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Integrable deformations of an integrable case of the Rikitake system are constructed by modifying its constants of motions.
Hamilton-Poisson realizations of these integrable deformations are given. Considering two concrete deformation functions, a
Hamilton-Poisson approach of the obtained system is presented. More precisely, the stability of the equilibrium points and
the existence of the periodic orbits are proved. Furthermore, the image of the energy-Casimir mapping is determined and its
connections with the dynamical elements of the considered system are pointed out.

1. Introduction

In 1958, Rikitake examined the behavior of two disk dynamos
coupled one to another in relation to Earth’s magnetic �eld
[1]. We mention that there are some other nonlinear disk
dynamo systems (see, e.g., [2–4]). 	e Rikitake system has
chaotic behavior [5], but onemay consider integrable cases of
this system [6–8]. 	e Rikitake system was widely analyzed.
We recall some papers on the dynamics, control, synchro-
nization, and secure communication of Rikitake chaotic
system, namely, [9–14]. Moreover, hyperchaotic Rikitake
systems were considered (see, e.g., [15, 16]).

	e study of an integrable version of the Rikitake system
from some standard and nonstandard Poisson geometry
points of view was given in [17]. Because this system is
considered in our paper, we mention some of its dynamical
properties: there are three families of equilibrium points and
also periodic orbits around the stable equilibrium points
and homoclinic and heteroclinic orbits. 	e same properties
and the new ones are obtained considering some parametric
controls [18, 19].

Recently, constructions of integrable deformations of a
given integrable system were given. In [20], modifying the
constants of motion, integrable deformations of the Euler
top were obtained. Using the same technique, in [21], inte-
grable deformations of the three-dimensionalMaxwell-Bloch

equations were analyzed. In [22], integrable deformations of a
class of three-dimensional Lotka-Volterra equations induced
from the coproduct map were presented. In [23], consid-
ering Poisson-Lie groups as deformations of Lie-Poisson
(co)algebras, integrable deformations of some integrable
types of Rössler and Lorenz systems were considered.

Using the method given in [20], in this paper, we
construct integrable deformations of the integrable version of
the Rikitake system considered in [17]. We prove that these
integrable deformations have Hamilton-Poisson realizations,
which allows us to study them from some standard and
nonstandard Poisson geometry points of view. 	e study of
a dynamical system from standard Poisson geometry point
of view means the study of its dynamical elements, such
as equilibrium points, periodic orbits, and homoclinic and
heteroclinic orbits, as well as the dynamical behavior, that
is, stability, bifurcation phenomena, periodic motion, and
homoclinic and heteroclinic connections. 	e study of a
dynamical system that has a Hamilton-Poisson realization
from nonstandard Poisson geometry point of view means
the study of the connections between the above-mentioned
dynamical properties and the geometry of the image of
the energy-Casimir mapping associated with the considered
system [17].

	e paper is organized as follows. In Section 2, we con-
struct integrable deformations of an integrable version of the
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Rikitake system by modifying its constants of motion. In
Section 3, we obtain twoHamilton-Poisson realizations of the
new system.Moreover, we prove that the obtained system has
in�nitely many Hamilton-Poisson realizations. In Section 4,
we consider a particular integrable deformation of the Riki-
take system.We remark that this system is in fact a controlled
system obtained by applying two parametric controls to the
Rikitake system such that all the equilibrium points are
nonlinearly stable and all the trajectories are periodic orbits
(for details about parametric controls see, e.g., [24]). In other
words, the controlled Rikitake system may be nonlinearly
stabilized about its equilibrium points. We also present the
connections between the energy-Casimir mapping and the
above-mentioned dynamical elements. Concluding remarks
are made in Section 5.

2. Integrable Deformations of
the Rikitake System

Using the method considered in [20], in this section, we
construct integrable deformations of the Rikitake system.

We recall that “the Rikitake two-disk dynamo model [1]
consists of two connected identical frictionless disk dynamos.
	e dynamos are driven by identical torques � to maintain
their motions in the face of Ohmic losses in the coils and
disks. 	e equations describing the system are given by the
nonlinear dynamical system

��1�� = �� Ω1 (�) �2 (�) − 	� �1 (�) ,
��2�� = �� Ω2 (�) �1 (�) − 	� �2 (�) ,
�Ω1�� = −�
 �1 (�) �2 (�) + �
 ,
�Ω2�� = −�
 �1 (�) �2 (�) + �
 ,

(1)

where �1 and �2 are the currents, Ω1 and Ω2 are the angular
velocities, � is the self-inductance, 	 is the resistance associ-
ated with each dynamo and its connecting circuitry,� is the
mutual inductance between the dynamo circuits, and
 is the
moment of inertia of a dynamo about its axis” [25, 26].

Using the transformation

� = ����,
�1 (�) = √
� � (��) ,
�2 (�) = √
� � (��) ,
Ω1 (�) = � (��) + �,
Ω2 (�) = � (��) − �,

(2)

where � is a real parameter, system (1) becomes

����� = �� + �� − 	��,
����� = �� − �� − 	��,
����� = −�� + ���
.

(3)

Imposing the condition that the above system be conserva-
tive, we obtain 	 = 0. 	erefore we consider in our work the
following integrable version of the Rikitake system (� = 0):

�̇ = �� + ��,
̇� = �� − ��,
�̇ = −��,

(4)

where � ∈ R.Two constants ofmotion of system (4) are given
by

�1 (�, �, �) = 12�2 + 12�2 + �2,
�2 (�, �, �) = 12�2 − 12�2 + 2��.

(5)

In the following, we prove that (4) are uniquely determined
by these constants of motion, up to a parametrization of time.
Indeed, di�erentiating the above constants of motion (5), we
obtain

��̇ + � ̇� = −2��̇,
��̇ − � ̇� = −2��̇; (6)

hence,

�̇ = −� + �� �̇,
̇� = −� − �� �̇. (7)

Consider �̇ = −���, where � = �(�) is an arbitrary continu-
ous function. We deduce

�̇ = (�� + ��) �,
̇� = (�� − ��) �,
�̇ = −���.

(8)

Using the transformation � = �(�), where � is the new time
variable, given by

� = ∫�
0
� (�) ��, (9)

we obtain

���� = ���� ⋅ ���� = (�� + ��) � ⋅ 1�
= � (�) � (�) + �� (�) .

(10)
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Analogously, we obtain

���� = � (�) � (�) − �� (�) ,
���� = −� (�) � (�) ,

(11)

as required.
	is property of (4) allows obtaining integrable deforma-

tions of the considered Rikitake system altering its constants
of motion. More precisely, we consider the new constants of
motion 
1 and 
2 given by


1 (�, �, �) = 12�2 + 12�2 + �2 + � (�, �, �) , (12)


2 (�, �, �) = 12�2 − 12�2 + 2�� + � (�, �, �) , (13)

where � and � are arbitrary di�erentiable functions. By (12)-
(13), we get

��̇ + � ̇� + 2��̇ + ���� �̇ + ���� ̇� + ���� �̇ = 0,
��̇ − � ̇� + 2��̇ + �����̇ + ���� ̇� + ���� �̇ = 0

(14)

or, equivalently,

(� + ����) �̇ + (� + ����) ̇� = −(2� + ����) �̇,
(� + ����) �̇ − (� − ����) ̇� = −(2� + ����) �̇.

(15)

Solving this algebraic system, we obtain

�̇ = �� + �� + � (��/��) + (�/2) (��/��) − � (��/��) + (�/2) (��/��) + (1/2) (��/�� ⋅ ��/�� − ��/�� ⋅ ��/��)
−�� − (�/2) (��/��) − (�/2) (��/��) − (�/2) (��/��) + (�/2) (��/��) + (1/2) (��/�� ⋅ ��/�� − ��/�� ⋅ ��/��)
⋅ �̇,

̇� = �� − �� − � (��/��) + (�/2) (��/��) + � (��/��) − (�/2) (��/��) − (1/2) (��/�� ⋅ ��/�� − ��/�� ⋅ ��/��)
−�� − (�/2) (��/��) − (�/2) (��/��) − (�/2) (��/��) + (�/2) (��/��) + (1/2) (��/�� ⋅ ��/�� − ��/�� ⋅ ��/��)

⋅ �̇.

(16)

We denote by �̇ the denominator of the above expressions.
	us, we have constructed the following integrable deforma-
tion of the Rikitake system:

�̇ = �� + �� + ����� + �2 ���� − ����� + �2 ����
+ 12 (���� ⋅ ���� − ���� ⋅ ����) ,

̇� = �� − �� − ����� + �2 ���� + ����� − �2 ����
− 12 (���� ⋅ ���� − ���� ⋅ ����) ,

�̇ = −�� − �2 ���� − �2 ���� − �2 ���� + �2 ����
+ 12 (���� ⋅ ���� − ���� ⋅ ����) .

(17)

It is obvious that if � and � are constant functions, then (17)
reduces to (4).

3. Hamilton-Poisson Realizations of
the Integrable Deformations of the
Rikitake System

In this section, we give two Hamilton-Poisson realizations
of system (17). Furthermore, we obtain that the considered
system is bi-Hamiltonian. We also prove that system (17) has
in�nitely many Hamilton-Poisson realizations.

In order to obtain a Hamilton-Poisson realization

(R3, {⋅, ⋅}1 , !1) (18)

of system (17), we construct a Poisson bracket

{⋅, ⋅}1 : 
∞ (R3,R) × 
∞ (R3,R) "→ 
∞ (R3,R) , (19)

considering that 
1 (see (12)) is a Casimir function; that is,{�, 
1}1 = 0, for any function� ∈ 
∞(R3,R), orΠ1 ⋅∇
1 = 0,
where Π1 is the matrix of {⋅, ⋅}1; namely,

Π1 = [[[
[

0 {�, �}1 {�, �}1− {�, �}1 0 {�, �}1− {�, �}1 − {�, �}1 0
]]]
]
. (20)
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We obtain

(� + ����) {�, �}1 + (2� + ����) {�, �}1 = 0,
(� + ����) {�, �}1 = (2� + ����) {�, �}1 ,
(� + ����) {�, �}1 = −(� + ����) {�, �}1 .

(21)

We also impose the condition that !1 fl 
2 (13) be the
Hamiltonian of system (17); namely, Π1 ⋅ ∇
2 = (�̇, ̇�, �̇)�:

(−� + ����) {�, �}1 + (2� + ����) {�, �}1 = �̇,
− (� + ����) {�, �}1 + (2� + ����) {�, �}1 = ̇�,
− (� + ����) {�, �}1 − (−� + ����) {�, �}1 = �̇.

(22)

Considering (21)-(22) as an algebraic system and using (17),
we obtain

{�, �}1 = −� − 12 ⋅ ���� ,
{�, �}1 = �2 + 12 ⋅ ���� ,
{�, �}1 = −�2 − 12 ⋅ ���� .

(23)

	e bracket {⋅, ⋅}1 veri�es the Jacobi identity; thus it is a
Poisson bracket. We have proven the following result.

Proposition 1. System (17) has the Hamilton-Poisson realiza-
tion

(R3, {⋅, ⋅}1 , !1) , (24)

where the Poisson bracket {⋅, ⋅}1 is given by (23) and !1 fl 
2
given by (13) is the Hamiltonian.

Similarly, we obtain the second Poisson structure {⋅, ⋅}2.
More precisely, imposing the conditions that 
2 be a Casimir
function and 
1 the Hamiltonian, we get

{�, �}2 = � + 12 ⋅ ���� ,
{�, �}2 = �2 − 12 ⋅ ���� ,
{�, �}2 = �2 + 12 ⋅ ���� .

(25)

Consequently, we can state the next result.

Proposition 2. System (17) has the Hamilton-Poisson realiza-
tion

(R3, {⋅, ⋅}2 , !2) , (26)

where the Poisson bracket {⋅, ⋅}2 is given by (25) and !2 fl 
1
given by (12) is the Hamiltonian.

Remark 3. System (17) has the form Π1 ⋅ ∇
2 = Π2 ⋅ ∇
1 =(�̇, ̇�, �̇)�. BecauseΠ1 +Π2 is a Poisson structure, the Poisson
brackets {⋅, ⋅}1 and {⋅, ⋅}2 are compatible. Consequently, system
(17) is a bi-Hamiltonian system.

	e last result from this section furnishes other Hamil-
ton-Poisson realizations of system (17).

Proposition 4. System (17) has in	nitely many Hamilton-
Poisson realizations given by

(R3, {⋅, ⋅}�,� , !�,�) , �, 7, 8, � ∈ 9� (2,R) , (27)

where

{⋅, ⋅}�,� = � {⋅, ⋅}1 + 7 {⋅, ⋅}2 ,
!�,� = −8
1 + �
2. (28)

Proof. Taking into account the fact that Π1 + Π2 is a Poisson
structure, we deduce that Π�,� = �Π1 + 7Π2 is a Poisson
structure for every �, 7 ∈ R. Considering 8, � ∈ R such that�� − 78 = 1 and the functions!�,� = −8
1 + �
2 and 
�,� =�
1−7
2, we haveΠ�,�⋅∇
�,� = 0, andΠ�,�⋅∇!�,� = (�̇, ̇�, �̇)�,
which is what we set out to prove.

We remark that, in the geometric frame given by the
above Hamilton-Poisson realizations, a Hamilton-Poisson
approach of system (17) may be done. We exemplify in
Section 4.

4. A Particular Integrable Deformation of
the Rikitake System

In this section, we consider particular functions � and �, and
we analyze the dynamics of system (17) in this particular case.
We study the stability of the equilibrium points, and we prove
the existence of the periodic orbits around the nonlinearly
stable equilibrium points. We also give some properties of
the energy-Casimir mapping associated with the considered
system.

We consider the functions �(�, �, �) = 0 and �(�, �, �) =</�2, where < ∈ (−∞, 0) is a deformation parameter. 	en
system (17) becomes

�̇ = �� + ��,
̇� = �� − �� − 2<��3 ,
�̇ = −�� + <��3 .

(29)



Advances in Mathematical Physics 5

We observe that system (29) is invariant under the transfor-
mation (�, �, �) → (−�, −�, �). 	erefore, we analyze this
system in the case where � ∈ (0,∞).

We notice that system (29) may be regarded as the
Rikitake system (4) with two parametric controls ?1(�,�, �) = −2<�/�3 and ?2(�, �, �) = <�/�3 about @� and@� axes, respectively, where < ∈ (−∞, 0) is the tuning
parameter.

	e aim of this section is to study the above particular
integrable deformation of the Rikitake system from the
Poisson geometry point of view.	e�rst step in this approach
is to give a Hamilton-Poisson realization of this system, as in
Section 3. 	e constants of motion of system (29) are given
by


 (�, �, �) = 12�2 + 12�2 + �2,
! (�, �, �) = 12�2 + <�2 − 12�2 + 2��,

(30)

and considering 
 a Casimir function and ! the Hamilto-
nian, the corresponding Poisson bracket is given by (23):

{�, �}1 = −�,
{�, �}1 = �2 ,
{�, �}1 = −�2 .

(31)

We remark that this Poisson bracket is linear; therefore, it is in
fact a Lie-Poisson bracket on the dual of certain Lie algebra,
namely, so(3)∗. Indeed, consider Lie group
9@ (3)

= {C ∈ �� (3,R) | CC� = C�C = �3, detC = 1} (32)

and its corresponding Lie algebra

so (3) = {{{{{
I ∈ JK (3,R) | I

= [[
[
0 −L V

L 0 −?
−V ? 0

]]
]
, ?, V, L ∈ R

}}}}}
,

(33)

with the commutator bracket [I, Q] = IQ − QI. As a real
vector space, the Lie algebra so(3) is generated by the basisR
so(3) = {�1, �2, �3}, where

�1 = [[
[
0 0 0
0 0 −1
0 1 0

]]
]
,

�2 = [[
[
0 0 1
0 0 0
−1 0 0

]]
]
,

�3 = [[
[
0 −1 0
1 0 0
0 0 0

]]
]
.

(34)

Following [27], we consider the nonstandard commutator[⋅, ⋅]
 on the space of skew-symmetric matrices so(3) given
by

[I, Q]
 = ISQ − QSI, (35)

where S = diag(−1/2, −1/2, −1) is a diagonal matrix. We
obtain

[�1, �2]
 = −�3,
[�1, �3]
 = 12�2,
[�2, �3]
 = −12�1.

(36)

	us, on so(3)∗ ≃ R
3, the Lie-Poisson structure {⋅, ⋅}1

(see (31)) is de�ned. As a consequence, system (29) has the
Hamilton-Poisson realization (so(3)∗, {⋅, ⋅}1, !).

	e next step in our approach is to study the stability of
the equilibrium points of the considered system.We establish
the nonlinear stability using Lyapunov function [28].

	e equilibrium points of system (29) are given by the
family

E = {(�, 0, ��4�4 − 2<) : � ∈ (0,∞)} , (37)

and their stability is presented in the next result.

Proposition 5. All the equilibrium points of the family E are
nonlinearly stable.

Proof. Let \� fl (�, 0, ��4/(�4 − 2<)) be an equilibrium
point of system (29), where � > 0, and let _ be a
neighborhood of \� such that � > 0 for every (�, �, �) ∈ _.
	en the function � : _ → R, where

� (�, �, �) = −<�4 − 2< (� − �2� )2 + �4 − <�4 − 2<�2

+ (� − ��4�4 − 2<)
2 ,

(38)

has the following properties:

(i) �(�, �, �) ≥ 0, for every (�, �, �) ∈ _.
(ii) �(�, �, �) = 0 if and only if (�, �, �) = \�.
(iii) 	e derivative of � along the solution (�(�), �(�), �(�))

of system (29) vanishes.
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Indeed, assertions (i) and (ii) follow by the condition that< < 0. For (iii), we have
�̇ (�, �, �) = ���� ⋅ �̇ + ���� ⋅ ̇� + ���� ⋅ �̇

= −2<�4 − 2< (� − �2� )(1 + �2�2 ) (�� + ��)

+ 2 �4 − <�4 − 2<�(�� − �� − 2<��3 )
+ 2(� − ��4�4 − 2<)(−�� + <��3 ) = 0,

(39)

for all (�, �, �) ∈ _, where we have used (29). 	erefore, by
[28], we deduce that the equilibrium point \� is nonlinearly
stable. 	us, all the equilibrium points of the family E are
nonlinearly stable.

Now, we study the existence of the periodic orbits of
system (29) around nonlinearly stable equilibriumpoints.We
apply a version of Weinstein-Moser result in the case of zero
eigenvalue, namely,	eorem 2.1 from [29], which ensures the
existence of periodic orbits around an equilibrium point. We
recall this result.


eorem. Let �̇ = I(�) be a dynamical system on a dif-
ferentiable manifold b, let �0 be an equilibrium point, that

is, I(�0) = 0, and let 
 fl (
1, . . . , 
�) : b → R
� be a vector

valued constant of motion for the above dynamical system
with 
(�0) being a regular value for 
. If

(i) the eigenspace corresponding to the eigenvalue zero
of the linearized system around �0 has dimension c,

(ii) SI(�0) has a pair of pure complex eigenvalues ±de
with e ̸= 0,

(iii) there exist a constant of motion � : b → R for
the vector �eld I with ��(�0) = 0 such that�2�(�0)|× > 0, whereg = ⋂��=1 ker �
�(�0),

then for each su�ciently small i > 0 any integral surface�(�) = �(�0) + i2 contains at least one periodic solution ofI whose period is close to the period of the corresponding
linear system around �0.

In our case, we have the following.

Proposition 6. Let \� fl (�, 0, ��4/(�4 − 2<)) ∈ E, � ∈
R, < ∈ (−∞, 0). 
en, for each su�ciently small i ∈ (0,∞),
any integral surface

Σ�� : −<�4 − 2< (� − �2� )2 + �4 − <�4 − 2<�2

+ (� − ��4�4 − 2<)
2 = i2

(40)

contains around \� at least one periodic orbit k��� of
system (29) whose period is close to 2l/e, where e =
√(�4 − <)[(�4 − 2<)3 − 16<�2�6]/�3(�4 − 2<).
Proof. We consider c = 1 and 
 : (0,∞) ×R ×R→ R given
by (30) in the above-mentioned theorem. 	e linearization
of system (29) at \� has the eigenvalues o1 = 0 and o2,3 =±de, and the eigenspace corresponding to the eigenvalue o1
is span

R
{((�4 − 2<)2, 0, −8�<�3)}. Furthermore,

�
 (\�) = ��� + 2��4�4 − 2<��; (41)

hence,

g = ker �
 (\�)
= span

R
{(0, 1, 0) , (−2��3, 0,�4 − 2<)} . (42)

	e function � given by (38) is a constant of motion of system
(29) which satis�es ��(\�) = 0, and

�2� (\�)qqqqq× = 2 �
4 − <�4 − 2<��2

+ 2(�4 − 2<)
3 − 16<�2�6

(�4 − 2<)3 ��2
> 0,

(43)

which �nishes the proof.

Taking into account the results reported in [17–19, 30–
32], theHamilton-Poisson realization of system (29) allows its
study from the nonstandard Poisson geometry point of view.
For this purpose, we consider the energy-Casimir mapping

EC : R
3 → R

2 associated with the considered system;
namely,

EC (�, �, �) = (! (�, �, �) , 
 (�, �, �))
= (�22 + <�2 − �22 + 2��, �22 + �22 + �2) . (44)

Because the functions ! and 
 given by (30) are constants
of motion, the phase curves of system (29) are intersection
of surfaces !(�, �, �) = ℎ and 
(�, �, �) = 8, where the pair(ℎ, 8) belongs to the image of the energy-Casimir mapping
given by

Im (EC) = {(ℎ, 8) ∈ R
2 | (∃) (�, �, �)

∈ R
3 : ! (�, �, �) = ℎ, 
 (�, �, �) = 8} . (45)

Moreover, the �ber of the energy-Casimir mapping EC

corresponding to an element (ℎ, 8) ∈ Im(EC) is the set
F(ℎ,�)

= {(�, �, �) ∈ R
3 | ! (�, �, �) = ℎ, 
 (�, �, �) = 8} , (46)

that is, the above-mentioned phase curve.
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Figure 1: 	e image of the energy-Casimir mapping.

In the papers mentioned above, some results regarding
the connections between the dynamics of some particu-
lar Hamilton-Poisson systems and the associated energy-
Casimir mappings were reported. More precisely, the bound-

ary of the set Im(EC) ⊊ R
2 is the union of the images of

the stable equilibrium points through EC, and the image of
the energy-Casimir mapping is convexly generated by these
images. Moreover, for the points that belong to the interior of
the set Im(EC), the corresponding �bers are periodic orbits.
We mention that in our case these connections hold.

In the next results, we present some properties of the
image of the energy-Casimir mapping.

Proposition 7. Let EC be the energy-Casimir mapping (44)
associated with system (29).
en the boundary of the image of
EC is the union of the images of the stable equilibrium points
through EC (Figure 1):

�Im (EC) = {(�22 + <�2 + 2�2�4�4 − 2< , �
2

2
+ �2�8
(�4 − 2<)2) : � > 0} .

(47)

Proof. Let � > 0 and let \� fl (�, 0, ��4/(�4 − 2<)) ∈
E, � ∈ R, < ∈ (−∞, 0). 	en EC(\�) = (ℎ��, 8��), whereℎ�� = �2/2 + </�2 + 2�2�4/(�4 − 2<) and 8�� = �2/2 +�2�8/(�4 − 2<)2. It is obvious that (ℎ��, 8��) ∈ Im(EC) for
every� > 0. We prove that (ℎ, 8��) ∉ Im(EC) for every ℎ >ℎ��. By de�nition (45), we have

�22 + <�2 − �22 + 2�� = �22 + <�2 + 2�2�4�4 − 2< + ℎ
− ℎ��,

(48)

�22 + �22 + �2 = �22 + �2�8
(�4 − 2<)2 . (49)

5

5

5

0

0 0

−5

−5

z

y
x

Figure 2: Periodic orbit (< = −1, � = 1, � = 2, ℎ = ℎ��, and8 = 8�� + 4).

Multiplying (48) by −�4/(�4 − 2<) and then adding the
result to (49), we obtain, a�er straightforward computations,

� (�, �, �) = (ℎ�� − ℎ) �4�4 − 2< , (50)

where � is given by (38). Taking into account the properties
of the function �, we obtain that there is no (�, �, �) such that
EC(�, �, �) = (ℎ, 8��) for every ℎ > ℎ��; that is, (ℎ, 8��) ∉
Im(EC) for every ℎ > ℎ��. Analogously we obtain that(ℎ��, 8) ∉ Im(EC) for every 8 < 8��. It is clear that there is� such that EC(�, �, ��4/(�4 − 2<)) = (ℎ, 8) in the case
where ℎ < ℎ�� and 8 > 8��. Moreover,EC(�, �, �) = (ℎ��, 8��)
if and only if (�, �, �) = \�. In conclusion, the assertion has
been proven.

Remark 8. By the proof of Proposition 7, we deduce that the
image of the energy-Casimir mapping is convexly generated
by the images of the stable equilibrium points through EC

(Figure 1). Furthermore, if (ℎ, 8) ∈ �Im(EC), then the corre-
sponding �ber is a set with exactly one element, namely, a
stable equilibrium point.

Remark 9. 	e implicit equations of the corresponding �ber
of a pair (ℎ, 8) that belongs to the interior of the set Im(EC)
are

�22 + <�2 − �22 + 2�� = ℎ,
�22 + �22 + �2 = 8.

(51)

Such an intersection is presented in Figure 2. Taking into ac-
count Proposition 6, we conclude that this �ber is a periodic
orbit.
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5. Conclusions

In this paper, integrable deformations of an integrable version
of the Rikitake system were constructed, and Hamilton-
Poisson realizations of these new systems of di�erentiable
equations were presented. Because it is an open problem to
give the connections between the dynamics of such systems
and the corresponding energy-Casimir mappings, the choice
of certain deformation functions furnishes new examples that
con�rm or maybe in�rm the properties reported for some
particular systems. In this work, the deformation functions
were chosen such that the Rikitake system is nonlinearly
stabilized about its equilibrium points. In this case, the
expected properties of the energy-Casimir mapping hold.

As future studies, the control and synchronization
between new particular integrable deformations of the Rik-
itake system and original Rikitake system can be considered.
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