that u satisfies the boundary condition

^ß(x,u(x),Vu(x))>0,       xedQ.
dn

Observe finally that if H is nondecreasing with respect to \p\ the above yields

2(Vk(jc) , n(x)) + c = \Vu(x) + cn(x)\2 - \Vu(x)\2 > 0.
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HAMILTON-JACOBI EQUATIONS WITH STATE CONSTRAINTS 647

Hence, sending c to zero, we obtain

^-(x)>0,       xedQ.
dn

We give now an important observation for the rest of this paper.

Theorem ILL Let u e C(Q) be a viscosity subsolution of (I) in Q. Assume,
in addition, that for all viscosity subsolutions v e C(Q) of (I) in Q one has
v < u in Q. Then u is a viscosity supersolution of (I) in Q.
Proof. We argue by contradiction. Let tf> e C (Q), x0 e Q ; we assume that
u - tp has a global minimum on Q at x0 and that

H(x0, u(xQ),V(p(x0)) <0.

We then set v(x) = u(x0)+e-\x-x0\ +<p(x)-4>(xf where e > 0 is determined
below. Next, let 5 > 0 ; we have on dB(xQ, 5) n Q

2v(x) < u(x) + e -5  < u(x) - e

as soon as 5 > (2e)1/2. Computing H(x, v(x), Vv(x)) on B(xQ, 5)Q we find

H(x, v(x), Vv(x)) = H(x, v(x), Vtp(x) - 2(x - xf)
< H(x0, u(x0), V4>(xf) - co(5)

where a>(t) —► 0 if / —»• 0+ . Hence, choosing 5 small enough and then 0 <
e < 52/2, we find

ve.C(Q),    v(x0)>u(x0),    v < u   on dB(x0, 5) r\Q,
H(x,v(x),Vv(x))<0    inB(x0,5)nQ.

Then, we set w(x) = max(v(x), u(x)) in B(x0, 5)nQ, = u(x) in B(x0,5f<l
Q. Obviously w e C(Q) and since v < u in a neighborhood of dB(x0, 5)
(in Q) we observe that w is a viscosity subsolution of (1) in Q: indeed we
just have to check that w is a viscosity subsolution of (1) in B(x0, 5)<~)Q and
this follows from the stability of viscosity subsolutions by the operation max.
Finally remarking that w(x0) > u(xf), we reach a contradiction which proves
the theorem.   D

The next result shows that viscosity supersolutions of (1) on Q need not
exist.

Proposition II.2. Let us assume that for some x0 e dQ and 5 > 0 the following
holds:

for every R > 0 there exists M > 0 such that

(10) H(x,t,p)<0   for\p\> M,\t\<R, x e B(x0, 5) nQ.
Then, there is no viscosity supersolution of (I) in Q.
Proof. Let us assume by contradiction that such a viscosity supersolution ex-
ists, say zz e C(Q).  From (10) it follows that u is Lipschitz continuous on
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648 I. CAPUZZO-DOLCETTA AND P.-L. LIONS

B(x0, 5) n Q (see [8]). Let us take tpeC (Q) such that tz - <¡>\oa has a global
minimum on dQ at some xx e B(x0, 5)ndQ. Then, the function u~4> + cd,
where d(x) = dist(x, <9Q) and c > 0, has a local minimum at xx . Therefore,
V(j)(xx) + cn(xx) e D~u(xx) and consequently

H(xx, u(xx), Vtp(xx) + cn(xx))>0.

For large c this contradicts (10) and the proof is complete,   a

III. Uniqueness results

We present in this section some comparison and uniqueness results for vis-
cosity solutions of

(11) u + H(x, u, Vu) = 0   inQ

which are supersolutions in Q, as well as for the Cauchy problem

(12) ^- + H(x,t,u,Vu) = 0   inQx(0,T),

u(x, 0) = u0(x)   in Q.

We shall always assume that H e C(Q x [0, T]x Rx RN) (when dealing with
(11) H will be taken independent on / )• The basic assumptions we shall use
in this section are:

(HI) H(x, t, s, p) is nondecreasing with respect to 5

forallxeQ, t e [0, t], p e RN,
(H2) \H(x,t,s,p)-H(y,t,s,p)\<oj(\x-y\(l + \p\,\s\),

for all x, y e Q, t e [0, T],seR,peRN,
(H3) \H(x, t, s, p) - H(x, t, s, q)\ < p(\p - q\, \s\),

for x e r0, t e [0, t], s e R, p, q e RN.

Here, ro is a closed (with respect to Q ) neighborhood of dQ, a> and p
are local moduli. Let us recall that a modulus is a continuous nondecreasing,
nonnegative, subadditive function from [0, oo) to (0, oo) such that co(0) = 0 .
A local modulus p(s, t) is a modulus in 5 for each t > 0, is continuous in
(s, t) and nondecreasing with respect to t.

(H4) Q is a bounded and starshaped (with respect to the origin) open subset
of RN such that

dist(x, Q) > kc,    Vxe(l+e)oQ,Ve>0,

for some k > 0.

Assumptions (HI), (H2) appear in [8, 23] while (H3) and (H4) will be specif-
ically needed for the results of this paper.

The comparison results we present below are of different nature. Actually,
Theorems III. 1, III.2 (and their variants III.3, III.4) make use of assumption
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HAMILTON-JACOBI EQUATIONS WITH STATE CONSTRAINTS 649

(H3) and their proofs are based on a combination of arguments in [9] and of
M. Soner [32].

For the second class of results (Theorems 111.5,6,7) assumption (H3) is not
needed while a major role is played by the geometric condition (H4).

Theorem III.l. We assume that Q is bounded and that (HI) holds. Let u, v e
C(Q) be, respectively, a viscosity subsolution of (11) z'zz Q, and a viscosity
supersolution of

(13) v + H(x,v,Vv) + f(x) = 0   inQ,
where f e C(Q). Then, if either (H2), (H3) hold or u is Lipschitz, we have

(14) max(zz - v)+ < max/+ .
n n

Remarks, (i) Observe that of course no comparison between u and v on dQ
is necessary.

(ii) The main difference between the most general uniqueness results of vis-
cosity solutions and the above one is in the additional assumptions needed:
indeed we need either (H3) or we assume that u is Lipschitz.

We do not know if it is enough to assume that v is Lipschitz.
(iii) Theorem II. 1 is, in a sense, the converse of the above result which shows

in particular that if u is a viscosity solution in Q and a supersolution in Q
then u is the maximum subsolution.

We now turn to (12).

Theorem III.2. We assume that Q is bounded and that (H1 ) holds. Let u, v e
C(Q x [0, T]) be, respectively, a viscosity subsolution of (12) and a viscosity
supersolution of

(15) ^. + H(x,t,v,Vv) + f(x,t) = 0   inQx(0,T)

where f e C(Q x [0, T]). Then, if either (H2), (H3) hold or u is Lipschitz in
x uniformly for t e [0, T], we have for all t e [0, T]

(16) max(u - v)+(t) < max(u - v)+(0) +      maxf+(s)ds.
n n Jon

We will only prove Theorem III.l. The proof of Theorem III.2 can be per-
formed then with simple adaptations.

Proof of Theorem III.l. We consider wfx, y) = u(x)-v(y)-f\x + eT(x)-y\2
where T(x) = Ç(x)n(x), £ = 1 near dQ, ( eCx(Q), f = 0 if x 6 Q - T0
and n(x) = -Vd(x) (taking ro small enough so that d is differentiable on
ro ). If we assume that max^(zz - v)+ > max^f* , then, by the results of [8,
23], y = max^(« - v)+ = maxdQ(u - v)+ = (u - v)(x0) > 0 for some xQedQ.
Therefore

(17) maxwfx, y) >w£(x0-sn(x0),x0) > y - co(e)
ÍJxíl
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650 I. CAPUZZO-DOLCETTA AND P.-L. LIONS

where co is the modulus of continuity of u.  Now, if (x, y) e Q x Q is a
maximum point of we we find

_ 1 _        _2
(18) maxw(x,y) = wfx,y)<y + a>(\x-y\)--j\x + eT(x)-y\  .

0.XÍ2 £

Hence, combining (17) and (18),
_        _2 2        _      _ 2\x + eT(x)-y\   < e co(\x - y\) + co(e)e .

This implies easily |x - y\ < Ce and therefore

(19) \x + eT(x)-y\ <£<$(£),
where 5(t) ->0 as / —> 0+ . Now, in view of the properties of T, this yields
x € Q for e small enough.

Applying the definitions of viscosity sub and supersolutions we now obtain

u(x) + Hlx, u(x), —(I + eVT(x))(x + eT(x)-y)\ <0,

v(y) + H(y,v(y),^(x + eT(x)-y)^+f(y)>0.

Then, if x £ T0, T(x) = 0 and standard arguments of [8, 6] apply and we
conclude subtracting the above inequality and using (H2), (19). If x e T0 , we
first observe that in view of (19)

r(evr(x))(x + £r(x)-y) <C5(e).

Using (H3) we deduce from the above inequalities

u(x) - v(y) + h(x, u(x) , —(x + eT(x) -y) j < zc(£) —»-0   as £ —» 0+ .

If (H2) holds, the remainder of the argument is standard (see [8, 6]). If zz is
Lipschitz, we use the fact that this implies that

\(I + eVT(x))(x + eT(x) - y)
£

<c
where C is a bound for |Vw|. This yields

^(x + eT(x)-y)  < C + C5(s)
£

and we conclude as usual.   D

Remark. We would like to point out that it is possible to relax somehow (H2)
by assuming instead

(H2')      H(x,t,s, XVxd(x,y))-H(y,t,s, -XVyd(x, y))
> -a>(Xd(x, y) + d(x, y), \s\)

forallx^ yeQ, te[0, T],seRN ,0<X,
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for some local modulus co, where d(x, y) is defined on a neighborhood of
Q x Í2, is Lipschitz, differentiable with respect to x for x / y and with
respect to y for y ^ x, d(x, y) > \x - y\, d(x, x) = 0 for all x, y . In
addition, we need to assume

(20) \H(x,t,s,p)-H(y,t,s,p)\<co(\x-y\(l + \p\),\s\)

for all x, y in a neighborhood of dQ, te[0,T],seR,peR   ,

(21) \Vxd2(x, y) + Vyd2(x, y)\ < Cd2(x,y),

\Vxd2(xx, y) - Vxd2(x2, y)\ < C\xx - x2\

for all x, , x2, x , y in a neighborhood of dQ, for some C > 0.
We now conclude this section by briefly mentioning the case when Q is

unbounded and we work with uniformly continuous functions. We need some
additional assumptions:

H(x,t,s,p)- H(x,t,s, +XVv(x)) < CR
for xeQ,te[0, T], seR, peBR,0<X< R,

for some CR > 0 where R > 0 is arbitrary.
There is a local modulus a such that

(23) H(x,t,s,p)- H(x,t,s,p + XDp(x)) < o(X, \p\)
for x e Q, t e [0, T], s e R, p e RN , 0 < X < 1,

where v, p are Lipschitz, nonnegative and differentiable, p —► +00 as |x| —>
00, u(x) > \x\ for x large.

Finally, we will use some variants of (H2):

(H2s)       \H(x,t,s,p)-H(y,t,s,p)\<co(\x-y\(l + \p\))
for x, yeH, te[0,T], seR, peRN,

(H2w)      \H(x,t,s,p)-H(y,t,s,p)\ <w(|x-y|, |p|)

forx,yeQ,te[0,l], seR, peRN,
(H2w')     \H(x, t, s, p) - H(y, t, s, p)\ < m(\x - y\, \p\ + \s\)

forx,yeQ, te [0,1], seR, p e RN,

where to is a modulus and zrz, o are local moduli.

Theorem III.3. Assume that (HI) holds. Let u, v e C(Q) be respectively a
viscosity subsolution of (II) in Q and a viscosity supersolution of (13) in Q
where f e Cb(Q).

We assume one of the following four sets of assumptions: (i) u,v are uni-
formly continuous on Q and (22), (23), (H2s), (H3) hold, (ii) u is Lipschitz
on Q and (22), (23), (H2w) hold, (iii) u, v , are bounded uniformly contin-
uous on Q and (23), (H2), (H3) hold; (iv) u, v are bounded on Q, u is
Lipschitz on Q and (23), (H2w') hold. Then (14) holds.
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Theorem III.4. Assume that (HI) holds. Let u,v e BUC((BR n Q) x [0, T])
(yR < oo) be respectively a viscosity subsolution of (12) and a viscosity super
solution of (15) where f e Cb(Q x [0, T]). We assume one of the following
sets of conditions: (i) u, v are uniformly continuous in x uniformly in t e
[0, T] and (22), (23), (H2s), (H3) hold; (ii) u is Lipschitz in x uniformly
in t e [0, T] and (22), (23), (H2w) hold; (iii) u, v are bounded uniformly
continuous in x uniformly in t e [0, T] and (23), (H2), (H3) hold; (iv) u, v
are bounded, u is Lipschitz in x uniformly in t e [0, T] and (23), (H2w')
hold. Then (16) holds.

Since the proof of these results is, as above, a combination of M. Soner's
method and the arguments of [9, 10], we will skip them. Let us mention also
that some uniqueness results for unbounded Q can be proved by combining the
methods of M. G. Crandall and P.-L. Lions [11] and of M. Soner [32], provided
suitable conditions at infinity are satisfied.

Let us consider now the case where Q is star-shaped and assume for sim-
plicity that H does not depend on 5.

Theorem III.5. Let u, v e C(Q) be, respectively, a viscosity subsolution of

(24) u + H(x ,Vu) = 0   in Q

and a viscosity supersolution of

(25) v + H(x,Vv) + f = 0   inQ

where feC(Q). Then, if (H2), (H4) hold, we have

(26) max(u - v)+< max f+.
n n

Proof. Let x0 e dQ be a strict maximum point for u-v on Q and (x£, y£) e
( 1 + e)Q x Q be a maximum point for

1 2
ufx)-v(y)-—2\x-y\,        e>0,

2e
where

u£(x) = (l+e)u[-^—) ,       xe(l+e)Q.

Since Q is starshaped, x0 e (1 + e)Q and therefore

1 2
(27) ut(xf)-v(ye)--1\xe-ye\  >ufxf-v(xf.

2e
This yields |xc - ye\ —► 0 as e —► 0. Therefore, x£ and y£ have a common

limit x as £-»0. From (27) we deduce that

I     -    I2
lim sup X"    2e    < lim[u£(xe) - v(y£) - u£(x0) + v(x0)] < 0

e—0 2fi e-*0

so that dist(x , Q) = O(e). By assumption (H4) then x£ e ( 1 + e)Q.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Now, u£ is a viscosity subsolution of

u+h(-^,Vu) =0   inQ.
1 +£  £ \l+e'

In the standard way we obtain

«.(*.)+ tf(rÍ4.3L-r:k)1 +£  £V £/        \l +e

and, from (25),
£

v(yf + H[y£,^-^yf(y£)>0.
By subtraction and using (H2) we find

1     , s    / x     (\xf-yF\ + E\ye\ (,   \xF-yÁW   »„   /•+7^"«(*.) - «W * œ { i+£- (/ + ̂ 2-^JJ + M|x/
and (26) follows passing to the limit as £ —» 0 in the above inequality.   □

For the next result we observe that since Q is assumed to be smooth, the
following property holds:
,.„. For all x 6 dQ there exists a neighborhood Q (relative to Q )
(    ' satisfying (H4).
Theorem III.6. Let u, v e C(Q) be, respectively, a viscosity subsolution of (24)
and a supersolution of (25).

If we assume that (28), (H2) hold and
(29) p —► H(x, p)   is convex for all x e Q,

then, maxçfu - v)+ < max^f^ .

Proof. Let x be a maximum point of 6u - v on Q, 0 < 8 < 1. It is easy
to check, by the same arguments used in the proof of Theorem III.5, that if
(x , y ) is a maximum point for

1 2
du(x)-v(y)-—2\x-y\

2e
then

■    Ö _     0,2
|Xc   /£ '   ^0   as £ -> 0,

£
..      e     ..      e       ehm x„ = hm v   = x .
E —0     £ £^0     £

Therefore, if x 6Í! then (x£ , y£) e Qx Q for small £ > 0. Observe now
that (29) implies that du is a viscosity subsolution of

(30) 6u + H(x,V6u)<(l-d)H(x,0)   infi.
Hence, by the usual technique,

eu(xee) - v(/£) < co (\xe£ -y£\(l + lX\2yel) J + d - G)H(x°£ , 0) + M_ax/+
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and the statement follows by letting £ —> 0 and 0 —► 1 .   Assume now that
a

x   e dQ and consider

ü = 8u-(i -eyx   x| .

It is straightforward to check that ù is a viscosity subsolution of

(31) ü + H(x,Vü)<(l-6) Íh(x, -(x-xe))- |X~X [   J     infi

and that x   is a strict maximum point for ü — v . Let us take now a neighbor-
hoc
by
hood of x  , say Q = B(x" , 5) n fi satisfying (28) and define ü   on (1 + e)Q

- t   sufx) 1 +£     V1 + e.
fi fiAs in the proof of Theorem III. 5, one can show that if (x  , y ) is a maximum

for u£(x) - v(y) - \x - y\ ¡2e , then
i    Ö 0,2
\x,-ye.\

e2

and, by (28), x£e€(l+e)ß-
The usual method then applies yielding

(32)        7—"A)-"^)^ w1 +£   £V   £/ V^£' -       \ 1 +£

+ M_ax/+ + C(l -6),
n

where C is a bound for the right term in (31).
The statement now follows by taking limits in (32) as £ —» 0 and 0 —► 1 .    D

In the next result the convexity assumption (29) is substituted by
H is uniformly continuous in p with a modulus independent
on x , for x in a neighborhood of dfi.

Theorem III.7. Let u, v e C(Q) be, respectively, a viscosity subsolution of (24)
and a supersolution of (25). If (28), (33) and (H2) hold, then

max(w - v)   < max /+ .
n o

Proof. Let x0 e dQ be a maximum point of u - v and define ws = u - v -
j\x — x0\ , 5 > 0. Obviously x0 is a strict maximum point for ws . From
(33) it follows that u6 = u - ||x - x0|    is a viscosity subsolution of

uö + H(x, Vuf <C5 + p(5),
where p is a modulus for H, in a neighborhood Q of x0 . At this point we
are in the same situation as in Theorem III.6 and therefore we omit the rest of
the proof.   G

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HAMILTON-JACOBI EQUATIONS WITH STATE CONSTRAINTS 655

Remarks, (i) The comparison inequality (26) can also be proved under as-
sumptions (28), (H2) and the following condition: there exists £B ->0 and
y/n e C'(fi) with ipn -* 1 in C'(fi) such that

lim    sup {H(x, \pnp + tV\pn + q)-H(x, p)}+ = 0.

The proof of this claim is similar to those of Theorems III.6 and III.7. The
key observation is that un = u/\pn and un = un - efx — xn\ /L, where xn is
the maximum point of un-v, are viscosity subsolutions of

un+H(x,Vun)<en + 5n
with 5n —> 0 as zz —► +00, a consequence of the above assumption.

(ii) Similar comparison results can be proved for the Cauchy problem (12)
with simple modifications.

(iii) It is not difficult to analyse the role of the assumption that fi is smooth
in the preceding proof. This allows us to extend the previous results to more
general domains (like, for instance, convex domains).

(iv) Since (H3) is equivalent to (33), we see that Theorem III.7 does not
really cover new cases. However, the proof is quite different and yields various
possible extensions that we skip here.

IV. Existence results for coercive Hamiltonians

To simplify the presentation we will assume that fi is a smooth, bounded
open set in R . We consider existence results for the stationary problem (11)
or for the Cauchy problem (12). We will use the following assumptions:

,-y.^. H(x, t, s, p) —► +00 as |pI —<• 00, uniformly for x e fi, t e
[0, T], s > -R , for all R > 0,

or
._,. H(x, t, s, p) —> 00 as 1/71 —> 00, uniformly for x a neighbor-
(    ' hood of dQ t e [0, T], s > -R , for all R > 0,

(36) H(x, tx, s, p) - H(x, t2, s, p) < m(tx - t2) for all x e fi,

0< t2 < tx < T,seR,peRN,
for some modulus m . We may now state

Theorem IV. 1 (The stationary case). Assume (HI), and either (34) or (35) and
(H2). Then there exists a unique viscosity solution u e C(Q) of (11) which is
a viscosity supersolution on fi.

Theorem IV.2 (The Cauchy problem). Assume (HI), (36) and either (34) or
(35) and (H2). Let u0 e C(Q). Then there exists a viscosity solution u e
C(Q x [0, T]) of (12) which is a viscosity supersolution on fi x (0, T) and
which satisfies u(x, 0) = u0(x) on fi.
Proofs. The uniqueness part in Theorem IV. 1 comes from the fact that (34) (or
(35)) implies that any viscosity solution of (11) is Lipschitz (near <9fi ) (see [8,
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23]) and the results of §111. The existence part in Theorem IV.2 is an adaptation
of a general observation of G. Baríes: indeed by the results [2] one may use (36)
to approximate uniformly H by a sequence of Hamiltonians satisfying

, H(x, tx, s, p) - H(x, t2, s, p) < C(tx - tf) for all x e fi,
(36 ) N

0<t2<tx<T,seR, for eR
for some C > 0. Then the existence part will give the existence of a solution
Lipschitz in (x, t) if (34) holds (or Lipschitz in (x, /) near dQ if (35) holds).
By simple comparison arguments we see it is enough to prove the existence part
of Theorem V.2 if H satisfies (36)' and if m 6 WX'°°(Q) with the Lipschitz
regularity mentioned.

We now prove the above statements by a penalty argument. We first extend
H to R x [0, F] x R in such a way that it satisfies the same assumptions
on RN and H e BUC(RN x[0,T]x [-R, +R] x BR) for all R < oo. We
also extend u0 to R in Wl '°°(RN), and we consider p e BUC(RN) such
that p = 0 in fi and such that V£ > 0, 35 > 0, p(x) > 5 if dist(x, fi) > e,
x e R   - fi. We then introduce the problems

1 N(37) u£ + H(x,u£,Vu£) = -p   inR

and

(38) ^i + H(x,t,u£,Vu£) = ^p    inRNx(0,T),

Ue\,=0 = U0      mR    ■

By the results of P.-L. Lions [23], G. Barles [1, 2], M. G. Crandall and
P.-L. Lions [9, 10] we know there exist viscosity solutions uf. e BUC(R )
(resp. BUC(RN x [0, T]) of (37) (resp. (38))). Furthermore, u£ < «£ if
0 < £, < £, by standard comparison results on viscosity solutions. Further-
more, there exists a constant C > 0 such that

(39) »£>-c>     forall£>0.

In addition, (39' ) implies that we have

(40) |^ < -C in '(RN x (0, T)), for all £ > 0

in the case of the Cauchy problem (38). Now (39), (40) imply that Vu£ is
bounded on fi (resp. fi x (0, T)) uniformly in £, or in a neighborhood
of dQ if we only assume (35). But then, using bounds in the equations we
find that u£ is also bounded on fi (resp. fi x (0, T)) uniformly in e (in a
neighborhood of dQ if (35) holds). If (34) holds, u£ is bounded in If ,oc
and thus u£ converges to some u e W ' which is a viscosity solution of ( 11 )
(resp. (12)). If (35) holds, u£ is bounded in W1 °° in a neighborhood of dfi
and we deduce from the methods of M. G. Crandall and P.-L. Lions [10] that
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uE has a fixed modulus of continuity on fi (resp. fix[0, T]) independent of
£ . Therefore, again u£ converges uniformly to some u which is Lipschitz near
dfi and which is a viscosity solution of (11) (resp. (12)).

To conclude, we have to prove that m is a viscosity supersolution of (11)
(resp. (12)) on fi (resp. on fi x (0, T)). The proof being the same for (11)
and (12), we will give the proof only in the case of the stationary problem (11).
Let <p e C'(fi) and let x0 e dQ be a minimum point of u - <p. We may
assume that the minimum is strict. Thanks to (39) we can extend tp to R in
CX(RN) so that

4>(y) - 4>ix0) + 1 < u£(y) - u(xf
if dist(y, fi) = 1. Next, let x£ be a minimum point of u£ - tp over the set
{x e R , dist(x, fi) < 1} . By the above choice of tp we see that x£ is a local
minimum point of u£ - <p for £ is small enough. Of course we may assume
that x£ —> x as £ goes to 0 (taking a subsequence if necessary). We first claim
that x e fi. Indeed, we have

(41) u£(xf) + H(x£, u£,V<p(xf)) > -p(xf)

and since u£(xf) < u£(xf + cp(Ac)-4>(xf < C we finally obtain p(xf < Ce and
thus p(x) = 0, i.e. x e fi. We next claim that x = x0 and u£(x£) —> u(x0).
Indeed, on the open sets {x/p(x) < Ce) for any constant C > 0 we deduce
as above that the functions zz£ are bounded in Lipschitz norm. Thus w£(x£) —►
zz(x0) as £ —► 0. If x ^ x0 , this would imply

u(xf - 4>(x0) < u(x) - <p{x) = limue(xe) - <p(xe)

- l^e^o) - ¿(Xq) = "(Xo) - ^(Xo)

and the contradiction proves our claim. We conclude then passing to the limit
in (41) as e goes to 0.    D

Remark. Of course we do not know in Theorem IV.2 if the solution is unique.
Observe, however, that the way we built the solution shows that zz is the mini-
mum viscosity supersolution v of (12) on fi x (0, T) such that v\t=0 > u0 on
fi . Another observation consists in the fact that the solution built u is the limit
of the Lipschitz function u£ on fi x [0, T] which are viscosity subsolutions of

-^j + H(x,t,u£,Vuf<e   infix]0,T[

and supersolutions of

-£f-+H(x,t,w,Vuf)>-e   infix]0,T[,at t

and which satisfy ||zz£(-, 0) - uf-)^ < e, and u is the unique solution in that
class.
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V. Further uniqueness results

We want to illustrate in this section the use of a new assumption involving
some appropriate distance-like function d(x, y). This new assumption enables
us to prove some additional uniqueness results and it will play an important role
in existence theory (see §VI). To simplify the presentation, we will consider here
only the case when fi is bounded.

We will assume that there exists a function d(x, y) on fi x fi which is
Lipschitz continuous and satisfies d(x, y) > \x - y\, d(x, x) = 0 for all
x, y e fi and such that there exist a local modulus co, a positive constant
X0 > 1 for which we have

Xd(x, y) = z(x, y) is a viscosity supersolution on fi x fi of
(H5)     inf{H(x, t,s, Vxz) - H(y±t,s, -Vyz) + co(X\x -y\ + \-y\,\s\),

te[0,T],seR)>OonQxQ,forallX>X0.

As it can be seen from the considerations in [10, 7], the main new fact lies in
the possibility of having a supersolution on dQ x fi and this may be achieved
on various examples as we show below. However, it does not seem easy to
build such a d with differentiability properties for x ± y without involving
complicated expressions which are difficult to manipulate. Our main example
of d will not be differentiable for x ^ y . However, if d(x, y) is differentiable
for x e dQ, y e fi (as it will be the case for our main example), then (H5)
holds as soon as we have

H(x ,t,s, XVxd(x, y)) + cn(x) > H(x ,t,s, XVxd(x, y)) -
(42) co(Xd + d, \s\) for all xedfi, yeQ, t e [0, T], s e R, c>

o, x>x0
and (H5) holds on fi x fi.

Before giving some complementary uniqueness results (obtained with a
stronger variant of (45)), we present our basic example of d(x, y) and ex-
plain on a few examples how it is possible to check (H5) or (42). The choice
for d we propose is

(43) d(x,y) = \x-y\ + Cfd(x)-d(y)\

where C0 is a positive constant that we may choose as we want and d(x) =
d(x)C(x).

Here, d(x) = dist(x, dQ) while Ç is a cut-off function that will always
satisfy at least

(44] CeC(fi),0<C< 1,  C=l near Ofi, {x e Q/C(x) > 0} C
1    '        {xeQ/d(x)<e0},

where £0 is a positive constant that we may choose as small as we wish, and £0
is always small enough so that d is differentiable on {x € Q/d(x) < e0).

Let us immediately give a result showing how to check (H5).
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Proposition V.l. Assume that H satisfies (H2), (H3) and
There exists a positive constant C, such that for all x e dQ, p e

(45) RN, the function X —► H(x, t, s, p + Xn(x)) is nondecreasing
for X>Cx(l + \p\).

Then, d given by (43) satisfies (H5).
Proof. First of all, we observe that d(x, y) given by (43) is differentiable for
x, y e fi x fi such that d(x) ^ d(y) or x ^ y and d(x) = d(y) = 0.
In particular, ifxedfi, y e Q then d is continuously differentiable in a
neighborhood (relative to fi x fi ) of (x, y). Therefore, we only have to check
(42) and to show that (H5) holds on fi x fi with some local modulus depending
only on c0 and C ■

For the latter claim, we approximate d(x, y) by

d£(x,y) = (e2 + \x-y\2)X'2 + CQ(e2 + (d(x) - d(y))2)x/2

where £ > 0. Now d£ eCx(Qx fi) and

H(x,t,s, XVxd£) -H(y,t,s, -XVyd£)
= (H(x, t, s, XVxd£) - H(y, t, s, XVxd£))

+ (H(y,t,s, XVxdf) -H(y,t,s, -XVydf)).
The first term is bounded from below by

-co(\x-y\(l+X + KX) + \x-y\, \s\)
for some K depending only on CQ, Ç. Here we use (H2). Next, choosing £
in such a way that C = 0 on 1^ , we see that (replacing of necessary x by y )
we may assume that y e TQ to bound the second term. In that case the second
difference is bounded from below by

-p(XC0\Vd(x) - Vd(y)\, \s\) > -p(Xk\x - y\, \s\)
using (H3). Therefore (H5) holds with z = Xd£ for some to independent of £
and we conclude that (H5) holds on fi x fi letting £ go to 0.

We now check (42) and this is where we will determine  C0.   Indeed we
compute for x e dQ, y e fi

H(x ,t,s, XVxd(x, y) + cn(x)) - H(x ,t,s, XVxd(x, y))

^ + (XCQ + c)n(x))-H(x,t,s,X^

By (45), this difference is nonnegative for X > 1 provided XC0 > Cx(l +X) and
this is the case if we take C0 = 2C,.

Remark. It is quite obvious that the choice of d given by (43) yields a particular
emphasis on \p\ (see condition (45) for example) and it is easy to give other
possible choices for d leading to different conditions.

We now give a series of examples showing various situations in which (45)
holds.

= H[x, t,s, X-^—^j + (XC0 + c)n(x) ) - H[x,t, s, X——^ + XC0n(x)
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Example V.l. Take H(x, t, s, p) = F(x, t, s, \p\) where F is nondecreas-
ing with respect to p for \p\ > RQ > 0. Then, assuming that \p + Xu\ is
nondecreasing for X > \p\, we deduce easily that (45) holds.

Example V.2. Assume that H(x, t, s, p) is given by

(46) H(x,t,p) = sup[-bn(x,t)-p-fn(x, t)]
nEA

where A is a given set and ba(x, t), ffx, t) are bounded uniformly in a e A .
Then, (45) holds if we assume

(47) 3v>0,VxedQ,Vte[0,T],3aeA,     bfx , t) ■ n(x) <-u <0.

Indeed, we first observe that for X > 0

H(x, t, p + Xn) > Xu - c(l + \p\),

for some c > 0. Therefore there exists a constant C, > 0 such that

H(x, t, p + Xn) = sup[-èt(x, t) ■ p + Xn - ffx, t), a e A, bfx, t) • n(x) < 0]

if (x, t)edQx[0,T], peRN and X > Cx(l + \p\). It is then straightforward
to check (45).

Example V.3. Assume that H(x, t, s, p) is given by

(48) H(x,t,p)= inf[-ba(x ,t)-p- fa(x, t)]
a£A

where A is a given set and b(i, fa are bounded uniformly in a e A . Then,
(45) holds if we assume

(49) Vxedfi, V'G[0, T], VaeA,     bfx, t) ■ n(x) < 0.

Example V.4. Assume that H(x , t, s, p) is given by

(50) H(x,t,p) = infsup[-¿>(( Ax, t) ■ p - fn Jx , t)]

or by

(51) H(x, t,p) = sup inf[-bit Jx, t) ■ p - f   Jx, t)].

Then, (45) holds in the first case if we assume

(52) 3u > 0, Vx e dQ, V? e [0, T), Vq e A , 3ß e B,
bnß(x, t)-n(x) < -v <0

and in the second case if we have

(53) 3v > 0, Vx e dQ, VZ € [0, T), 3ß e B , Va e A ,
bn Jx , t) ■ n(x) < -v < 0.
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We now present some uniqueness result. We will use a stronger form of (H5);
in fact we will need to complement (H5) with

There exists dn(x, y) e C (fix fi) such that for all x, y e
fi, te[OT],seR,X>X0

(H6) H(x, t, s, XVxdn(x, y)) - H(y, t, s, -XVydn(x,y))
>-co(Xdn+dn,\s\)

and dn —► d uniformly on fi x fi.

.     . d is differentiable with respect to x if x belongs to a neigh-
borhood of dQ and dist(x, dQ) < dist(y,dQ).

\fyeQ,xmeQ,xm^x^edQ,Xm -* +œ
(H8)       H(xm , t,s,XVxd(xm , y)+Xn(xJ) - H(xm , t,s,XVxd(xm , y))

> -co(Xd + d, \s\).

In the typical case discussed above d(x, y) = \x - y\ + Cfd(x) - d(y)\, then
we may choose

(I 2\X/2 Al 2\X/2dfx ,y)=(- + \x- y\2J     +C0\- + (d(x) - d(y)2)j

in order to check (H6). And (H6)-(H8) hold in all the examples discussed
above. We may now state our uniqueness result (recall that we consider here
only the case fi bounded).

Theorem V.l. Assume (HI), (H5)-(H8).
(1) (Stationary problem) Let u, v e C(Q) be, respectively, a viscosity subso-

lution of (II) in fi, and a viscosity supersolution of (13) for some f e C(Q).
Then (14) holds.

(2) (Cauchy problem) Let u, v e C(Q x [0, T]) be respectively a viscos-
ity subsolution of (12), and a viscosity supersolution of (15) for some f e
C(fix[0, T]). Then (16) holds.
Proof. We will detail only the case of the stationary problem, and to simplify
the presentation we will assume that H depends only on (x, p), co does not
depend on \s\. The idea of the proof is to build a supersolution z(x, y) using
d(x, y) and then to prove that the function

(54) ma_x{zz(x) - z(x, y)} = u(y)
xen

is still a viscosity subsolution of (11). Since ü will be finally Lipschitz on fi,
we conclude applying Theorems III. 1 and 2.

To build z , we observe, in view of the constructions made in M. G. Crandall
and P.-L. Lions [9, 10], M. G. Crandall, H. Ishii and P.-L. Lions [7], that we
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can find C>0, 50>0, ye(0, 1) suchthat zfx, y) = C(5" + dn(x, y)2)"
is a C   supersolution of

zn + H(x, Vxzn) - H(y , -Vyzf > co(zf     in fi x fi

for 5 < 50 . And we set z(x, y) = C(5 +d(x, yf)7' ; in fact z depends upon
5 and we will recall this dependence only at the end of the proof.

We next define it by (54) and un similarly replacing z by zn. We want
to prove that it is a viscosity subsolution of (11). We first consider the open
set QQ = {y e Q/u(x) - z(x, y) is maximum on fi only at points x in fi }.
Therefore for n large enough

[ùniy) = uix)- zfx, y), x e fi] implies x e fi. Let <p e C'(fi) and let y0
be a point in fi0 such that ün-<p has a local maximum at y0 . Next, let x0 e fi
be a maximum over fi of u-zfx, yf. Obviously, V<p(y0) = -Vvzfx0, y0),
Vxzn(x0, y0) e D+u(xf . Thus we find

u(x0) + H(x0, Vxzn(xrj, yf) < 0,
z„(x0, yQ) + H(x0, Vxzn(x0, yf) - H(y0, V<P(yf) > 0

and subtracting we obtain

un(yo) + H(y0,V<t>(yf)<0.
We then easily deduce from these considerations that ü is a viscosity subsolu-
tion of ( 11 ) in fi0 . Next, let K be a compact set in fi and let y0 e K - fi0 ; we
just have to prove that ü is a viscosity subsolution of (11) in an open neighbor-
hood of y0 . We choose a ball around yQ small enough so that it is contained in
a compact set of fi. Let cp € C1 (fi) be such that it - <j> has a local maximum
at a point yx in that ball. Next, if one maximum point of u - z (•, yf lies
in fi we argue as before, while if all maximum points of u - z(-, yf) are on
dQ, we consider

ü£(y) = max u(x) - z(x, y) - -r—
veil °\X)

with £ > 0, d(x) = dist(x, dQ). Obviously the maximum, for y = y0 is
achieved at some point x£ e Q and we may assume, taking subsequences if
necessary, that x£ converges to x0 e dQ as £ goes to 0 where x0 is a maximum
point of u(-) - z(-, y0). We may now use the various properties of u, z, H to
write

zz(x£) + H Í x£, Vxz(x£, yf + -^— n(xf) J < 0,

z(x£, yf) + H(x£, Vxz(x£, yf) - H(y0 , -Vyz(x£, yf) > co(z) > 0

and we conclude using (H8) (indeed, if s/d2(x£)  remains bounded, we use
(H5)).
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Hence ü is Lipschitz on fi and is a viscosity subsolution of (11). We may
now use Theorem III. 1 to deduce

max( iz — v)   <maxf  .
n n

To conclude we observe that ii>u- C5y and we conclude sending 5 to 0.   D

VI. General existence results

We will prove existence in two different situations: the first one is when (H5)
holds. To simplify the presentation, we will still assume that fi is bounded.
Our main existence results are then:

Theorem VI.l (The stationary problem). Assume (HI) and (H5). Then there
exists u e C(Q) viscosity solution of (11) and viscosity supersolution on fi
such that v > on fi for any v e C(Q) viscosity supersolution of (II) on fi.

Theorem VI.2 (The Cauchy problem). Assume (HI) and (H5). Let u0 e C(Q).
Then there exists u e C(Q x [0, T]) viscosity solution of (12) and viscosity
supersolution on fix]0, T[ satisfying u(-, 0) = u0(-) on fi and such that for
any ue C(fix[0, T]) viscosity supersolution on fix]0, T[ with v(-, 0) > u0(-)
on fi then v >u on fi x [0, T].

Remarks, (i) We do not know if the solutions built above are unique. Of course,
strengthening (H5) to (H5)-(H8), we obtain uniqueness in view of §V.

(ii) If the modulus to can be taken of the form C, (|x - y\) + C2(|.s|), then
the method of proof below yields a solution which is Holder continuous with
an exponent 0 = Min(l/CX(M), 1) if C, / 1, 0 e]0, 1[ if C, = 1 in the
case of (11) where M = \\H(x, 0, 0)1)^ , while in the case of (12) the solution
built is Lipschitz on fi x [0, T] if u0 is Lipschitz on fi. Notice also that in
this case the solution built is unique in the class mentioned at the end of §IV.

Proof of Theorem VI. 1. Even if we could use the same line of arguments in both
theorems, we prefer to give a shorter proof in the case of (11). If M is the
constant given in the remark above we consider, following G. Barles [1], the
new Hamiltonian H(x, s, p) = TMH(x, T/ns, p) where

TMX = Max(Min(/l, M), -M)
for all X e R. Assumptions (HI) and (H5) (with to now independent of 5 ) are
still satisfied and simple arguments show that we only have to solve our problem
for this new Hamiltonian.

To do so, we consider Hamiltonians H£(x, s, p) = H(x, s, p) + e\p\. By
Theorem IV. 1, there exists a unique u£eW °°(fi) viscosity solution in fi and
viscosity supersolution in fi of u£ + H£(x, u£, Vu£) = 0 in fi and, obviously,
\ue\ < Af on fi. Because of (H5), as in [10, 7], we can find C>0, ye(0, 1),
50 > 0 such that for 0 < 5 < 50

wô(x,y) = C(52 + d(x,y)2)712
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is a viscosity supersolution on fi x fi of

ws + inf{H(x, t, Vxwf -H(y,t, -Vywf) > 0.

Now, using the results and methods of §111, we deduce

(55) \u£(x) - u£(y)\ < wfx, y) + eCá   on fi x fi
for some positive constant Cs depending only on 5. Therefore, u£ has an
approximated modulus of continuity

(56) \u£(x) - u£(y)\ < to£(\x - y\)    on fi x fi
where to£ is continuous, nonnegative, nondecreasing, subadditive and toft)
converges as £ goes to 0 to a modulus to(t) (i.e. toft) converges to to(t) and
a>(0) = 0). Indeed, (55) implies (56) with the choice

to£(t)=   inf {C(52 + kt2f/2 + eCs)
U<o<o0

where K is a Lipschitz constant for d(x, y) (d(x, y) < K\x-y\ for all x, y ).
Next, we claim that since u£ is uniformly bounded and since u£ satisfies

(56), then u£ is relatively compact in C(fi) as £ goes to 0. This is a simple
variation of Ascoli's theorem whose verification we leave to the reader as an
exercise. Noticing that u£ is nonincreasing with respect to £ we finally deduce
that zz£ converges in C(fi) to some u . There just remains to show that if v is
any viscosity supersolution of ( 11 ) on fi then v > u in fi. This is very easy
since v is clearly a viscosity supersolution of ( 11 ) on fi where H is replaced
by H£ for all £ > 0. Now, since u£ is Lipschitz, we deduce from §111 that
v > u£ and we conclude passing to the limit,   o

Proof of FheoremVl.2. First, considering H(x, t, T^s,p) instead of H where

M = \\u0\\oo + Tsup\\H(x,t,0,0)\\oo,
r>0

we see that we may assume that only bounded values of 5 matter. Next, we in-
troduce a sequence of Hamiltonians H£(x, t, s, p) nondecreasing in 5 , smooth
in t, continuous in all variables satisfying: H£(x, t, s, p) ) H(x, t, s, p) as
£ | 0 uniformly for x e fi, t e[0, T], seR, p bounded and thus

\H£(x, t,s,p)-H(x,t,s,p)\<p(e, l + \p\)

for some local modulus p. We also consider u£Qe W °°(fi) such that ueQ î uQ
in fi as £ | 0 uniformly on fi. In particular, there exists a nonnegative,
continuous, nondecreasing function O on [0, oo[ such that

irix, t,s,p)at" <<D(1 +|p|)    for a = 0,1.

And we finally consider a nonnegative, continuous, nondecreasing function *F
on [0, oo[ such that

(57) 47<P^+oo   asi^+co.
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We set H£(x, t, s, p) = H£(x, t, s, p) + sA¥(\p\) and we claim there exists a
unique Lipschitz function u£ on fi x [0, T] viscosity solution in fi x (0, T)
and viscosity supersolution in fi x (0, T) of

duJdt + H£(x, t,u£,Vu£) = 0   infix(0, T),

M£Lo = Mo   infi-
This claim is verified by the same proof as in Theorem V.2 using the remarks
of G. Barles and P.-L. Lions [3] (the idea being heuristically

<ro(i + ||vM£||oo) + 0)(i+vzz£0||oo)

while from the equation one "deduces"

^(HVi^lU < (1 + 7)0(1 + HVzzJU + <D(1 + iivtiiu
and thus a formal Lipschitz bound is derived using (57)).

Obviously, u£ is uniformly bounded (for £ say < 1 ) and we just need to
obtain an approximate modulus of continuity of u£ in x uniform in t : indeed,
this yields as in M. G. Crandall and P.-L. Lions [10] an approximate modulus
of continuity in (x, t) and then one concludes as in the proof of Theorem VI. 1.
To obtain this approximate modulus we argue as in Theorem VI. 1 and we find
instead of (55) for 0 < 5 < SQ

(58) \u£(x, t) - u£(y, 0| < Cxe'\52 + d(x, y)2)"2 + p(e, Cs) + eV(Cs)

for some constants C,, C2 > 0, y e (0, 1), S0 > 0, independent of £ and 5
and for some constant Cs depending only on 5 and we conclude,   o

Our final existence result requires very strong assumptions near <9fi but we
believe that it is worth mentioning because it is not contained in the preceding
results stricto sensu and the method of proof is very natural. We will need to
assume that there exists a tubular neighborhood f of dQ (relative to fi) and
a local modulus m such that

(59) \H(x, t,s,p)-H(y, t, s, p)\ < m(\x - y\, \s\)
for all x, y e f, t e [0, T], seR, p e RN,

(60) H(x, t, s, p + Xn(x)) -» +oo   as X/(l + \p\) —► oo uniformly for
xef, te[0,T], \s\<R,

where n denotes as usual n(x) = -Vd(x) near dQ. Let us emphasize that in
the following results we do not assume anymore that fi is bounded.

Theorem VI.3. Assume (H1)-(H3) and (59)-(60). Assume finally that H e
BUC(Qx[0,T]x[-R,+R]xBR)   (WR < oo).

1. (Stationary problem) There exists a unique viscosity solution in BUC(Q)
of (11) which is a viscosity supersolution of (II) on fi.

dt
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2. (Cauchy problem) Let u0 e BUC(Q) and assume that (49) holds. There
exists a unique viscosity solution in BUC(Qx[0, T]) of (12) which is a viscosity
supersolution of (12) on fi x (0, T).
Sketch of a proof. We only sketch the proof of the above assertion in the case
of the Cauchy problem. We claim that, using the methods of M. G. Crandall
and P.-L. Lions [9], it is enough to obtain a priori estimate on the modulus of
continuity of solutions near 9fi. We first claim it is enough to work with H
satisfying (H2), (59) with moduli independent of \s\ and of the form zrz(z:) = Ct
for some constant C > 0. The independence of |i| is achieved by a standard
truncation as before and a "Lipschitz modulus" m in (59) is obtained as in §V.
Then the reduction to "Lipschitz moduli" is obtained by standard mollifications
H * p£ and by choosing a cut-off function cp e 2¡(Q) ,0<</><linfi, 0 = 0
on T. Indeed one considers

H£ = cp(x)H(x, t,s,p) + (l-(p(x)) // H(y, t, s, q)p£(x -y)p£(p - q)dydq

for some mollifier p£ = p(fe)/e    with p e 2>(R  ), p > 0, fR,spdx = 1
Then (HI) still holds for H£ ; (H2), (H3), (59), (60) hold uniformly in £ e
(0,1) and (H3), (59) hold with "Lipschitz moduli". Obviously, H£ converges
uniformly to H. Hence, we just have to prove the existence of a solution u£
for equation (11) where H is replaced by H£. Finally, by density, it is enough
to consider the case when u0 e W   °°(fi).

Now, if the moduli in (H3) and (H2) are Lipschitz we may use to obtain
a priori estimates the simple method of translations. We are in fact going to
prove that in this case the solutions are Lipschitz near the boundary. Indeed
let t be a vector field smooth on fi, say C ' , such that t vanishes on fi - Y
and x ■ n(x) = 0 in f. Denote by uh(x, t) = u(X(h, x), t) where zz is the
Lipschitz viscosity solution of (11), supersolution on fi and where X(h, x)
is the solution at time t of the O.D.E. Xt = x(Xt), X0 = x . Clearly uh is a
viscosity solution in fi x (0, T) and supersolution in fi x (0, T) of

^ + H(X(h,x),t,uh, Th(x) ■ Vuh(x)) = 0

where Th satisfies \\Th - /||œ < ch, \Th(xx) - Th(xf)\ < Ch(xx - xf) for
h e [0, 1]. In particular we find (in viscosity sense)

-^- + H(x,t, uh,Vuh) = Gh(x, t,s,Vuh(x))

where \Gh\ < Ch(l + \p\) for all x e fi, p e RN, h e [0, T], t e [0, T],
seR. Therefore, by the comparison results of §111, we deduce
(61)
sup|zz(x, t)-u(X(h,x),t)\ <Ch(l+ f WVutfW^ds) for all te[0, T].
,r6ñ V      ^o /
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By a similar method, one obtains for h small enough

(62) sup{u(x - hn(x), t) - u(x)}+< ch ( I +      HVi/fx)^^) .
x€ñ \       Jo J

Remarking that as in §V we may obtain the estimate

(63) u(x, t + h)-u(x,t)>-Ch   for x e fi, 0 < t < t + h < T,

we deduce from the equation, combining (61)—(63) and (60),

(64) \\Vu(t)\\Loo(t)<C + c      ||V«(5)||Loc(n)i/5

for all te[0,T].
To conclude, we use the fact that, by Barles method [1], we can assume

without loss of generality that H satisfies

(65) \H(x, t, s, p) - H(y, t, s, p)\ < C\x - y\(l + \p\)

for all x, y e fi, t e[0, T), seR, p £ R and for some constant C > 0.
And by standard comparison argument, we deduce from the equation and (64)

||Vu(0llA~(n) <C + c J \\Vu(s)\\L~{Q)ds

and we conclude.

Remarks, (i) If fi is a half-space, then by the same method one may relax (60)
replacing X/(l + \p\) by X, provided p is bounded.

(ii) To simplify the presentation, we worked with BUC solutions. As in [9,
10] we could work with UC solutions or even unbounded solutions.

(iii) If fi is bounded, (59) and (61) imply that H(x, t, s, p) -» +oo as
1/71 —> oo uniformly for x e f, t e [0, T], s bounded. Indeed, if p is
arbitrary in RN then p = n(y)\p\ for some y e dQ and if x € f

H(x, t, s, p) > H(y, t, s, \p\n(y))-C

in view of (59) and we conclude easily.

VII. Approximations
In this section, we want to deal with three types of approximations of viscos-

ity solutions which are supersolutions on the closure of the domain. The first
one was already used in §IV: the so-called penalty approach. The second one is
simply to build the upper envelope of viscosity subsolutions and the third one
is an approximation from above by viscosity solutions of approximated prob-
lems in fi which blow up the boundary (see J. M. Lasry and P.-L. Lions [22],
M. G. Crandall and P.-L. Lions [11] for other examples of uses of such solutions
in different problems). We will explain the various approaches and results only
on the example of the stationary problem (11) but everything adapts to the case
of the Cauchy problem without any changes. To simplify the presentation, we
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only consider the case of a bounded domain fi. We assume one extends H to
RN xRxRN in such a way that for example H e BUC(RN x [-R, +R] x BR)
for all R < oo . Let p e BUC(RN) satisfy

(66) V£>0, 35>0,p(x) >5if dist(x, fi) > e, p = 0 on fi.
We know (see [9, 10]) that if we assume for instance

(67) \H(x,s,p)-H(y,s,p)\<to(\x-y\(l + \p\),\s\)
for some local modulus a>, then there exists a unique viscosity solution u£ e
BUC(RN) of (37).

We wish to prove that u£ (which is nondecreasing with respect to £ > 0 )
converges to a viscosity solution of ( 11 ) in fi which is a viscosity supersolution
of (11) on W. To this end, we introduce Qs = {x e RN/ dist(x, fi) < 5) and
we assume that for 5 > 0 small

3u  e C(Q ) viscosity solution of ( 11) on Qs , viscosity super-
(68) solution_of (11) on Q? and \u\x) - u(y)\ < p(\x - y\) for

x, y e Qs ,
where p is a modulus independent of 5 > 0 small enough. In fact, this as-
sumption is satisfied in most of the existence results above if we strengthen a bit
the assumptions we used. Furthermore, we see that if we may apply uniqueness
results, then u  ) as 5 [ and then (68) implies the following assumption:

(691 "^ converges uniformly to some function u on fi as 5 goes
to 0, u is the maximum viscosity subsolution of (11) in C(fi).

We then have
Theorem VII. 1. Assume (HI), (66)-(69). Then, as e goes to 0+, u£ converges
uniformly on fi to u which is a viscosity solution in fi and viscosity supersolu-
tion in fi of (11).
Proof. Of course, (68), (69) imply the properties of zz stated above but they
may also be deduced from the proof of the convergence of u£ we now present.
For 5 > 0, fixed there exists a > 0 such that p(x) < a if x e QS/2. Observe
also that u£ > -C0 = -\\H(x, 0, 0)||loo(äA) . We are first going to show that

u£ î +00 as £ | 0+ uniformly on dQâ . Let O G Cxb(RN) be such that 0 <
<P < 1 , <D = 0 on fiá/2, <P = 1 on RN - 0s and let Cs = HVO^ . We wish
to build a subsolution of (37) of the form -C0 + zVO where k = k£ s ) oo as
£ J, 0+ , for any 5 > 0. Indeed we have

-C0 + zc<D + //(x, -Co + zc<D,zcV0) = -Co + //(x, -C0,0)<0   in fiá/2,

while on R   — fi      we have

- C0 + zc<D + H(x, -C0 + k®,kVÇ>)

<-C0 + k + sup{//(x, k, p)/x e RN, \p\ < Csk)
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and this is less than a/e if k < k£ s with k£ s ] +00 as £ j 0+ . In particular,
comparison results yield

u£>-C0 + k£ â     ondQ¿
and our claim is proved.

Next, u    is a viscosity subsolution of ( 11 ) on fi   while u£ is a viscosity
supersolution of (11) on fi . Furthermore, for any 5 > 0, u£> u   on dQ

for £ small enough, thus u£ > ud on Qê for e < e0(5). We then conclude
easily since u   converges to u by (59) and since u£ <u, again by (59).   D

Our final result on this penalty approximation is an estimate on the rate of
convergence of this method: the result which follows is only one example of
the type of results which can be obtained by this method. We will assume in
addition to (68), (69) that
(70) \u-u\<C5   onfi

for 5 > 0 small enough and we will consider the case of a Hamiltonian H(x, p)
satisfying

(71) H(x,p)<C(l + \p\)    on RNxRN.
Assumption (70) may seem to be difficult to check: actually, it is not. Assume
for instance that H is locally Lipschitz in x and p in a neighborhood of dfi
and that u is Lipschitz near 9fi. Then we claim (70) holds. Indeed, applying
the comparison results we see that u < u. On the other hand, it is not difficult
to build operators  Té e C    (for 5 small enough) so that  Ts(x) = x off a
neighborhood of dQ,   T¿  maps fi onto fi    and <9fi onto <9fi ,   Ts  is a
diffeomorphism from fi to fi   and

sup{¡rá(x) - x| + \VTfx) - I\) < C5 .
x&n

Then considering us(x) = u(Tf (x)) on fi , we check easily that uâ is a
Lipschitz viscosity subsolution on fi   of

üö + H(x, Vüf < C5     infi'*
and thus by the comparison results of §111 we deduce

ùô < uâ + C5    on Qâ

and (70) follows easily.
We may now state

Proposition VII.l. Under the assumptions of Theorem VII. 1 and if in addition
(70) holds and H = H(x, p) satisfies (71) then

(72) u > u£ > u - C\fe   in fi
for some constant C > 0.
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Proof. We just observe that because of (71 ) we can take in the proof of Theorem
VII. 1 k£ s = C(l + 5 /e). And since u < C on 9fi , we may in fact choose
5 = Csfe for some large constant C > 0 to get

u   <u£     on fiá .

In particular this combined with (70) yields

u> u£> u  >u - C5 = u - C\fe    on fi

and (72) is proved.   D

The next result is a variant of Theorem IV. 1. Its proof relies on the con-
struction of the upper envelope of all viscosity subsolutions of ( 11 ) (see H. Ishii
[ 16] for similar ideas in related problems and R. Gonzalez and E. Rofman [ 15]
for numerical schemes which build the maximum subsolution of equations like
(11)).
Theorem VII.2. Assume (HI) and either (34) or (35) and (H2). Then there
exists a maximum viscosity subsolution u e C(Q) of (11) which is a viscosity
supersolution on fi.

Proof. Let us recall that the maximum of a finite number of viscosity subsolu-
tions is a viscosity subsolution (see [6]) and that (34) (or (35) and H2)) imply
that if v e C(Q) is a subsolution of (11) then there exists v e C(Q) which is
a viscosity solution of (11) with v = v on dQ (see [23, 1]). Let us consider
now the maximization problem

(73) max I     v dx\v e C(Q), v viscosity subsolution of (11) > .

In view of the above remarks there exists a maximizing sequence (vn)n e
C(Q) such that vn is a viscosity solution of (11) and (vf is nondecreasing
with respect to n . Suppose temporarily that vn converges in C(Q) to some
u. Then, zz is a viscosity solution of (11) (see [8]) and we claim that u is
in fact the maximum viscosity subsolution of (11) in C(fi). Indeed, u is
clearly a maximum of (73) and, for any subsolution w e C(Q) of (11), z(x) =
max(u(x), w(x)) is again a subsolution of (11). But then / z dx < / udx and
therefore z = u on fi and this yields u >w on fi.

Hence, the only thing to prove is that (vf) is compact in C(fi). If (34) holds,
then Vvn is bounded in fi. From the equation satisfied by vn it follows that
vn is bounded in Wx °°(fi), hence compact in C(fi). If (35) and (H2) hold,
then the Lipschitz norm of vn is bounded only in a neighborhood of dfi but
the same conclusion can be drawn since an a priori estimate on the modulus
of continuity of vn near 9fi propagates in fi by the methods in [10], using
(H2).    D
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We conclude this section with another method of approximation. To simplify
the presentation we will consider only the case of

(74) u + H(x,Vu) = 0   infi.

The idea is to approximate the problem of finding a solution u of (74) which
is a viscosity supersolution on fi by a family of problems of the form: u£ is a
viscosity solution of

(75) u£ + H(x,Vuf) = f£   infi,        u£eC(Q),
such that

(76) u£(x) -* +00   as dist(x, dQ) -» 0+ ,

where f£ e C(Q) converges to 0 uniformly on compact subsets of fi.

Theorem VII.3. Let us assume either (34) or (35) and (H2). Then there exists
f£ e C(Q), fe>0, f£—* 0 as e —* 0, uniformly on compact subsets of fi, such
that (75) has a viscosity solution u£ satisfying (76). Moreover, u£ converges
uniformly on compact subsets of fi as e —► 0 to the unique viscosity solution
u e C(Q) of (74) which is a viscosity supersolution of (74) on fi.

Proof. Take any w e CX(Q), w > 0, w(x) -» oo as dist(x,<9fi) -► 0+.
Let C0 = \\H(x, 0)11^ and set w£ = -C0 + sw, f = (H(x, Vw£) + w£)+ .
Obviously, f£ > 0, fee C(Q), f£ —► 0 as £ —> 0 uniformly on compact
subsets of fi and w_£ e C (fi) is a subsolution of (75). We then claim there
exists a viscosity solution u£ e C(Q) of (75) satisfying w£ < u£. This claim of
course implies the first part of the statement. To prove this claim, we consider
the problem

(77) u£+ H(x,Vu£) = f£   infij;        u£ = w£   on dfi^

where Qs = {x e fi, dist(x, dQ) > 5}. Using (34) (or (35) and (H2)) one
deduces, for 5 small enough, the existence of a viscosity solution u£ e C(Q)
of (77) from the results of P.-L. Lions [23], G. Baríes [1, 2] and zz£ > w£ on
Qä by standard comparison results. In fact, we even have for 5X < 52

u£ > uf > w_£    on Qs .

If (34) holds, we deduce from equation (77) that Vu£ and u£ are bounded in
L°°(QS ) for 5 < 5Q, for any 5Q > 0 fixed. If (35) holds, we obtain similar
estimates only in fiá - Qâ for 0 < 5X < 50 where 50 is a fixed positive
constant. And then using (H2) as in M. G. Crandall and P.-L. Lions [9, 10] we
obtain estimates on u£ and its modulus of continuity on each Qs .

Therefore in both cases u£ converges uniformly on compact subsets of fi as
5 goes to 0 to some u£ e C(Q) which is a viscosity solution of (75) and such
that u£>w_£ on fi. Let us discuss now the convergence of u£.
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Since f£ > 0 for all £, we deduce easily by standard comparison results
that u£ > -\\H(x, 0)11^ = -C0. This combined with equation (75) easily
yields as above that u£ is relatively compact in C(fi) or, in other words, we
may assume (extracting a sequence en —> 0 if necessary) that u£ converges
uniformly on compact subsets of fi to some u e C(Q) which is a viscosity
solution of (74) and u > -CQ . Then, still because of equation (74), u in fact
belongs to C(fi) (or may be extended in C(fi)). To conclude we just have to
prove that u is a viscosity supersolution of (74) on fi.

We first observe that u£ > u on fi. Indeed, for 5 small enough (75) implies
that u£ > u on dQ¿ . Since u£ isa viscosity supersolution of (74) on Qg , then,
by standard comparison results, u£ > u on fiá and we conclude letting 5 go
toO.

Next, let <p e C'(fi) and let x0 e fi be a strict global minimum over fi of
u-tp. Obviously, u£-(p has a global minimum over fi at some point x£ G fi
and x£ —> x0 as £ —♦ 0+ . By construction we have

M£(X£) + //(X£,V0(X£))>O.

To conclude we need to prove that u£(x£) —> u(xf as £ —> 0. But on one hand

u£(x£) > u(x£) -» u(xf     as e ->• 0,

while for any x G fi,

UMt) - ^iXc) ^ UeiX) ~ ^(X) ~~* "(X) ~ ^iX)     aS £ ~* ° '

hence, letting x go to x0 , we find lim£ u£(x£) < u(x0) and we conclude.   D

VIII. Ergodic problems
As in the preceding section we consider here a Hamiltonian H(x, p) e

C(QxRN) where fi is (to simplify) a bounded smooth open domain in RN and
we are interested in the so-called ergodic problems associated with H. More
precisely, by the results of §§III and V we know that if (37) holds, then for
any u0 e C(Q) there exist viscosity solutions u£ e C(Q) (u e C(Q) x [0, 7"])
(vr < oo) of
(78) H(x,Vu£) + eu£=0    infi,

(79) — + H(x, Vu) = 0   infix(0,oo),        u\t=0 = u0   infi,

which are in addition viscosity supersolution on fi, (fix (0, oo), respectively).
In this section we consider the problem of the asymptotic behavior of u£,
u(-, t) as £ —> 0^ , t —» +00, respectively. Related ergodic problems have
been investigated by M. Robin [30, 31], A. Bensoussan [4], F. Gimbert [14],
I. Capuzzo-Dolcetta and M. G. Garroni [5], I. Capuzzo-Dolcetta and J. L.
Menaldi [34], J. M. Lasry and P.-L. Lions [22], P.-L. Lions and B. Perthame
[28], P.-L. Lions [25, 26], P.-L. Lions, G. Papanicolau and S. R. S. Varadhan
[27]. Our main result is
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Theorem VIII.l. We assume (34). Let u0 e C(Q).
(i) There exists a unique X e R, such that there exists v e C(Q) viscosity

solution of
(80) H(x, Vv)+X = 0   z'zzfi
which is a viscosity supersolution of (70) on fi.

(ii) For any x0 G fi, u (-)-ue(xf) is bounded in WX'°°(Q) for e>0. More-
over, eu£ converges uniformly on fi to X. Finally, if u£ - u£ (xf) converges in
C(Q) to some v , for some sequence en —> 0, then v is a viscosity solution of
(80) and a viscosity supersolution on fi.

(iii) For any x0 G fi, u(-, t) - u(x0, t) is relatively compact in C(Q) for
t > 0 and \(u(-, t)) converges uniformly on fi to X.
Proof. The proof is almost identical to the corresponding one in P.-L. Lions
[25]. Indeed, by comparison results |fizz£| < \\H(x, 0)11^ and thus by (78)
and (34) Vzz£ is bounded in L°°(fi). Therefore, up to subsequences we may
assume that u£ - u£(xQ) converges uniformly on fi to some v e C(Q), eu£
converges uniformly on fi to X G R and obviously v is a viscosity solution of
(70) and a viscosity supersolution on fi. We claim that X is unique. Indeed,
if px < p2 are two constants such that there exists vx, v2 associated with px ,
p2 as above, then let C0 > \\vx - v2lloo ; we obviously have for 5 small enough

-px +5vx > -p2 +5(v2 + C0)   onfi,

and since vx, v2 + C0 are respectively viscosity solutions in fi and supersolu-
tions in fi of

H(x, Vvx) + 5vx = -px +5vx,
H(x, V(v2 + Cf) + 5(v2 + C0) = -p2 + 5(v2 + C0),

therefore by comparison results, v2 + C0 < vx . The contradiction proves the
uniqueness of X. Hence, (i) and (ii) are proved.

To prove (iii), recalling that the map u0 —► u(-, t) is a contraction in C(fi),
we see that we may assume that u0 e W °°(fi). In which case one proves by
standard methods, using the equation and (34), that Vzz£, dujdt are bounded
in L°°(fi x (0, oo)). To conclude one considers a constant C0 such that

v(x) + C0> u0(x) > v(x) - C0   on fi

and one deduces easily in view of the equation satisfied by v

v(x) + C0 + Xt > u(x, t) > v(x) - C0 + Xt.

The proof is complete dividing by t and letting / go to oo.   D

Remark. Of course, if v solves (80), v + c also solves (80) for all c G R.
But in fact, even up to the addition of a constant c e R, u is not the unique
solution of (80) and a supersolution on fi. Indeed, consider the example

H(x , p) = (\p\ - l)+.
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Then, one checks easily that, taking X = 0 and v to be any Lipschitz function
on fi with |Vf | < 1 a.e. on fi, v is indeed a viscosity solution of (80) in fi
and a viscosity supersolution on fi.

IX. Mixed boundary conditions

In this section, we want to consider more general boundary conditions than
the ones studied in the preceding sections. For example, we wish to consider
viscosity solutions u e C(Q) of ( 1 ) which are viscosity supersolutions of ( 1 ) on
fi U T, where T, is a relatively open subset of 9fi, while on the complement
T0 = 9fi - T, u takes (for example) Dirichlet boundary conditions, i.e. u is
given on ro. As before we will consider the two model cases (11) and (12).
Observe by the way, that in the case of (12), since we prescribe initial conditions
in all existence and uniqueness results, we already considered a particular case
of this problem where T0 = 9fi x {0} . Therefore, in the case of (11) we will
prescribe m on a closed set T0 of dQ, while in (12) we will prescribe zz on a
closed subset T0 of dQ x [0, T] (in such a way that this boundary condition
matches with the initial condition on fi x {0}). Of course, all the elementary
results described in §11 still hold in this context.

We will be mainly interested in existence and uniqueness results which basi-
cally are very much of the same kind of those obtained above. This is way we
will only present the analogues of Theorems III.l, III.2 and V.l, V.2, explaining
the main changes in the proof given before. We begin with uniqueness results
for (11) analogous to Theorems III.l, III.2. To simplify, we take fi bounded.

Theorem IX. 1. Let T0 be a nonempty closed subset of dQ. Assume that (HI)
holds. Let u,v e C(Q) be respectively a viscosity subsolution of (11) in fi and
a viscosity supersolution of

(81) v + H(x,v,Vv) + f(x) = 0   in fiuT,

where f e C(Q). Then, if either (H2) or (H3) hold or u is Lipschitz, we have

(82) max(M - v)+ < max < max/+ , max(« - v)+ > .
n I   n   ' ro J

Theorem IX.2. Let T0 be a nonempty closed subset of dQ x [0, T]. Assume
that (HI) holds. Let u, v e C(Q x (0, T)) be respectively a viscosity solution
of (12) and a viscosity supersolution of

(83) ~ + H(x,t,v,Vv) + f(x,t) = 0   inQx(0,T)uTx

where f e C(Q x [0, T)). Then, if either (H2) or (H3) hold or u is Lipschitz
in x, uniformly for t e (0, T], we have for all t e (0, T]
(84)
_Max (u-vf < Max < Mjx(zz - v)+(-, 0) + maxf+(-, s)ds; max(«, v)+ > .
iix[o.7] In Jo    n ro J
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Remarks, (i) Assumption (H3) is actually needed to hold only in a neighborhood
Of    Tj.

(ii) The comparison inequality (82) holds also under the assumptions (HI),
(H2), (H4) (respectively, (HI), (28), (29) or (Hl), (H2), (28), (33)). These
claims can be verified following the line of the proof of Theorem III. 5 (Theorem
III.6 or III.7, respectively). The proofs of Theorems IX. 1, IX.2 are analogous
(with the usual adaptations) and therefore we prove Theorem IX. 1 only.

Proof of Theorem IX. 1. Let a > 0 and consider xa G C (fi) such that xfx) =
0 if dist(x, T0) < a, xaix) = 1 if dist(x, r0)"> 2a and 0 < 4 < 1. At
this point we follow the proof of Theorem III. 1 introducing, the same notations
therein,

w£(x,y) = u(x) - v(y) - —|x + exfx)T(x) - y\2.
£

We prove (82) by contradiction. Therefore, fixing a > 0 small enough we may
assume that there exists y > 0 such that

max(u - v) > y + max| max/  ,     max{(u-v) (y), dist(y ,Yf) <2a.
n n

As in Theorem III. 1, one easily checks that

max tu" (x, y) > max(iz - v) - to(e)
ílxQ     £ q

for some modulus to. In addition, if (x, y) e fi x fi is a maximum point of
w'£  on fi x fi, we have

w"(x,y) <max(u-v) + co(\x-y\)- -¡\x + exnT(x)-y\
n £

and in particular we deduce for some C > 0   \x — y\ < Ce. Therefore, for e
small enough, this yields

dist(x,r0) >2a,        xfx) = l,
and we may now argue exactly as in Theorem III. 1.    D

Let us also mention the following uniqueness result for the problem

(85) H(x,u,Vu) = 0   infi.
This case is treated by the same methods as in M. G. Crandall and P.-L. Lions
[8] and H. Ishii [20] and we skip its proof.

Proposition IX.3. We assume that H(x, t, p) is convex in p for all x e fi,
t e R and that there exists ueC (fi) such that

(86) H(x, u(x), Vu(x)) < 0   inQ.
Let u, v e C(Q) be, respectively, a viscosity subsolution of (85) and a viscosity
supersolution of (85) on fi u T,. Assume furthermore that either (HI) holds
and either (H2), (H3) holds or that u is Lipschitz. Then we have

(87) max(u - v)+< max(u - v)+.
n r0
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We now turn to existence results which are analogous to Theorems IV. 1 and
IV.2. In the case of the stationary problem we will consider the following
problem:

(88) Xu + H(x, u, Vu) = 0   infi

with X > 0. We will assume as in P.-L. Lions [23] and G. Barles [1, 2] that
there exists
.no-, ue C(Q), zz is a viscosity subsolution of (78), zz = <p on ro

where tp is given.

Theorem IX.4. We assume (Hl)^_(89) and either (34), or (35), (H2) and
X > 0. Then there exists u e C(Q) viscosity solution of (88) such that u = <p
on T0 and u is a viscosity supersolution of (89) on fi U Tx .

Remark. If X = 0 (when (34) holds) and if H(x,p) is not convex in p,
we do not have uniqueness, in general, of such solutions (see [23] for related
examples). But in fact the proof below shows that if X = 0 and (34) holds there
exists a maximum viscosity subsolution with the above properties.

In the case of the Cauchy problem (12), we will need to assume that there
exists u e C(Q x [0, T]) such that

u is a viscosity subsolution of (12), u\l=0 = u0 in fi, u\r = tp
(90) where u0, tp are given initial and boundary conditions respec-

tively.
Theorem IX.5. We assume (HI), (90), (36) and either_ (34), or (35) and(H3).
Then, there exists a unique viscosity solution u e C(Q x [0, T]) of (12) such
that u\l=0 = u0 on fi, u\T = <p and u is a viscosity supersolution of (12) on
(fix[0, T])l>Tx.

Let us just explain the proof of Theorem IX.4 in the case when (34) holds.
To simplify the presentation even more we assume that H = H(x, p). We

then argue as in §VII: we build a nondecreasing sequence of viscosity solutions
(un)n>x of (88) maximizing asymptotically favdx over all viscosity subso-
lutions of (88) which are less than tf> on YQ, and such that un = cp on T0.
Indeed, using the results of P.-L. Lions [23] and G. Barles [1, 2] we see that we
can adapt the arguments of § VII to our case here. And one proves as in § VII that
un converges on C(fi) to the maximum viscosity solution u (or subsolution)
of (88) such that u = tp on Y0 (or u < tp on T0 ). Finally, the fact that u is
a viscosity supersolution of (88) on fi U Yx follows from the results of §11.

X. Some applications
We present in this section some applications of the results proved in the pre-

ceding sections to calculus of variations and optimal control theory. We begin
with the study of some distance-like functions and related minimization prob-
lems. Roughly speaking, we will consider minimization problems over curves
which are restricted to stay in a given domain. The restriction (or constraint)
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will in fact lead to a completely similar treatment of such problems as in P.-L.
Lions [23], provided one now uses viscosity solutions which are supersolutions
on the closure of the domain.

We consider some Hamiltonian H(x, p) e C(Q x R ) convex in p for all
x G fi, where fi is a given bounded (for instance) smooth open domain in
R   . We denote by L(x, q) the associated Lagrangian

(91) L(x,q)= sup {(p, q) - H(x, p)} <+00
PER"

and we will always assume

(92) H(x, p) —> +00 as \p\ is 00,      uniformly for x G fi.

We now introduce various variational problems. We begin with problems in-
volving terminal constraints: Let x, y G fi, X> 0, F > 0,

(93) d(x, y) = inf {^' L(t(s), ¿¡(s)) ds\c¡ eCX(0,t;Q), ¿¡(0) = y,

c\(t) = x for some / > 0 > ,

(94) ^(x) = inf|^OOL(^),-^))c"V^GC1(0,oo;fi),^(0)=xJ,

(95) d0(x) = inf i.lim i j* L(H(s), <*(*)) ds\Ç e Cx (0, 00 ; fi), ¿(0) = x 1 ,

(96) u(x)= inf (d(x, y) + tp(y)),
y€dn

(97) ufx) = infU\(c:(s), -i(s))e-Xsds + <p(tl(T))e-kT\

£gC'(0, T;Q), ¿1(0) = x, Z(T) e dQ for some T>o\ ,

(98)    d(x, y,T) = inf \j\(c;(s),c:(s))ds I cleCX(0,T;Q),c:(0)=y,

í(T) = x\ ,

(99)    u(x, T) = infi fTL(t(s), -¿(s))ds + A(i(D)/<? G c'(0, T ; fi),

i(0) = x,i(r)=y   ,
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where <p is any l.s.c. function on dQ taking values in R u {+00} bounded
from below with <p ̂ +00 and h is any l.s.c. function on fi taking values in
R U {+00} bounded from below. We will also use the following assumption:

(100) H(x,p)\p\~   —> +00 as \p\ —> 00,     uniformly for x G fi.

Our main result is

Theorem X.l. Let H(x, p) e C(Q x R ) be convex in p for all x e Q and
satisfy (92).

(1) For all y e fi, the function d(-, y) given by (93) is Lipschitz on fi, a
viscosity solution of

(101) H(x,Vu) = 0   inQ-{y),        u(y) = 0,
and a viscosity supersolution of (101) on fi-{y}. Furthermore, d(0,y) is the
maximum viscosity subsolution in C(Q) of

(102) H(x,Vv) = 0   inQ
such that v(y) < 0. Finally, if (86) holds, d(-,y) is the unique viscosity
solution of (100) which is a viscosity supersolution on Q- {y} .

(2) For X > 0, the function df-) given by (94) is Lipschitz on fi and is the
unique viscosity solution in fi and supersolution on fi of

(103) Xu + H(x, Vu) = 0   z'zzfi,        ueC(Q).
(3) The function df-) given by (95) is the unique constant X such that there

exists a viscosity solution in fi and supersolution on fi of

(104) X + H(x,Vv) = 0   inQ,        veC(Q).
Furthermore, Xdfx) converges uniformly on fi to d0 as X goes to 0+ and
jd(x, y, T) converges uniformly for x, y e fi to d0, as T goes to +00.

(4) The function u (resp. uf given by (96) (resp. (97)) is Lipschitz on fi
and is the maximum viscosity subsolution in C(Q) of (102) (resp. (103)) such
that v < tp on <9fi. The set {x e dQ/u(x) = 4>(x)) (resp. ufx) = 4>(x)) is
closed and we denote it by Y0 while we denote by Yx its complement in dQ. In
addition, u is the maximum (resp. unique) viscosity solution in C(Q) of (102)
(resp. (103)) such that u = </> on YQ (resp. u} = tp on Yf and u (resp. uf
is a viscosity supersolution of (102) (resp. (103)) on fiuT,. Furthermore, if
there exists a viscosity subsolution v of (102) (resp. (103)) suchthat v e C(fi),
v = tp on a closed nonempty subset YQ of dQ while cp = +00 on öfi-f0 then
ro = f 0. Finally, if (84) holds, u is the unique viscosity solution in C(Q) of
(102) such that u = tp on YQ and u is a viscosity supersolution of (102) on
fiur,.

(5) If we assume (100), the function u(x, t) given by (99) is Lipschitz on
fi x (0, 00) (for all £ > 0), l.s.c. on fi x [0, oo[ and is the unique viscosity
solution in C(Q x (e, 00))   (V£ > 0) of
(105) du/dt + H(x,Vu) = 0   in fix(0, 00)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HAMILTON-JACOBI EQUATIONS WITH STATE CONSTRAINTS 679

which is a viscosity supersolution of (95) on fi x (0, oo) and such that

(106) u(x,t)^h(x)ast^0+,     forallxeQ.
(ii) It is quite obvious that (98) is a special case of (99) choosing h(x) =

1 {v,} = 0 if x = y, = +00 if x ^¿ y.

Proof. (1) Most of part (1) is proved in P.-L. Lions [23] and one deduces the
fact that d(-, y) is a viscosity supersolution of (104) on fi - {y} by either a
direct verification argument or by using the results of §11. Then, the uniqueness
follows from Proposition IX.3.

(2) is proved similarly and (3) is deduced from (2) by the results of §VIII.
To prove part (4) we just have to prove that u is a viscosity supersolution of
(102) on fiuT, . Indeed, the remainder follows upon combining the results of
P.-L. Lions [23], this fact and the results of the preceding sections (one argues
similarly for ux ). Observe also that T0 is closed since u < <fi on dfi while
u-tp is u.s.c. To show that it is viscosity supersolution of (102) on fiur, , we
observe that we know from [23] that it is the maximum viscosity subsolution of
(102) with u < (p on dQ. Hence, near a point x0 of dfi where zz(x0) < <p(x0)
we may argue as in §11 to deduce from this fact the property we claimed.

Finally, (5) is deduced from the results of P.-L. Lions [23] and, for example,
the observations made in §11, while the uniqueness is obtained by convenient
combinations of the arguments made above and of those developed in M. G.
Crandall, P.-L. Lions and P. E. Souganidis [12].

We now turn to optimal control problems. We begin with infinite horizon
problems. As before, everything we say will concern (to simplify) the case of a
bounded, smooth open region fi of R   . We first define the state equations

(107) Xl = b(Xt,a!)    for/>0,        X0 = x e fi
where at (the control process) is a measurable function from (0, oo) into a
given metric space A . We assume b satisfies

(108) |Zz(x,a)| < C,     \b(x, a) -b(y, a)\ < C\x -y\,     Vx, y G RN , Va G A
for some C > 0 and b is continuous on R x A. We will impose state-
constraints on our control problem, i.e. we will restrict our attention to control
at in the following class of admissible controls s/x (depending on the initial
position x ):

s/x = {at/Xl e fi for all / > 0} .
We now consider a cost function for x G fi, at e $Ax :

/*oo

(109) J(x,at)=        f(Xt,at)e-A'dt
Jo

where X > 0 (discount factor), / (the running cost) will be always assumed to
satisfy
(110)

\f(x,a)\<C,     |/(x,a)-/(y,a)|<ûj(|x-y|),    Vx,yeRN ,VaeA
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for some modulus to and for some constant C > 0. We define the value
function of this infinite horizon control problem with state constraints by

(111) u(x) =   inf J(x,a.),     VxGfi.

We will use the following assumptions:

(112) 3v >0, VxedQ,aeA,     b(x, a) ■ n(x) < -v < 0,

(113) 3C>0,Vx,yeRN ,VaeA,     \f(x , a) - f(y, a)\ < C\x - y\.
Our main result is

Theorem X.2. We assume (112). Then ueC(Q) is the unique viscosity solution
in fi and supersolution on fi of

(114) Xu + sup[-b(x, a) ■ Vu(x) -f(x, a)] = 0   inQ.
ne A

r\    a   _

Furthermore, if (113) holds, u e C ' (fi) where 0 = X/X0 if X < X0, 6 is
arbitrary in (0, 1) if X = X0, 6 = 1 if X > X0 and X0 is a fixed positive
constant depending only on b and fi. Finally, if the following holds:

(115) 3p>0,     cö{b(x,a)/aeA)DBflforallxeQ,

then Xu converges uniformly on fi to the unique constant ü G R such that there
exists v e C(Q) viscosity solution in fi and supersolution on fi of
(116) H + sup[-b(x,a)-Vv - f(x,a)] = 0   inQ.

a€A

Proof. In M. H. Soner [32], the first part of this result is proved. Using the
examples given in §V and the existence results of §VI we deduce the existence

0  fi —of a viscosity solution in C ' (fi) of (114) which is a viscosity supersolution
of ( 114) on fi. Next, if ( 115) holds we observe that

H(x, p) = sup[-/3(x, a) • -f(x, a)]
nSA

satisfies
H(x,p)>p\p\-C    for all (x,p)eQxRN.

Then, one completes the proof of Theorem X.2 applying Theorem VIII. 1.   G

We continue with a result concerning finite horizon problems: we just give
the setting and state the main results which can be deduced from the results of
the preceding sections. Let T < oo, for x G fi, t e [0, T] we consider the
solutions of
(117) Xs = b(Xs,s,as)   for s>t,Xt=x

where as (measurable functions from [t, T] into A ) is admissible if Xs e fi
for t < s < T.   We will denote this by as G $fx t.   We assume that b is
continuous on R   x [0, T] x A and that

(118) \b(x,t,a)\<C,    \b(x,t,a)-b(y,t,a)\<C\x-y\,
Vx,yeRN ,Vte[0,T],VaeA.
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We then set for x g fi, t e [0, T], as esrfxl

(119) J(x,t,af = j   f(Xs,s,as)ds + g(XT)

where g e BUC(RN), f is continuous on RN x [0, T] x A and

(120) \f(x,t,a)\<C,     \f(x,t,a)-f(y,t,a)\<to(\x-y\),
Vx,yeRN,Vte[0, T],VaeA.

We next introduce the value function

(121) u(x,t)=   inf   J(x,t,af    for x G fi, t G [0, T].

We will use the following assumptions:

(122) 3v >0,VxedQ,Vte[0,T],3aeA,     b(x, t, a) • n(x) < -v,

(123) 3C>0,Vx,yGfi, VaG^,
\f(x, a) - f(y, a)\ + \g(x) - g(y)\ < C\x - y\.

We then have

Theorem X.3. We assume (122). Then u(x, t) e C(Q x [0, T]) is the unique
viscosity solution in fi x (0, T) and viscosity supersolution on fi x (0, T) of

(124) - ^-+ s\xp[-b(x, t,a)-Vu- f(x, t, a)] = 0   in Q x (0, T),
d t     „ça

u\t=T = g on fi.

Furthermore, if (123) holds u is Lipschitz on Q x [0, T]. Finally if b, f are
independent of t and (115) holds, ju(x,0) converges uniformly on fi to ü
given in Theorem X.2 as T goes to +oo and

u=  inf \ lim — /    f(X , a.)dt } .
<*,€K [f^c T Jo J

We conclude with a result which is a direct application of the results of §VII.
We consider a penalty term p as in §VII and we find that if we denote by

u£(x) = infj00 if(X,,at) + -£p(Xt)\e~l'dt,     Vx G RN

or

u£(x,t) = inf\j*{f(Xs,s,as)+l-p(Xs)}e-lsds + g(XT)e-iT\,

VxeRN ,V/g[0, T],

then u£ converges uniformly on fi or fix[0, T] to zz if (112) or (122) hold.
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