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Abstract. The eikonal equation and variants of it are of significant interest for problems in computer vision and
image processing. It is the basis for continuous versions of mathematical morphology, stereo, shape-from-shading
and for recent dynamic theories of shape. Its numerical simulation can be delicate, owing to the formation of
singularities in the evolving front and is typically based on level set methods. However, there are more classical
approaches rooted in Hamiltonian physics which have yet to be widely used by the computer vision community. In
this paper we review the Hamiltonian formulation, which offers specific advantages when it comes to the detection
of singularities or shocks. We specialize to the case of Blum’s grassfire flow and measure the average outward
flux of the vector field that underlies the Hamiltonian system. This measure has very different limiting behaviors
depending upon whether the region over which it is computed shrinks to a singular point or a non-singular one.
Hence, it is an effective way to distinguish between these two cases. We combine the flux measurement with a
homotopy preserving thinning process applied in a discrete lattice. This leads to a robust and accurate algorithm
for computing skeletons in 2D as well as 3D, which has low computational complexity. We illustrate the approach
with several computational examples.

Keywords: eikonal equation, Hamiltonian systems, flux and divergence, 2D and 3D skeletons, shape analysis

1. Introduction

Variational principles have emerged naturally from
considerations of energy minimization in mechanics
(Lanczos, 1986). We consider these in the context of

the eikonal equation, which arises in geometrical optics
and has become of great interest for problems in com-
puter vision (Bruss, 1989; Kimia et al., 1994). It is
the basis for continuous versions of mathematical mor-
phology (Brockett and Maragos, 1992; Sapiro et al.,
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1992; van den Boomgaard and Smeulders, 1994), as
well as for Blum’s grassfire transform (Blum, 1973)
and dynamic theories of shape representation (Kimia
et al., 1995; Tari et al., 1997). It has also been used
for applications in image processing and analysis
(Sethian, 1996a; Caselles et al., 1998), shape-from-
shading (Horn and Brooks, 1989; Rouy and Tourin,
1992; Oliensis and Dupuis, 1994; Kimmel et al., 1995b)
and stereo (Faugeras and Keriven, 1998).

As is well known, some care must be taken with
the numerical simulation of this equation, since it is
a hyperbolic partial differential equation for which a
smooth initial front may develop singularities or shocks
as it propagates. At such points, classical concepts such
as the normal to a curve and its curvature are not de-
fined. Nevertheless, it is precisely these points that are
important for the above applications in computer vi-
sion since, e.g., it is they which denote the skeleton
(see Fig. 3.) To continue the evolution while preserving
shocks, the technology of level set methods introduced
by Osher and Sethian (1988) has proved to be extremely
powerful. The approach relies on the notion of a weak
solution, developed in viscosity theory (Crandall et al.,
1992), and the introduction of an appropriate entropy
condition to select it. The representation of the evolving
front as a level set of a hypersurface allows topological
changes to be handled in a natural way and robust, ef-
ficient implementations have recently been developed
(Sethian, 1996b).

As pointed out by Osher and Sethian (1988), level
set methods are Eulerian in nature because compu-
tations are restricted to grid points whose locations
are fixed. For such methods, the question of compu-
ting the locus of shocks for dynamically changing
systems remains of crucial importance, i.e., the meth-
ods are shock preserving but do not explicitly detect
shocks. Shock detection methods which rely on inter-
polation of the underlying hypersurface are compu-
tationally very expensive. Numerical thresholds are
introduced, and high order accurate numerical schemes
must be used (Osher and Shu, 1991; Siddiqi et al.,
1997).

On the other hand, there are more classical meth-
ods rooted in Hamiltonian physics, which can also
be used to study shock theory. Although such formu-
lations have been applied to computer vision prob-
lems (Horn and Brooks, 1989; Rouy and Tourin, 1992;
Oliensis and Dupuis, 1994), the numerical methods
have yet to be widely used. In this paper we review
the Hamiltonian formalism for simulating the eikonal

equation which offers a number of conceptual advan-
tages when it comes to shock tracking. Hamiltonian
systems are fundamental in classical physics and have
a natural physical interpretation based on elementary
Hamiltonian and Lagrangian mechanics. The existence
of such simple differential equations is also relevant
to considering whether these models have any pos-
sible biological implementations (Miller and Zucker,
1999). We specialize to the case of Blum’s grassfire
flow (Blum, 1973) and compute a measure of the av-
erage outward flux of the vector field underlying the
Hamiltonian system. As the region over which this
flux is computed shrinks to a point, the measure can
be shown to have very different limiting behaviors de-
pending upon whether or not that point is singular.
Thus, it is a very effective way of distinguishing be-
tween medial and non-medial points. We combine the
average outward flux measure with a homotopy pre-
serving thinning process applied in a discrete lattice.
This leads to a robust and efficient algorithm for com-
puting skeletons in 2D as well as 3D which has low
computational complexity. We illustrate the method
with a number of examples of medial axes (2D) and
medial surfaces (3D) of synthetic objects as well as
complex anatomical structures obtained from medical
images.

To the best of our knowledge, the closest work in
computer vision is the formulation of Oliensis and
Dupuis of the shape-from-shading problem (Oliensis
and Dupuis, 1994). Their method also uses Hamilton-
Jacobi theory and has similar robust numerical prop-
erties. In particular, a density function for marker
particles is propagated to obtain estimates of where
particles accumulate. This strategy is used to distin-
guish sources from sinks in order to reconstruct shape
from intensity images. We now review some rele-
vant background on skeletons, followed by a brief
overview of skeletonization approaches related to our
method.

1.1. 2D and 3D Skeletons

The 2D skeleton (medial axis) of a closed set A ⊂R2

is the locus of centers of maximal open discs contained
within the complement of the set (Blum, 1973). An
open disc is maximal if there exists no other open
disc contained in the complement of A that properly
contains the disc. The 3D skeleton (medial surface) of a
closed set A ⊂R3 is defined in an analogous fashion as
the locus of centers of maximal open spheres contained
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in the complement of the set. Both types of skeletons
have been widely used in bio-medicine for tasks in-
volving object representation (Näf et al., 1996; Stetten
and Pizer, 1999), registration (Liu et al., 1998a) and
segmentation (Sebastian et al., 1998). They have also
been used for graph-based object recognition in com-
puter vision (Ogniewicz, 1993; Zhu and Yuille, 1996;
Sharvit et al., 1998; Liu and Geiger, 1999; Siddiqi et al.,
1999b), for animating objects in graphics (Teichmann
and Teller, 1998; Pizer et al., 2001) and for manip-
ulating them in computer-aided design. Despite their
popularity, their numerical computation remains non-
trivial. Most algorithms are not stable with respect to
small perturbations of the boundary, and heuristic mea-
sures for simplification are often introduced.

Interest in the skeleton as a representation for an
object stems from a number of interesting properties:
(i) it is a thin set, i.e., it contains no interior points,
(ii) it is homotopic to the original shape, (iii) it is in-
variant under Euclidean transformations of the object
(rotations and translations) and (iv) given the radius
of the maximal inscribed circle or sphere associated
which each skeletal point, the object can be recon-
structed exactly. Hence, it provides a compact represen-
tation while preserving the object’s genus and making
certain useful properties explicit, such as its local
width.

Approaches to computing skeletons can be broadly
organized into three classes. First, methods based on
thinning attempt to realize Blum’s grassfire formula-
tion (Blum, 1973) by peeling away layers from an ob-
ject while retaining special points (Arcelli and Sanniti
di Baja, 1985; Lee and Kashyap, 1994; Borgefors et al.,
1999; Manzanera et al., 1999). It is possible to define
erosion rules in a lattice such that the topology of the
object is preserved. However, these methods are quite
sensitive to Euclidean transformations of the data and
typically fail to localize skeletal points accurately. As
a consequence, only a coarse approximation to the ob-
ject is usually reconstructed (Manzanera et al., 1999;
Bertrand, 1995; Lee and Kashyap, 1994).

Second, it has been shown that under appropriate
smoothness conditions the vertices of the Voronoi dia-
gram of a set of boundary points converges to the exact
skeleton as the sampling rate increases (Schmitt, 1989).
This property has been exploited to develop skele-
tonization algorithms in 2D (Ogniewicz, 1993), as well
as extensions to 3D (Sheehy et al., 1996; Sherbrooke
et al., 1996). The dual of the Voronoi diagram, the
Delaunay triangulation (or tetrahedralization in 3D)

has also been used extensively. Here the skeleton is
defined as the locus of centers of circumscribed cir-
cles of each triangle (spheres of each tetrahedra in 3D)
(Goldak et al., 1991; Näf et al., 1996). Both types of
methods ensure homotopy between objects and their
skeletons and accurately localize skeletal points, pro-
vided that the boundary is sampled densely. Unfortu-
nately, the techniques used to prune elements of the
Voronoi graph which correspond to small perturbations
of the boundary are typically based on heuristics. In
practice, the results are not invariant under Euclidean
transformations, and the optimization step, particularly
in 3D, can have a high computational complexity (Näf
et al., 1996).

A third class of methods exploits the fact that the
locus of skeletal points coincides with the singulari-
ties of a Euclidean distance function to the boundary.
These approaches attempt to detect local maxima of
the distance function, or the corresponding disconti-
nuities in its derivatives (Arcelli and di Baja, 1992;
Leymarie and Levine, 1992; Gomez and Faugeras,
2000). The numerical detection of these singularities is
itself a non-trivial problem; whereas it may be possible
to localize them, ensuring homotopy with the original
object is difficult. The are also some recent approaches
to computing 2D and 3D skeletons which combine as-
pects of thinning, Voronoi diagrams and distance func-
tions (Malandain and Fernandez-Vidal, 1998; Zhou
et al., 1998; Borgefors et al., 1999; Tek and Kimia,
1999).

1.2. Related Work

We now present a brief overview of selected approaches
that are related to the method we develop in this paper.
We refrain from an exhaustive review of the large body
of work in computer vision and computational geom-
etry on computing 2D and 3D skeletons, since this is
beyond the scope of this paper.

Leymarie and Levine (1992) have simulated the
grassfire by utilizing the magnitude of the gradient
vector field of a signed distance function to attract a
snake moving in from the object’s boundary. In this
technique the contour has to be first segmented at cur-
vature extrema, which is itself a challenging problem.
Kimmel et al. (1995a) have also proposed a method
where the contour is first segmented at locations of
positive curvature maxima. Outward distance functions
to each segment are then computed and the skele-
ton is obtained by interpolating the zero level set of
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the distance map differences and removing spurious
points. Liu et al. (1998b) have introduced a varia-
tional approach to computing symmetric axis trees,
where portions of a curve are matched against others,
incorporating constraints including co-circularity and
parallelism. The approach leads to an abstraction that is
related to the medial axis but is comprised by a differ-
ent locus of points. Dynamic programming is used to
make the computation efficient. Tek and Kimia (1999)
have proposed an approach for calculating symmetry
maps, which is based on the combination of a wave-
front propagation technique with an exact (analytic)
distance function. In this technique the representation
must be pruned in order to distinguish salient branches
from unwanted ones. Pudney (1998) has introduced a
distance ordered homotopy preserving thinning proce-
dure where points are removed in order of their distance
from the boundary while anchoring end points and cen-
ters of maximal balls identified from a chamfer distance
function. Malandain and Fernandez-Vidal (1998) ob-
tain two sets based on thresholding a function of two
heuristic measures, φ and d , to characterize the sin-
gularities of the Euclidean distance function. The two
sets are combined using a topological reconstruction
process. Tari and Shah (1998) have proposed a charac-
terization of the symmetries of n-dimensional shapes
by looking at properties of the Hessian of a suitably de-
fined scalar edge-strength functional. Furst and Pizer
(1998) have introduced a notion of an optimal param-
eter height ridge in arbitrary dimension by exploiting
a sub-dimensional maximum property. Kalitzin et al.
(1998) have considered index computations on vector
fields associated with scalar images in order to iden-
tify their singularities. Vector fields rooted in magneto-
statics have also been used for extracting symmetry and
edge lines in greyscale images (Cross and Hancock,
1997).

2. The Eikonal Equation

We begin by showing the connection between a mono-
tonically advancing front and the well known eikonal
equation. Consider the curve evolution equation

∂C
∂t

= FN , (1)

where C is the vector of curve coordinates, N is the
unit inward normal and F = F(x, y) is the speed of
the front at each point in the plane, with F ≥ 0 (the

Figure 1. A geometric view of a monotonically advancing front
(Eq. (1)). T (x, y) is a graph of the ‘solution’ surface, the level sets
of which are the evolved curves.

case F ≤ 0 is also allowed). Let T (x, y) be a graph of
the solution surface, obtained by superimposing all the
evolved curves in time (see Fig. 1). In other words,
T (x, y) is the time at which the curve crosses a point
(x, y) in the plane. Referring to the figure, the speed of
the front is given by

F(x, y) = d

h
= 1

tan(α)
= 1

d ′ = 1

‖∇T ‖ .

Hence, T (x, y) satisfies the eikonal equation

‖∇T ‖F = 1. (2)

A number of algorithms have been recently developed
to numerically solve this equation, including Sethian’s
fast marching method (Sethian, 1996b) which system-
atically constructs T using only upwind values, Rouy
and Tourin’s (1992) viscosity solutions approach and
Sussman et al.’s (1994) level set method for incom-
pressible two-phase flows. However, none of these
methods address the issue of shock detection explic-
itly, and more work has to be done to track shocks.

A different approach, which is related to the solution
surface T (x, y) viewed as a graph, has been proposed
by Shah (1996) and Tari et al. (1997). Here the key idea
is to use an edge strength functional v in place of the
surface T (x, y), computed by a linear diffusion equa-
tion. The equation can be efficiently implemented, and
the framework extends to greyscale images as well as
curves with triple point junctions. It provides an ap-
proximation to the reaction-diffusion space introduced
in Kimia et al. (1995) but does not extend to the extreme
cases, i.e., morphological erosion by a disc structur-
ing element (reaction) or motion by curvature (diffu-
sion). Hence, points of maximum (local) curvature of
the evolved curves are interpreted as skeletal points.
This regularized skeleton is typically not connected,
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and its relation to the classical skeleton, obtained from
the eikonal equation with F = 1, is as yet unclear.

In the next section, we shall consider an alternate
framework for solving the eikonal equation, which is
based on the canonical equations of Hamilton. The
technique is widely used in classical mechanics and
rests on the use of a Legendre transformation (see
Arnold (1989) and Shankar (1994)), which takes a
system of n second-order differential equations to a
mathematically equivalent system of 2n first-order dif-
ferential equations. We believe that the method offers
specific advantages over alternatives for a number
of vision problems that involve shock tracking and
skeletonization.

3. Hamilton’s Canonical Equations
and the Hamilton-Jacobi Skeleton Flow

We begin this section with an overview of the
Hamiltonian formalism, taken from Arnold (1989) and
Shankar (1994). Although this is standard material in
classical mechanics, these techniques may be unfa-
miliar to the general computer vision audience. In a
Lagrangian formulation the independent variables are
the coordinates q of particles and their velocities q̇.
For example, in the context of the Eq. (1) these would
be the positions of points along the curve C and their
associated velocities FN . Each particle follows the
path of least action in reaching a future location at a
future time. In mathematical terms, the action function
minimized, Sq0,t0 , is given by

Sq0,t0 (q, t) =
∫

γ

L dt.

Here γ is an extremal curve connecting the points
(q0, t0) and (q, t) and L(q, q̇) is the Lagrangian. In
other words, of all possible paths connecting (q0, t0)
and (q, t), the trajectory γ followed by the particle
is the one that minimizes the action function. The
associated Euler-Lagrange equation is

d

dt

∂L
∂q̇

− ∂L
∂q

= 0 (3)

where the momenta are derived quantities given by

p = ∂L
∂q̇

.

The key to the Hamiltonian formalism is to exchange
the roles of q̇ and p by replacing the LagrangianL(q, q̇)
with a HamiltonianH(q, p) such that the velocities now
become the derived quantities

q̇ = ∂H
∂p

.

This can be done by applying the following Legendre
transformation:

H(q, p) = p · q̇ − L(q, q̇) (4)

where the q̇′s are written as functions of q’s and p’s. It
is a simple exercise to verify that the above expression
for the velocities q̇ then holds. One can also take partial
derivatives of the Hamiltonian with respect to the q’s
and verify that

∂H
∂q

= −∂L
∂q

.

Using Eq. (3), ∂L
∂q can be replaced with ṗ to give

Hamilton’s canonical equations:

ṗ = −∂H
∂q

, q̇ = ∂H
∂p

. (5)

Thus, in the Hamiltonian formalism one starts with
the initial positions and momenta (q(0), p(0)) and in-
tegrates Eq. (5) to obtain the phase space (q(t), p(t))
of the system. A comparison of the Lagrangian and
Hamiltonian formalisms is presented in Table 1.

Following Arnold (1989, pp. 248–258), we now use
Huygens’ principle to show the connection between the
eikonal equation and a Hamilton-Jacobi equation. For
every point q0, define the function Sq0 (q) as the cost of
the path from q0 to q (see Fig. 2). As indicated earlier,
the trajectory followed from q0 to q will be the path of
least action. The wave front generated at time t is given
by {q : Sq0 (q) = t}. The vector p = ∂S

∂q is called the
vector of normal slowness of the front. By Huygens’
principle the direction of the ray q̇ is conjugate to the
direction of motion of the front, i.e., p · q̇ = 1. In an
anisotropic medium the vectors p and q̇ have different
directions in general.

Let us specialize to the case of a monotonically
advancing front in an inhomogeneous but isotropic
medium (Eq. (1)). Here the speed F(x, y) depends only
on position (not on direction), and the directions of
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Table 1. A comparison of the Lagrangian and Hamiltonian formalisms, taken from Shankar (1994).

The Lagrangian formalism The Hamiltonian formalism

The state of the system is described by (q, q̇). The state of the system is described by (q, p).

The state may be represented by a point moving with a
velocity in an n-dimensional configuration space.

The state may be represented by a point in a
2n-dimensional phase space.

The n coordinates evolve according to n second-order
equations.

The 2n coordinates and momenta obey 2n
first-order equations.

For a given L several trajectories may pass through a
given point in the configuration space.

For a given H only one trajectory passes
through a given point in the phase space.

Figure 2. Direction of a ray q̇ and the direction of motion of the
wave front p. From Arnold (1989).

p and q̇ coincide. The Lagrangian associated with the
action function minimized (Eq. (3)) is given by

L = 1

F(x, y)
‖∂γ /∂t‖ = 1

F(x, y)
‖q̇‖.

This can be interpreted as a conformal (infinitesimal)
length element, and we have assumed that the extremals
emanating from the point (q0, t0) do not intersect else-
where, i.e., they form a central field of extremals. For an
isotropic medium the extremals turn out to be straight
lines, and for the special case F(x, y) = −1 the action
function becomes Euclidean length.

It can be shown that the vector of normal slowness,
p = ∂S

∂q , is not arbitrary but satisfies the Hamilton-
Jacobi equation

∂S

∂t
= −H

(
q,

∂S

∂q

)
, (6)

where the Hamiltonian function H(q, p) is the
Legendre transformation with respect to q̇ of the
Lagrangian discussed earlier (Arnold, 1989). Rather
than solve the nonlinear Hamilton-Jacobi equation for
the action function S (which will give the solution sur-
face T (x, y) to Eq. (2)), it is much more convenient to
look at the evolution of the phase space (q(t), p(t))

under the equivalent Hamiltonian system given by
Eq. (5). This offers a number of advantages, the most
significant being that the equations become linear and
hence trivial to simulate numerically. We shall now de-
rive this system of equations for the special case of a
front advancing with speed F(x, y) = 1. This case is
of particular interest for shape analysis because the lo-
cus of shocks which from coincides with the trace of
the Blum skeleton (Blum, 1973; Brockett and Maragos,
1992; Kimia et al., 1995).

For the case of a front moving with constant speed,
recall that the action function being minimized is
Euclidean length and hence S can be viewed as a
Euclidean distance function from the initial curve C0.
Furthermore, the magnitude of its gradient, ‖∇S‖, is
identical to 1 in its smooth regime, which is precisely
where the assumption of a central field of extremals is
valid.

With q = (x, y), p = (Sx , Sy), ‖p‖ = 1, we asso-
ciate to the evolving plane curve C ⊂ R2 the surface
C̃ ⊂ R4 given by

C̃ : = {
(x, y, Sx , Sy) : (x, y)

∈ C, S2
x + S2

y = 1, p · q̇ = 1
}
.

The Hamiltonian function obtained by applying the
Legendre transformation (Eq. (4)) to the Lagrangian
L = −‖q̇‖ is given by

H = p · q̇ − L = 1 + (
S2

x + S2
y

) 1
2 .

The associated Hamiltonian system is

ṗ = −∂H
∂q

= (0, 0), q̇ = ∂H
∂p

= (Sx , Sy).

(7)

C̃ can be evolved under this system of equations, with
C̃(t) ⊂ R4 denoting the resulting (contact) surface. The
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projection of C̃(t) onto R2 will then give the parallel
evolution of C at time t, C(t).

We illustrate this flow by representing the initial
curve with a sequence of marker particles and then
evolving them according to Eq. (7). Further details
are presented in Siddiqi et al. (1999a). With q =
(x, y), p = (Sx , Sy) = ∇S, the system of equations
becomes

{Ṡx = 0, Ṡy = 0; ẋ = Sx , ẏ = Sy},

a gradient dynamical system. The second equation in-
dicates that the trajectory of the marker particles will
be governed by the vector field obtained from the gra-
dient of the Euclidean distance function S, and the first
indicates that this vector field does not change with
time and can be computed once at the beginning of the
simulation. Projecting this 4D system onto the (x, y)
plane for each instance of time t will give the evolved
curve C(t). The superposition of all the level curves
gives the solution surface T (x, y) in Fig. 1. Figure 3
depicts the evolution of marker particles, with speed
F = 1, for several different shapes.

Whereas a variety of methods can be used to simu-
late the eikonal equation, including level set techniques

Figure 3. The evolution of marker particles under the Hamiltonian
system. The initial particles are placed on the boundary and iterations
of the process are superimposed. These correspond to level sets of
the solution surface T (x, y) in Fig. 1.

and their fast marching versions (Sethian, 1996b), the
Hamiltonian formalism offers the advantage that the
computed flow is less sensitive to boundary details.
Furthermore, the formation of shocks can be made ex-
plicit. As shown in the following section the key idea
is to exploit a measure of the average outward flux of
the vector field q̇.

4. Flux and Divergence

We approach the discrimination of medial points,
which coincide with the shocks of the grassfire flow,
from non-medial ones, by computing the average out-
ward flux of the vector field q̇ about a point. The average
outward flux is defined as the outward flux through the
boundary of a region containing the point, normalized
by the length of the boundary

∫
δR〈q̇,N 〉 ds

length(δR)
(8)

Here ds is an element of the bounding contour δR of
the region R and N is the outward normal at each point
of the contour. Via the divergence theorem

∫
R

div(q̇)da ≡
∫

δR
〈q̇,N 〉 ds, (9)

where da is an area element. Thus the outward flux is
related to the divergence in the following way

div(q̇) ≡ lim
�a→0

∫
δR〈q̇,N 〉 ds

�a
. (10)

The outward flux, or equivalently the integral of the
divergence of q̇, measures the degree to which the flow
generated by q̇ is area preserving for the region over
which it is computed. To elaborate, the outward flux
(and hence also the average outward flux) is negative
if the area enclosed by the region δR is shrinking un-
der the action of the Hamiltonian flow, positive if it is
growing and zero otherwise. This quantity is clearly
strongly dependent on the shape of the region R. How-
ever, it can be shown that in the limit as the region δR
shrinks to a non-medial point, the average outward flux
approaches zero independent of the shape of R.

When considering a region δR that contains a me-
dial point, unfortunately the standard form of the di-
vergence theorem does not apply since the vector field
q̇ becomes singular. Instead, the limiting behavior of
the average outward flux as the region δR shrinks to a
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medial point can be considered. Furthermore, it can be
shown that there is a constant cR > 0 depending on the
shape of the region R such that the average outward flux
appoaches a strictly negative number bounded above
by cR × 〈q̇,N ′〉, where N ′ is now a one-sided normal
to the medial axis or surface.1 This constant covers
all the cases of a regular axis point, a branch point,
or an end point. Thus, in the limit as δR shrinks to a
point the average outward flux calculation is an effec-
tive way of detecting the singularities of the vector field
q̇. Non-medial points give values that are close to zero
and medial points corresponding to strong singularities
give large negative values. Whereas thus far we have
focused on the case of a (2D) closed curve, the very
same analysis applies to a closed (3D) surface evolv-
ing according to an eikonal equation. One simply has to
replace the initial closed curveC with the closed surface
S in Eq. (1), add a third coordinate z to the phase space
in Eq. (7) and replace the area element with a volume el-
ement and the contour integral with a surface integral in
Eqs. (8)–(10).

Figure 4 illustrates the average outward flux com-
putation on the silhouette of a panther shape, where
values close to zero are shown in medium grey. All
computations are carried out on a rectangular lattice,
although the bounding curve is shown in interpolated
form. Strictly speaking, the average outward flux is de-
sired only in the limit as the region shrinks to a point.
However, the average outward flux over a very small
neighborhood (a circle in 2D or a sphere in 3D) provides
a sufficient approximation to the limiting values. Strong
singularities correspond either to high magnitude neg-
ative (dark grey) or positive numbers (light grey), de-
pending upon whether the vector field is collapsing
at or emanating from a particular point. A threshold
on the average outward flux yields a close approxima-
tion to the skeleton, as used in Siddiqi et al. (1999a).

Figure 4. The gradient vector field of a signed distance function to
the boundary of a panther shape (left), with the associated average
outward flux (right). Whereas the smooth regime of the vector field
gives zero flux (medium grey), strong singularities give either large
negative values (dark grey) in the interior or large positive values
(light grey) in the exterior.

Figure 5. Thresholding the average outward flux map in Fig. 4. A
high threshold yields a connected set, but it is not thin and unwanted
branches are present (left). A low threshold yields a closer approxi-
mation to the desired medial axis, but the result is now disconnected
(right).

However, in general it is impossible to guarantee that
the result obtained by simple thresholding is homo-
topic to the original shape. A high threshold may yield
a connected set, but it is not thin and unwanted branches
may be present, Fig. 5 (left). A low threshold yields a
thin set, but it may be disconnected, Fig. 5 (right). The
solution, as we shall now show, is to introduce addi-
tional constraints to ensure that the resulting skeleton is
homotopic to the shape. The essential idea is to incor-
porate a homotopy preserving thinning process, where
the removal of points is guided by the average outward
flux values. In the context of the Hamilton-Jacobi skele-
ton flow (Eq. (7)), this leads to a robust and efficient
algorithm for computing 2D and 3D skeletons.

5. Homotopy Preserving Skeletons

Our goal is to combine the divergence computation
with a digital thinning process, such that as many
points as possible are removed without altering the ob-
ject’s topology. In digital topology a point is simple
if its removal does not change the topology of the
object. In 2D we shall consider rectangular lattices,
where a point is a unit square with 8 neighbors, as
shown in Fig. 6 (left). Hence, a 2D digital point is
simple if its removal does not disconnect the ob-
ject or create a hole. In 3D we shall consider cubic
lattices, where a point is a unit cube with 6 faces,
12 edges and 8 vertices. Hence, a 3D digital point is
simple if its removal does not disconnect the object,

Figure 6. Left: A 3 × 3 neighborhood of a candidate point for re-
moval P . Right: An example neighborhood graph for which P is
simple. There is no edge between neighbors 6 and 8 (see text).
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create a hole, or create a cavity (Kong and Rosenfeld,
1989).

5.1. 2D Simple Points

Consider the 3 × 3 neighborhood of a 2D digital point
P contained within an object and select those neighbors
which are also contained within the object. Construct a
neighborhood graph by placing edges between all pairs
of neighbors (not including P) that are 4-adjacent or
8-adjacent to one another. If any of the 3-tuples
{2, 3, 4}, {4, 5, 6}, {6, 7, 8}, or {8, 1, 2}, are nodes of
the graph, remove the corresponding diagonal edges
{2, 4}, {4, 6}, {6, 8}, or {8, 2}, respectively. This en-
sures that there are no degenerate cycles in the neigh-
borhood graph (cycles of length 3). Now, observe that
if the removal of P disconnects the object, or intro-
duces a hole, the neighborhood graph will not be con-
nected, or will have a cycle, respectively. Conversely, a
connected graph that has no cycles is a tree. Hence,
we have a criterion to decide whether or not P is
simple:

Proposition 1. A 2D digital point P is simple if and
only if its 3 × 3 neighborhood graph, with cycles of
length 3 removed, is a tree.

A straightforward way of determining whether or not
a graph is a tree is to check that its Euler characteristic
|V | − |E | (the number of vertices minus the number
of edges) is identical to 1. This check only has to be
performed locally, in the 3 × 3 neighborhood of P .
Figure 6 (right) shows an example neighborhood graph
for which P can be removed.

5.2. 3D Simple Points

In 3D a digital point can have three types of neigh-
bors: two points are 6-neighbors if they share a face;
two points are 18-neighbors if they share a face or an
edge; and two points are 26-neighbors if they share
a face, an edge or a vertex. This induces three n-
connectivities, where n ∈ {6, 18, 26}, as well as three n-
neighborhoods for x(Nn(x)). An n-neighborhood with-
out its central point is defined as N ∗

n = Nn(x) \ {x}.
An object A is n-adjacent to an object B, if there ex-
ist two points x ∈ A and y ∈ B such that x is an n-
neighbor of y. A n-path from x1 to xk is a sequence
of points x1, x2, . . . , xk , such that for all xi , 1 < i ≤
k, xi−1 is n-adjacent to xi . An object represented by

a set of points O is n-connected, if for every pair of
points (xi , x j ) ∈ O × O , there is a n-path from xi

to x j .
Based on these definitions, Malandain et al. (1993)

provide a topological classification of a point x in a
cubic lattice by computing two numbers: (i) C∗: the
number of 26-connected components 26-adjacent to
x in O ∩ N ∗

26 and (ii) C̄ : the number of 6-connected
components 6-adjacent to x in Ō ∩ N18. An impor-
tant result with respect to our goal of thinning is the
following:

Theorem 1 (Malandain et al., 1993). P is simple if
C∗(P) = 1 and C̄(P) = 1.

We can now determine whether or not the removal
of a point will alter the topology of a digital object.
When preserving homotopy is the only concern, sim-
ple points can be removed sequentially until no more
simple points are left. The resulting set will be thin and
homotopic to the object. However, without a further
criterion the relationship to the skeleton will be uncer-
tain since the locus of surviving points depends entirely
on the order in which the simple points are removed. In
the current context, we have derived a natural criterion
for ordering the thinning, based on the average out-
ward flux of the gradient vector field of the Euclidean
distance function.

5.3. Flux-Ordered Thinning

Recall from Section 4, that the average outward flux
of the gradient vector field of the Euclidean distance
function can be used to distinguish non-medial points
from medial ones. This quantity tends to zero for the
former, but approaches a negative number below a con-
stant times 〈q̇,N ′〉 for the latter, where N ′ is the one-
sided normal to the medial axis or surface. Hence, the
average outward flux provides a natural measure of
the “strength” of a skeletal point for numerical com-
putations. The essential idea is to order the thinning
such that the weakest points are removed first and
to stop the process when all surviving points are not
simple, or have a total average outward flux below
some chosen (negative) value, or both. This will ac-
curately localize the skeleton and also ensure homo-
topy with the original object. Unfortunately the result
is not guaranteed to be a thin set, i.e., one without an
interior.
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One way of satisfying this last constraint is to de-
fine an appropriate notion of an end point. Such a point
would correspond to the end point of a curve (in 2D or
3D), or a point on the rim of a surface, in 3D. The thin-
ning process would proceed as before, but the thresh-
old criterion for removal would be applied only to end
points. Hence, all surviving points which were not end
points would not be simple and the result would be a
thin set.

In 2D, an end point will be viewed as any point that
could be the end of a 4-connected or 8-connected digital
curve. It is straightforward to see that such a point may
be characterized as follows:

Proposition 2. A 2D point P could be an end
point of a 1 pixel thick digital curve if, in a 3 × 3
neighborhood, it has a single neighbor, or it has
two neighbors, both of which are 4-adjacent to one
another.

In 3D, the characterization of an end point is more
difficult. An end point is either the end of a 26-
connected curve, or a corner or point on the rim of a
26-connected surface. In R3, if there exists a plane that
passes through a point p such that the intersection of
the plane with the object includes an open curve which
ends at p, then p is an end point of a 3D curve, or is
on the rim or corner of a 3D surface. This criterion can
be discretized easily to 26-connected digital objects by
examining 9 digital planes in the 26-neighborhood of
p as in Pudney (1998).

5.4. The Algorithm and its Complexity

The essential idea behind the flux-ordered thinning pro-
cess is to remove simple points sequentially, ordered by
their average outward flux, until a threshold is reached.
Subsequently, simple points are removed if they are
not end points. The procedure converges when all re-
maining points are either not simple or are end points.
The thinning process can be made very efficient by ob-
serving that a point which does not have at least one
background point as an immediate neighbor cannot be
removed, since this would create a hole or a cavity.
Therefore, the only potentially removable points are
on the border of the object. Once a border point is
removed, only its neighbors may become removable.
This suggests the implementation of the thinning pro-
cess using a heap. A full description of the procedure
is given in Algorithm 1.

Algorithm 1 The Flux-Ordered Thinning Algorithm.

Part I: Average Outward Flux

Compute the distance transform of the object D
(Borgefors, 1984).

Compute the gradient vector field ∇ D.
Compute the average outward flux of ∇D using Eq. (9)

For each point P in the interior of the object
Flux(P) = ∑n

i=1 < Ni , ∇ D(Pi ) > /n,

where Pi is an n-neighbor (n = 8 in 2D, n = 26
in 3D) of P and Ni is the outward normal at Pi

of the unit (disc in 2D, sphere in 3D) centered
at P .

Part II: Homotopy Preserving Thinning

For each point P on the boundary of the object
if (P is simple)

insert (P , Heap) with Flux(P)
as the sorting key for insertion

While (Heap.size > 0)
P = HeapExtractMax(Heap)

if (P is simple)
if (P is not an end point) or (Flux(P) > Thresh)

Remove P
for all neighbors Q of P

if (Q is simple)
insert (Q, Heap)

else mark P as a skeletal (end) point
end { if }

end { if }
end { while }

We now analyze the complexity of the algorithm.
The computation of the distance transform (Borgefors,
1984), the gradient vector field and the average outward
flux are all O(n) operations. Here n is the total number
of points in the array. The implementation of the thin-
ning is more subtle. We claim anO(k log(k)) worst case
complexity, where k is the number of points inside the
object. The explanation is as follows. At first, store only
the points that are on the outer layer of the object in a
heap, using the average outward flux as the sorting key
for insertion. The extraction of the maximum from the
heap will provide the best candidate for removal. If this
point is removable, then delete it from the object and
add its simple (potentially removable) neighbors to the
heap. A point can only be inserted a constant number of
times (at most 26 times for a 3D, 26-neighborhood and
at most 8 times for a 2D, 8-neighborhood) and insertion
in a heap, as well as the extraction of the minimum,
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are both O(log(l)) operations, where l is the number
of elements in the heap. There cannot be more than k
elements in the heap, because we only have a total of k
points within the object. The worst case complexity for
thinning is thereforeO(k log(k)). Hence, the worst case
complexity of the algorithm is O(n)+ O(k log(k)). We
should point out that this is a very loose upper bound.
The heap only contains points from the object’s sur-
face and therefore in practice the complexity is almost
linear in the number of digital points n.

6. Examples

6.1. Medial Axes

We first present examples of medial axes, computed
for a range of 2D binary shapes. The same outward
flux threshold was used in each example to determine
which end points to preserve. The input is a 2D bi-
nary array where the foreground and background are
identified by distinct values. The implementation then
uses an exact (signed) distance function to a piecewise
circular arc interpolation of the boundary, which al-
lows for subpixel computations (details are presented
in Dimitrov et al. (2000)). Figure 7 (left) shows the
subpixel medial axis for the panther silhouette with
branch points shown as empty circles and end points
as closed circles. The accuracy of the representation is
illustrated in Fig. 7 (right), where the shape is recon-
structed as the envelope of the maximal inscribed discs
associated with each medial axis point. Figure 8 depicts
subpixel medial axes for a number of other shapes. The
results demonstrate the robustness of the framework
under Euclidean transformations, as well as changes in
scale.

6.2. Medial Surfaces

Next we illustrate the algorithm with both synthetic
data and volumetric structures segmented from medi-
cal images. For these we used the D-Euclidean distance

Figure 7. Left: A subpixel medial axis, with branch points shown
as empty circles and end points as filled circles. Compare with the
results in Fig. 5. Right: The reconstruction as the envelope of the
maximal inscribed disks (grey) of the medial axis, overlaid on the
original shape.

Figure 8. Subpixel medial axes for a range of shapes, obtained by
flux-ordered thinning. The detected end points and branch points are
circled.

function (Borgefors, 1984) which provides a good ap-
proximation to the true distance function. Once again,
the only free parameter is the choice of the outward
flux threshold below which the removal of end points
is blocked. For these examples, the value was selected
so that approximately 25% of the points within the
volume had a lower average outward flux.

6.2.1. Accuracy, Stability and Robustness

6.2.1.1. Accuracy. We test the method by using syn-
thetic objects for which the expected structure of the
medial surface is known. Figures 9 and 10 illustrate
the computation of the flux-based medial surfaces for a
cube and a cylinder, respectively. In both cases the com-
putations lead to the structures one would expect when
considering the loci of centres of maximal inscribed
spheres. Also, the reconstruction from the medial sur-
face and its associated distance function is accurate.

6.2.1.2. Stability. Next we test the sensitivity of the
method to boundary perturbations. Figure 11 shows
the same cube as earlier, but with points randomly
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Figure 9. First column: Three views of a cube. Second column: The
corresponding flux-based medial surfaces. Third column: The object
reconstructed from the medial surfaces in the previous column.

Figure 10. First column: Three views of a cylinder. Second column:
The corresponding flux-based medial surfaces. Third column: The
object reconstructed from the medial surfaces in the previous column.

removed (top row) or added (bottom row), up to a
depth of four voxels. The resulting medial surface is
no longer as smooth as before but the irregularities
seen in Fig. 11 are not spurious sheets. In fact, using
the method described in Section 6.2.2, this particular
medial surface is labeled exactly like the surface in

Figure 11. First row: Three views of the cube in Fig. 9, but with
up to 4 voxels in depth removed randomly from the surface. Second
row: The resulting medial surface. Third row: Three views of a cube
in Fig. 9, but with up to 4 voxels in depth added randomly to the
surface. Fourth row: The resulting medial surface.

Figure 12. Top row: Three views of the cube in Fig. 9 but with
up to 30 voxels in depth randomly removed or added to the surface.
Bottom row: The resulting medial surface shows spurious branches
and sheets but has a smooth main structure.

Fig. 13. This illustrates the stability of the method in
the presence of moderate boundary noise. The bound-
ary protrusions or indentations have to be significant
in order for spurious branches or sheets to appear, as
illustrated in Fig. 12.
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Figure 13. Top row: The medial surface of the cube in Fig. 9.
Bottom row: The cube is rotated by 30 degrees around the z axis
and its medial surface is recomputed. The viewing directions are the
same for the top and bottom rows. The two medial surfaces have
also been automatically segmented into surface points (light grey),
junction points and border points (dark grey) using the classification
of Malandain et al. (1993).

6.2.1.3. Robustness. Third, we test the robustness
of the method under rotation. We rotate the cube by
30 degrees around the z axis and compute its medial
surface. Figure 13 compares this result with the medial
surface of the original cube. The two outputs are clearly
almost identical.

6.2.2. Labeling the Medial Surface. The medial
surface can be labeled using the classification of
Malandain et al. (1993). Specifically, the numbers C∗

and C̄ , described in Section 5, can be used to classify
curve points, surface points, border points and junction
points. However, junction points can be misclassified
as surface points when certain special configurations
of voxels occur, and these cases have to be dealt with
using a new definition for simple surfaces (Malandain
et al., 1993).

Let x be a surface point (C̄ = 2 and C∗ = 1). Let
Bx and Cx be the two connected components of
Ō ∩ N18 6-adjacent to x . Two surface points x and
y are in an equivalence relation if there exists a 26-
path x0, x1, . . . , xi , . . . , xn with x0 = x and xn = y such
that for i ∈ [0, . . . , n − 1], (Bxi ∩ Bxi+1 �= ∅ and Cxi ∩
Cxi+1 �= ∅) or (Bxi ∩ Cxi+1 �= ∅ and Cxi ∩ Bxi+1 �= ∅).
A simple surface is then defined as any equivalence
class of this equivalence relation.

We use this definition in our framework to find all
the misclassified junctions. If the 26-neighborhood of
a previously classified surface point x is not a simple
surface, then x is a junction point. Figures 13 and 14
illustrate the labeling of the medial surface of a cube
and a cylinder. The medial surface of the cylinder is

Figure 14. The medial surface of a cylinder is labeled into border
points (dark grey), surface points (light grey), curve points (dark grey)
and junction points (black).

correctly labeled as having two simple sheets connected
by a 3D digital curve through two junction points.

The same definition can be used to extract the indi-
vidual simple surfaces comprising the medial surface
of an object. The idea is to find an unmarked surface
point on the medial surface and use it as a “source” to
build its associated simple surface using a depth first
search strategy. The next simple surface is built from
the next unmarked surface point and so on, until all
surface points are marked.

6.2.3. Experiments on MR and MRA Data. We now
illustrate the method on volumetric data segmented
from medical images. Figure 15 illustrates the results
on brain ventricles obtained from a magnetic resonance

Figure 15. First column: Four views of the ventricles of a brain,
segmented from volumetric MR data using an active surface. Second
column: The corresponding medial surfaces obtained by thresholding
the flux map. Third column: The flux-based medial surfaces obtained
using the same threshold, but with the incorporation of homotopy
preserving thinning. Fourth column: The ventricles reconstructed
from the flux-based medial surfaces in the previous column.
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(MR) image. The medial surface consists of two main
sheets which reflect the “butterfly-like” structure of
the original object. The figure demonstrates that thres-
holding the flux (second column) results in erroneous
topologies, whereas the full algorithm (third column)
computes medial surfaces which are both thin and topo-
logically correct. The ventricles reconstructed from the
medial surface in the third column are shown in the
fourth column.

Next, we illustrate the approach on a (partial) data set
of blood vessels obtained from a magnetic resonance
angiography (MRA) image of the brain, in Fig. 16.
The blood vessels have complex topology with loops
(due to pathologies) and are already quite thin in sev-
eral places. The bottom row illustrates the accuracy of
the method, where the medial surfaces are shown em-
bedded within the original data set. Generically these
structures are thin sheets which approach 3D curves
when the blood vessels become perfectly cylindrical.
In a number of medical applications where the objects
are tubular structures, an explicit reduction of the me-
dial surface to a set of 3D curves is of interest (Ge et al.,
1998; Borgefors et al., 1998, 1999; Zhou et al., 1998).
There is a straightforward modification of our frame-
work which allows this. The essential idea is to modify
the end point criteria such that only end points of 3D
curves are preserved. Rim and corner points of sur-

Figure 16. Top row: Blood vessels segmented from volumetric
MRA data with magnified portions shown in the middle and right
columns. Middle row: The corresponding flux-based medial surfaces.
Third row: The flux-based medial surfaces (solid) are shown within
the vessel surfaces (transparent).

Figure 17. Left column: Blood vessels segmented from volumetric
MRA data, with a magnified portion shown in the second row. Middle
column: The flux-based 3D curves. Right column: The flux-based 3D
curves are shown embedded within the vessel data.

faces are now considered to be removable points dur-
ing the thinning process, resulting in a medial surface
consisting only of 3D curves. This is illustrated for a
portion of the vessel data in Fig. 17, which gives three
1 voxel wide 26-connected 3D digital curves.

Finally, Fig. 18 illustrates the 3D medial surface of
the sulci of a brain. Rather than show the entire surface,
which is difficult to visualize, we have shown an X, Y
and Z slice through the volume in grey, with the inter-
section of that slice and the medial surface shown in
black. The medial surface is well localized and captures
the complex topology of the object’s shape. The com-
putation times for the 3D examples running on a dual

Figure 18. Top row: Medial surfaces of the sulci of a brain, seg-
mented from an MR image. The three columns represent X, Y and Z
slices through the volume, shown in grey. The cross section through
the 3D medial surface in each slice is shown in black. Bottom row:
A zoom-in on a selected region of the corresponding slice in the top
row, to show detail.
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Table 2. The computation times for the 3D examples, running on a dual processor 550 MHz Pentium III machine.

Data set Array size (n) Number of points (k) DT Div Thin Total

Cube 128 × 128 × 128 120000 26.21 s 6.18 s 33.50 s 65.89 s

Cylinder 128 × 128 × 128 26260 26.40 s 6.18 s 8.15 s 40.73 s

Ventricles 192 × 169 × 99 30909 39.60 s 9.44 s 10.17 s 59.21 s

Vessels 63 × 151 × 164 14377 14.07 s 3.31 s 3.74 s 21.12 s

Sulci 192 × 169 × 99 798221 38.71 s 10.54 s 240.85 s 290.1 s

The times taken in seconds to compute the distance transform (DT), the divergence map (Div) and to carry out the
thinning (Thin), are each shown separately. The results are consistent with the complexity analysis in Section 5.4.

processor 550 MHz Pentium III machine are shown
in Table 2. As predicted by the complexity analysis in
Section 5.4, the computations of the distance transform
and the divergence map are linear in the size n of the 3D
array, while the thinning procedure has an O(k log(k))
dependence on k, the number of points contained within
the volume.

7. Conclusions

In this paper we have applied a Hamiltonian formalism
to the eikonal equation, which offers conceptual advan-
tages when it comes to shock detection. The calculation
shows that when applied to Blum’s grassfire flow, the
gradient vector field q̇ of the signed Euclidean distance
function to the object’s boundary drives the motion of
points on the bounding curve (2D) or surface (3D).
A measure of the average outward flux of this vector
field can be used to distinguish medial points from non-
medial ones. In the limit as the region about which this
flux is computed shrinks to a point, the measure tends
to zero for non-medial points but to a negative number
below a constant factor times q̇ ·N ′ for medial points,
where N ′ is the one-sided normal to the medial axis or
surface. We have combined this measure with a homo-
topy preserving thinning process on a discrete lattice to
develop an algorithm that is computationally efficient
and yields skeletons that are homotopic to the origi-
nal objects and thin in 2D as well as in 3D. Whereas
in theory the average outward flux is desired only in
the limit as the region shrinks to a point, our exper-
iments show that the average outward flux computed
over a very small neighborhood (a circle in 2D or a
sphere in 3D) provides a sufficient approximation to
the limiting values. This, being an integral formula-
tion, is robust to boundary perturbations and digital ro-
tations, as demonstrated by our numerical experiments.
We have also illustrated that digital segmentations of
medial axes and surfaces such as those proposed in

Malandain et al. (1993), can be readily incorporated.
Thus, the approach has a number of advantages over al-
ternative methods in the literature. Finally, it should be
clear that whereas we have focused on the interior of
an object, the skeleton of the background can be sim-
ilarly obtained by locating points with high positive
average outward flux.
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