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We propose a generalization of Hamilton’s principle in which the min-
imization is performed with respect to the admissible functions and the
order of the derivation. The Euler–Lagrange equations for such minimiza-
tion are derived. They generalize the classical Euler-Lagrange equation.
Also, a new variational problem is formulated in the case when the order of
the derivative is defined through a constitutive equation. Necessary condi-
tions for the existence of the minimizer are obtained. They imply various
known results in a special cases.

MSC 2010 : 26A33, 70H25, 46F12, 34K37
Key Words and Phrases: variable order fractional derivative, varia-

tional principle of Hamilton’s type

1. Introduction

Hamilton’s principle of least action is one of the fundamental principles
of physics. According to it a system moves in such a way that the time
integral over its Lagrangian takes an extreme value on the real path of the
system when compared with the neighboring paths having the same end
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points. In this paper, that has mainly expository character, we present dif-
ferent approaches to the Hamilton’s principle with variable order fractional
derivatives, indicating our further work in this direction.

When Hamilton’s principle is known, all the information regarding the
processes of a particular system are included into its Lagrangian. There
have been many generalizations of Hamilton’s principle, see for example
[25], [1] and references therein. Recently, the Hamiltons’s principle has been
generalized by replacing the integer order derivatives in Lagrangian with
the fractional ones (derivatives of real order). The first study of Hamilton’s
principle with fractional derivatives was conducted by Riewe ([19]), ([20])
while for other works, we refer to [6], [16], [4].

Our intention in this work is to generalize the fractional Hamilton’s
principle by introducing variable order fractional derivative into the La-
grangian. Variable order fractional derivatives are presented in several
publications (see for example [21], [15], [8], [23], [9] and [17]). In our work,
we shall replace the integer order derivative in the Lagrangian density with
the variable order fractional derivatives so that the action integral has the
form

I =
∫ t1

t0

L
(
t, y (t) , 0D

α(t)
t y, α (t)

)
dt, (1)

where L is the Lagrangian density, y is a generalized coordinate, 0Dy
α(t)
t

denotes the left Riemann-Liouville fractional derivative of the order α =
α (t) , t ∈ [t0, t1] of y and t0 and t1 are given time instants. Our main
assumption is that the minimization in (1) should be performed with respect
to both y and α. We believe that this constitutes a novel approach to
Hamilton’s principle that allows determination of both y and α. Also this
minimization leads to a new type of variational problem. To obtain the
necessary conditions for the optimality in the case of Lagrangian having
variable order fractional derivatives we need the corresponding integration
by parts formula. In Section 4 we derive this formula for one (of several
proposed) types of fractional derivatives of variable order.

We stress on the fact that our results depend on the definition of frac-
tional derivative of variable order. In publications that appeared lately
different definitions of variable order fractional derivatives have been in-
troduced. The questions raised in these publications have a deep meaning
from both mathematical and physical point of view (see [17], [8]). The in-
tegration by parts formula that we derive here and the resulting variational
principles, show that the definition based on distributional approach to
fractional derivatives has certain advantages among proposed definitions.

We recall the definitions of the fractional integrals of constant real (α =
const) order. Let t ∈ [0, T ] , T > 0. The left and right Riemann-Liouville
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(RL) fractional integrals are given as

0I
α
t y =

1
Γ (α)

∫ t

0
(t− τ)α−1 y (τ) dτ, 0 ≤ t ≤ T, (2)

respectively

tI
α
T y =

1
Γ (α)

∫ T

t
(τ − t)α−1 y (τ) dτ, 0 ≤ t ≤ T, (3)

Let 0 < α < 1, 1 ≤ p, q < 1. Then the operators 0I
α
t y and tI

α
T y are bounded

and linear ones from Lp ([0, T ]) to Lq ([0, T ]) if 1 < p < 1/α, q = p/1 − αp
(see [22]).

The left and right RL fractional derivatives are defined as

0D
α
t y =

d

dt

1
Γ (1 − α)

∫ t

0

y (τ)
(t− τ)α

dτ, 0 ≤ t < T, (4)

and

tD
α
T y = − d

dt

1
Γ (1 − α)

∫ T

t

y (τ)
(τ − t)α

dτ, 0 ≤ t < T, (5)

respectively. If y ∈ C1 [0, T ], the derivatives 0D
α
t y and tD

α
T y exist, belong

to Lr[0, T ] and are given by the following expressions (t ∈ [0, T ])

0D
α
t y =

y (0+)
Γ (1 − α) tα

+
1

Γ (1 − α)

∫ t

0

y(1) (τ)
(t− τ)αdτ, 0 ≤ t ≤ T,

tD
α
T y =

y (T )
Γ (1 − α) (T − t)α − 1

Γ (1 − α)

∫ T

t

y(1) (τ)
(τ − t)αdτ, 0 ≤ t ≤ T,

with 1 ≤ r < 1/α.
Now suppose that α is not a constant but a given function of t, satisfying

0 ≤ α (t) < 1, t ∈ [0, T ]. The problem is how to define 0I
α(t)
t y, 0D

α(t)
t y, tI

α(t)
T y

and tD
α(t)
T y. There are several definitions proposed in the literature. We

state some of them. In all results that follow we assume y(t) = 0 for t < 0.

1) In [21] the following definition of left fractional integral of variable
order is proposed

0I
α(t)
t y =

1
Γ (α (t))

∫ t

0
(t− τ)α(t)−1 y (τ) dτ, 0 ≤ t ≤ T. (6)

2) In [15] several definitions are introduced. The first is identical to (6).
The next one, is

0I
α(t)
t y =

∫ t

0

(t− τ)α(τ)−1

Γ (α (τ))
y (τ) dτ, 0 ≤ t ≤ T. (7)
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3) We state another definition proposed in [15], where it is assumed
that α is a function of (t− τ), i.e.

0I
α(t)
t y =

∫ t

0

(t− τ)α(t−τ)−1

Γ (α (t− τ))
y (τ) dτ, 0 ≤ t ≤ T. (8)

The fractional derivative of variable order could now be defined sim-
ply (as in the case of constant order) by taking the first derivative of the
(1 − α (t)) integral given by any of the expressions (6)–(8). This leads to
the definition of the form

0D
α(t)
t y =

d

dt

∫ t

0

(t− τ)−q(t,τ)

Γ (1 − q (t, τ))
y (τ) dτ,

where q (t, τ) = α (t) , q (t, τ) = α (τ) and q (t, τ) = α (t− τ), in cases
(6)–(8). Thus, we obtain, respectively:

1)

0D
α(t)
t =

d

dt

∫ t

0

(t− τ)−α(t)

Γ (1 − α (t))
y (τ) dτ, 0 ≤ t ≤ T, (9)

2)

0D
α(t)
t y =

d

dt

∫ t

0

(t− τ)−α(τ)

Γ (1 − α (τ))
y (τ) dτ, 0 ≤ t ≤ T, (10)

3)

0D
α(t)
t y =

d

dt

∫ t

0

(t− τ)−α(t−τ)

Γ (1 − α (t− τ))
y (τ) dτ, 0 ≤ t ≤ T. (11)

There are other definitions of variable order fractional integrals and
derivatives. As will be seen, all definitions have, as a starting point, cer-
tain form of fractional derivative of constant order. Then, this form is
generalized by allowing the constant α to become a function.

In [21] the Marchaud fractional derivative is used as a starting point,
so that the variable order fractional derivative is defined as (0 < α (t) < 1):

4)

0D
α(t)
t y =

y (t)
Γ [1 − α (t)] tα(t)

+
α (t)

Γ [1 − α (t)]

∫ t

0

y (t) − y (τ)

(t− τ)1+α(t)
dτ, 0 ≤ t ≤ T.

(12)
In [13] the following definition is proposed:
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5)

0D
α(t)
t y =

d

dt

∫ t

0

y (t− τ)

Γ [1 − α (τ)]α(τ)
dτ,

=
y (0)

Γ (1 − α) tα(t)
+

1
Γ (1 − α)

∫ t

0

y(1) (τ)

(t− τ)α(τ)
dτ, 0 ≤ t ≤ T, (13)

or alternatively

0D
α(t)
t y =

d

dt

∫ t

0

y (τ)

Γ [1 − α (t− τ)] (t− τ)α(t−τ)
dτ, 0 ≤ t ≤ T, (14)

which is (11).
We present now the definition given in [8]. As a motivation, note that

starting from (4), assuming that y ∈ AC ([0, t]) and that α = const, we
obtain (see [22], p.32):

0D
α(t)
t y =

y (0+)
Γ (1 − α) tα

+
1

Γ (1 − α)

∫ t

0

y(1) (τ)
(t− τ)αdτ, 0 ≤ t ≤ T, (15)

where y(1) (τ) = dy (τ) /dτ . By replacing α = const with α (t) in (15) it
follows

0D
α(t)
t y =

y (0)
Γ (1 − α (t)) tα(t)

+
1

Γ (1 − α (t))

∫ t

0

y(1) (τ)

(t− τ)α(t)
dτ. 0 ≤ t ≤ T.

(16)
The definition proposed in [8] (see also [18]) reads:
6)

0D
α(t)
t y =

y (0+) − y (0−)
Γ (1 − α (t)) tα(t)

+
1

Γ (1 − α (t))

∫ t

0

y(1) (τ)

(t− τ)α(t)
dτ, 0 ≤ t ≤ T.

(17)
For functions that satisfy y(0) = 0 (since we assumed y (t) = 0 for

t < 0) the definitions (16),(17) agree.
Next we present the definition of variable order fractional derivative

based on Grünwald–Letnikov definition for derivative of constant order.
This approach is especially useful in numerical treatment of differential
equations with variable order derivatives. The left Grünwald–Letnikov frac-
tional derivative of variable order (see [27]) is defined as:

7)

0D
α(t)
t y = lim

h→0,nh=t
h−α(t)

n∑
j=0

(−1)j
(
α (t)
j

)
y (t− jh) . (18)

It can be shown that in the case when y is continuously differentiable
(see [27]), then definitions (9) and (18) agree.
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The above definitions of variable order fractional derivatives are special
cases of a general fractional variable order derivative proposed in [24] as:

0D
α(t)
t y =

d

dt

∫ t

0
Kα(t)

μ,ν (t, τ) y (τ) dτ, 0 ≤ t ≤ T, (19)

where μ and ν are real parameters and

Kα(t)
μ,ν (t, τ) =

1

Γ (1 − α (μt+ ντ)) (t− τ)α(μt+ντ)
, 0 < τ < t. (20)

The parameters μ and ν belong to the causality parallelogram of Lorenzo-
Hartley (μ, ν) ∈ Π, where

Π =
{
(μ, ν) ∈ R

2 : 0 ≤ μ ≤ 1,−1 ≤ ν ≤ 1, 0 ≤ μ+ ν ≤ 1
}
. (21)

Thus, for example with μ = 0, ν = 1, we recover (9) while with μ = 1, ν =
−1, (19) becomes (11).

As it is stated in [18] and [9], the problem of choosing a “proper”
definition of variable order fractional derivative is open. In the next section
we present an analysis which supports the definition given in (11).

2. Distributional setting of variable order derivatives

In this section we review within the theory of distributions the definition
of the fractional derivative of constant order and propose a generalization
to the case when the order of the derivative is also a function.

Let S(R) denote the space of rapidly decreasing functions in R (func-
tions ϕ is in S(R) if ϕ (t) and all its derivatives tend to zero as t → ±∞
faster than the inverted value of every polynomial) and let S ′

(R) be its
dual, i.e., the space of tempered distributions; S ′

+(R) denotes its subspace
consisting of distributions supported by [0,∞). We consider in S ′

+(R) the
family

fα(t) =

⎧⎪⎪⎨
⎪⎪⎩

H(t)
tα−1

Γ(α)
, t ∈ R+, α > 0,

dN

dtN
fα+N (t), α ≤ 0, α+N > 0, N ∈ N,

(22)

where H is Heaviside’s function and Γ is the Euler Gamma function. It is
well known that fα ∗ fβ = fα+β, α, β ∈ R, where ∗ denotes the convolution
of fα and fβ. The convolution operator fα∗ in S ′

+(R) is the operator of
fractional differentiation for α < 0 and of fractional integration for α > 0.
It coincides with the operator of derivation for −α ∈ N and integration for
α ∈ N0 = N∪ {0}. Note fα=0(t) = δ (t) , where δ is the Dirac Distribution.
Let α > 0 and y ∈ L1

loc(R) be polynomially bounded with y (t) = 0 for
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t < 0. Then Iαy = fα ∗ y. In general, for y ∈ S ′
+(R) the fractional

derivative of order α ∈ [0, 1) is defined as

0D
α
t y = f−α ∗ y =

d

dt
f−α+1 ∗ y, (23)

where

f−α =
d

dt
H(t)

t−α

Γ(1 − α)
, (24)

so that

0D
α
t y =

∫ t

0

d

dτ

τ−α

Γ(1 − α)
y (t− τ) dτ =

d

dt

1
Γ(1 − α)

∫ t

0

y (τ)
(t− τ)α

dτ.

In [3] we proved that y 	−→0 D
α
t y is linear and continuous mapping from

S ′
+(R) to S ′

+(R).
Suppose that α ∈ C1 ([0,∞)) , 0 ≤ α (t) < 1. We consider a family in

S ′
+(R) given by(

f−α(t)(t)
)
+

=
d

dt
H(t)

tα(t)

Γ(1 − α (t))
, t ∈ R+ (25)

(see [9]). Let φ ∈ S(R).Recall, the action of
(
f−α(t)(t)

)
+

on φ is
〈
f−α(t) (t) , φ

〉
= − 〈

f1−α(t) (t) , φ(1)
〉
. Thus,

(
f−α(t)(t)

)
+

is a tempered distribution.
With (23) and (25) we define the left variable order fractional RL inte-

gral and derivative as:

Definition 2.1. Suppose that α ∈ C[0,∞), 0 ≤ α (t) < 1 and y(t) =
0 for t < 0. The left RL fractional integral of variable order α (t) is defined
as

0I
α(t)
t y =

(
f−α(t)(t)

)
+
∗ y =

∫ t

0

y (τ)

Γ (α (t− τ)) (t− τ)1−α(t−τ)
dτ t ∈ R, (26)

and the left RL fractional derivative of variable fractional order α (t) is

0D
α(t)
t y = f−α(t) ∗ y =

d

dt

∫ t

0

(t− τ)−α(t−τ)

Γ(1 − α (t− τ))
y (τ) dτ, t ∈ R. (27)

In (27) the derivative is taken in the sense of distributions. Note that

0D
α(t)
t y = d

dt 0I
1−α(t)
t . Also if y ∈ S ′

+(R), then 0I
α(t)
t y ∈ S ′

+(R)0 and
D

α(t)
t y ∈ S ′

+(R) (since f−α(t), 0 ≤ α (t) < 1 is a locally integrable function).
The definitions reduce to the classical ones when α = const. From (27) the
assumption of [15] that the arguments of α in the exponent of (t− τ) and in
the gamma function, of equation (11) are the same, here follows naturally.
Physically, definition (26) and (27) imply that a memory of the value of
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order of integration α is taken into account in the evaluation of a fractional
derivative. Based on (27), we define for absolutely continuous functions
fractional derivatives as follows:

Definition 2.2. Let α ∈ C[0, T ), 0 ≤ α (t) < 1 and y ∈ AC ([0, T ]).
Then left and right RL fractional derivatives of variable order α are defined
as:

0D
α(t)
t y =

y (0)
Γ (1 − α (t)) tα(t)

+
∫ t

0

y(1) (τ)

Γ (1 − α (t− τ)) (t− τ)α(t−τ)
dτ, (28)

and

tD
α(t)
T y =

y (T )
Γ (1 − α (T − t)) tα(T−t)

−
∫ T

t

y(1) (τ)

Γ (1 − α (τ − t)) (τ − t)α(τ−t)
dτ,

(29)
respectively.

3. Integration by parts formula

In this section we consider the integration by parts formula ([14], p.76)
for fractional derivatives of variable order. Thus, let α ∈ C[0, T ), 0 ≤
α (t) < 1, y(t) = 0 for t < 0 and y (t) = 0 for t > T. Recall that, for α =
const. and 0 < α < 1 we have: If f ∈ 0I

α
t (Lp[0, T ]) and g ∈ tI

α
T (Lq[0, T ]) ,

1/p + 1/q ≤ 1 + α, then∫ T

0
0D

α
t f (t) g (t) dt =

∫ T

0
f (t) tD

α
T g (t) dt, (30)

where 0I
α
t (Lp[0, T ]) and tI

α
T (Lq[0, T ]) denote the class of functions f and

g that can be represented as Riemann-Liouville integrals, that is f = 0I
α
t ϕ

for some ϕ ∈ Lp[0, T ] and g = tI
α
Tψ for some ψ ∈ Lq[0, T ], respectively.

Note that for the case when α→1 the equation (30) reduces to the known
result.

For variable order fractional derivative given by (28),(29) we have the
following:

Proposition 3.1. Suppose that y ∈ AC ([0, T ]) , 0 ≤ α (t) < 1, t ∈
[0, T ]. Then the following integration by parts formula holds:∫ T

0
f (t)aD

α(t)
t y (t) dt =

∫ T

0
y (t)tD

α(t)
T f (t) dt. (31)



102 T.M. Atanackovic, S. Pilipovic

To prove the proposition, we transform the left hand side term∫ T

0
f (t)0D

α(t)
t y (t) dt

as follows:∫ T

0
f (t)0D

α(t)
t y (t) dt =

∫ T

0
f (t)

[
d

dt

∫ t

0

y (τ)

Γ (1 − α (t−τ)) (t− τ)α(t−τ)
dτ

]
dt

= f (t)
∫ t

0

y (τ)

Γ (1 − α (t− τ)) (t− τ)α(t−τ)
dτ

∣∣∣∣∣
t=T

t=0

−
∫ T

0
f (1) (t)

[∫ t

0

y (τ)

Γ (1 − α (t− τ)) (t− τ)α(t−τ)
dτ

]
dt

= f (T )

[∫ T

0

y (τ)

Γ (1 − α (T − τ)) (T − τ)α(T−τ)
dτ

]

−
∫ T

0
y (τ)

[∫ T

τ

f (1) (t)

Γ (1 − α (t− τ)) (t− τ)α(t−τ)
dt

]
dτ

=
∫ T

0
y (τ)

[
f (T )

Γ (1 − α (T − τ)) (T − τ)α(b−τ)

−
∫ T

τ

f (1) (t)

Γ (1 − α (t− τ)) (t− τ)α(t−τ)
dt

]
dτ

∫ T

0
y (t)tD

α(t)
T f (t) dt.

Thus, we conclude that the definition (28),(29) preserves the form of
integration by parts formula (30). The expression (31) is the basis for
Variational principle with Lagrangian having derivatives of variable order
that we treat in the next section.

4. Variational principle for variable order fractional derivative:
Generalized Hamilton’s principle

Consider the Lagrangian density be given by

L (y, α) = L
(
t, y (t) ,aD

α(t)
t y (t) , α (t)

)
with y and α belonging to specified spaces. We consider the problem of
minimizing the following functional

I =
∫ T

0
L
(
t, y (t) , aD

α(t)
t y (t) , α (t)

)
dt. (32)

Here we assume that L depends on time, generalized coordinate, fractional
derivative of generalized coordinate and order of the derivative function.
Also y ∈ U , where U is the space of admissible functions and α ∈ V where
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V is the space of admissible order functions. In each specific example U
and V are specified in advance. Generally, U will be the set of functions
satisfying some regularity properties (for example y ∈ AC ([0, T ])) and
specified boundary conditions. For simplicity we assume again that 0 <
α(t) < 1, t ∈ [0, T ] .

We shall distinguish the following cases:

1) Function α is given. The problem then becomes: Find y = y∗ such
that

min I
y∈U

(y, α) = min
y∈U

∫ T

0
L
(
t, y (t) , 0D

α(t)
t y (t) , α (t)

)
dt

=
∫ T

0
L
(
t, y∗ (t) , 0D

α(t)
t y∗ (t) , α (t)

)
dt. (33)

To obtain necessary conditions for the minimum, we assume that y = y∗+εh
where ε ∈ R, and h is such thaty ∈ U for all ε. Since α is given it is not
subject to variation. By substituting (33) into (32) we find that for each h

I (y∗ + εh, α) =
∫ T

0
L
(
t, y∗ (t) + εh (t) , 0D

α(t)
t (y∗ (t) + εh (t)) , α (t)

)
dt,

is a function of ε only. Thus d
dε (I (y∗ + εh, α))ε=0 = 0 leads to∫ T

0

[
∂L

∂y
h (t) +

∂L

∂aD
α(t)
t y

aD
α(t)
t h (t)

]
dt = 0. (34)

Using (31) we obtain the necessary condition for the minimum of (32) in
the form of Euler-Lagrange equation

∂L

∂y
+ tD

α(t)
T

∂L

∂aD
α(t)
t y

= 0. (35)

Equation (35) is a generalization of the classical Euler-Lagrange equations
as well as generalization of the Euler-Lagrange equations given in [6] for
α = const.

2) Function α is a constant, i.e., α = const such that α ∈ [0, 1) but is
not given in advance. Then minimization of (32) becomes

min I
y∈U ,α∈[0,1]

(y, α) = min
y∈U ,α∈[0,1)

∫ T

0
L (t, y (t) , 0D

α
t y (t) , α)) dt. (36)

The necessary conditions for optimality of (36) read (see [5])

∂L

∂y
+ tD

α
T

∂L

∂0Dα
t y

= 0,
∫ T

0

(
∂L

∂0Dα
t y
G(y, α) +

∂L

∂α

)
dt = 0, (37)
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where

G(y, α) =
∂0D

α
t y

∂α
=

d

dt
(f1∗y)(t, α), f1(t, α) =

1
tαΓ(1 − α)

[ψ(1−α)−ln t],

(38)
t > 0, with the Euler function ψ(z) = d

dz ln Γ(z), and (f1 ∗ y)(t, α) =∫ t
0 f1(τ, α)y(t − τ) dτ . The expression (38) holds for y being locally in-

tegrable function, i.e., y ∈ L1
loc (R) with y (t) = 0 for t < 0. In [5] the

expression for ∂0Dα
t y

∂α is determined also for the case when y ∈ S
′
+ (R) and

consequently 0D
α
t y ∈ S

′
+ (R) , where S

′
+ (R) denotes the subspace of S

′
(R)

consisting of tempered distributions supported by [0,∞). In this case (see
[5], p.604)

〈
∂0D

α
t y

∂α
, φ (t)

〉
=

∂

∂α

〈
d

dt
0I

1−α
t y, φ (t)

〉
= − ∂

∂α

〈
0I

1−α
t y, φ(1)

〉
=

= −
〈
∂

∂α
0I

1−α
t y, φ(1)

〉
=

〈
d

dt

∂

∂α
0I

1−α
t y, φ

〉

=
〈
d

dt
(f1 ∗ y)(t, α)) , φ

〉
, (39)

where φ ∈ S(R) and we used the fact (see Section 2) that ∂
∂α 0I

1−α
t y =

(f1 ∗ y)(t, α) with f1 given by the second part of (38).

3) Function 0 < α (t) < 1, t ∈ [0, T ] , is not given and must be deter-
mined form the minimization of (32). Thus, we have

min I
y∈U ,α∈V

(y, α) = min
y∈U ,α∈V

∫ T

0
L
(
t, y (t) ,aD

α(t)
t y (t) , α (t)

)
dt. (40)

Let y = y∗ and α = α∗ be the functions such that

min
y∈U ,α∈V

∫ T

0
L
(
t, y (t) ,a D

α(t)
t y (t)

)
dt =

∫ T

0
L
(
t, y∗ (t) ,aD

α∗(t)
t y∗ (t) , α

)
dt.

(41)
To obtain the necessary conditions for the optimality in the problem (41)
we let y = y∗ + ε1h, α = α∗ + ε2θ and θ such that y ∈ U , α ∈ V for all
ε1, ε2 ∈ R. Again substituting this into

∫ T
0 L (t, y (t) ,aDα

t y (t)) dt and by
observing that there is no relation between y and α we obtain (see [10]) the
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following necessary condition for optimality∫ T

0

(
∂L

∂y
+ tD

α(t)
T

∂L

∂0D
α(t)
t y

)
h (t) dt = 0,

∫ T

0

(
∂L

∂0D
α(t)
t y

∂0D
α(t)
t y

∂α (t)
+

∂L

∂α (t)

)
θ (t) dt = 0. (42)

Now, by using (38), it follows that∫ T

0

(
∂L

∂y
+ tD

α(t)
T

∂L

∂0D
α(t)
t y

)
h (t) dt = 0,

∫ T

0

(
∂L

∂0D
α(t)
t y

Q(y, α) +
∂L

∂α (t)

)
θ (t) dt = 0, (43)

where Q(y, α) = ∂0D
α(t)
t y

∂α(t) . Under suitable conditions, (see [10], p. 9-11) we
obtain from (43)

∂L

∂y
+ tD

α
b

∂L

∂0Dα
t y

= 0,
∂L

∂0Dα
t y
Q(y, α) +

∂L

∂α
= 0. (44)

To determine Q(y, α) we proceed as in the case (38),(39) so that

Q(y, α) =
∂0D

α(t)
t y

∂α (t)
=

d

dt
(g1 ∗ y)(t, α),

g1(t, α) =
1

tαΓ(1 − α (t))
[ψ(1 − α (t)) − ln t], t > 0, (45)

and 〈
∂0D

α
t y

∂α
, φ (t)

〉
=

〈
d

dt
(g1 ∗ y)(t, α)) , φ

〉
(46)

for y ∈ L1
loc (R) and y ∈ S

′
+ (R), respectively.

4) Function α is not given explicitly, but is given in terms of t, α and
y by an additional differential equation equation. Thus, the optimization
problem is formulated as: Minimize

min I
y∈U

(y, α) =
∫ T

0
L
(
t, y (t) , aD

α(t)
t y (t) , α (t)

)
dt, (47)

subject to
dα

dt
= Ψ (t, α (t) , y (t)) . (48)
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This situation is typical for internal variable theories. Namely, α is treated
in (47) as an internal variable that is determined through constitutive equa-
tion (48). Thus, we have to solve

min I
y∈U

(y, α) = min
y∈U

∫ T

0
L
(
t, y (t) ,a D

α(t)
t y (t) , α (t)

)
dt, (49)

subjected to the constraint (48). We rewrite (49),(48) as: find a minimum
of

min I
y∈U ,z∈V

(y, z, α) = min
y∈U ,z∈V

∫ T

0
L (t, y (t) , z (t) , α (t)) dt, (50)

where U , and V are given, subjected to the constraints

dα

dt
= Ψ (τ, α (t) , y (t)) , aD

α(t)
t y (t) = z (t) . (51)

Using the Lagrange multiplier rule (see [6],[7], [12]) we consider the modified
functional

min I
y∈U

(y, z, α) = min
y∈U

∫ T

0
{L (t, y (t) , z (t) , α (t)) (52)

+p
[
z (t) −a D

α(t)
t y (t)

]
+ q

[
Ψ (τ, α (t) , y (t)) − α(1)

]}
dt,

where p and q are Lagrange multipliers. The necessary condition for the
optimality δI = 0, after partial integration and the use of (31), becomes

δI =
∫ T

0

{[
∂L

∂y
−t D

α(t)
1 p+ q

∂Ψ
∂y

]
δy

+
[
z −a D

α(t)
t y (t)

]
δp +

[
Ψ (τ, α (t) , y (t)) − α(1)

]
δq +

[
∂L

∂z
+ p

]
δz

+

[
∂L

∂α
− p

∂aD
α(t)
t

∂α (t)
+ q(1) (t)

]
δα

}
dt. (53)

Now, from (53) we obtain

α(1) = Ψ (τ, α (t) , y (t)) , aD
α(t)
t y (t) = z (t) ,

tD
α(t)
1 p =

∂L

∂y
+ q

∂Ψ
∂y

, q(1) (t) = −∂L
∂α

+ p
∂aD

α(t)
t

∂α (t)
, p = −∂L

∂z
, (54)

with boundary conditions on p and q depending on the boundary conditions
on α and z. Thus, for example, if α (0) and α (1) are arbitrary, we have
q (0) = q (1) = 0 (see [26]).
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Remark 4.1. Condition (54) implies the following special cases: If
α = const that is prescribed, then Ψ (τ, α (t) , y (t)) = 0 and since δα (0) =
δα (1) = 0 we have δq (0) and δq (1) arbitrary. From (54) we then obtain

aD
α(t)
t y (t) = z (t) , tD

α(t)
1 p =

∂L

∂y
, p = −∂L

∂z
, (55)

or
∂L

∂y
+ tD

α
1

∂L

∂0Dα
t y

= 0, (56)

the result (56) obtained in [6]. If we assume that α = const but is not given
in advance, we have Ψ (τ, α (t) , y (t)) = 0 and δα (0) and δα (1) arbitrary.
This implies q (0) = q (1) = 0. From (54) we obtain

α(1) = 0, aD
α(t)
t y (t) = z (t) , tD

α(t)
1 p =

∂L

∂y
,

q (t) =
∫ t

0

[
−∂L
∂α

− ∂L

aD
α
t y (t)

∂aD
α
t

∂α (t)

]
dt, p = −∂L

∂z
,

or
∂L

∂y
+ tD

α
b

∂L

∂0Dα
t y

= 0,
∫ 1

0

[
−∂L
∂α

− ∂L

aDα
t y (t)

∂aD
α
t

∂α

]
dt = 0, (57)

where we used the condition q (1) = 0. The result (57) was obtained recently
in [5].

5. Conclusion

In this work we recalled several definitions of fractional derivative of
variable order. We concluded that definitions based on generalized distri-
butional definition of left (11) and left and right fractional derivative of
variable order (27) preserve the integration by parts formula. This enabled
us to formulate several variational principles (optimization problems) listed
as problems 1), 2) and 3) in Section 4. These variational principles may
be used to determine differential equations of process together with order
function α as a constant (Case 2) or as a function (Case 3). Also, we pro-
posed a new optimization problem (Case 4) in which α is determined as
a constitutive quantity. Central results on which our analysis is based are
relations (38) and its generalization (45). We believe that new variational
problem (47),(48) may be used to give rational basis for obtaining equations
of process when the order of the derivative changing with time and value
of the dependent (state) variable. An example of this type is presented in
[11] where the order of the derivative was taken to be defined as
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α (t) =
1 + y2 (t)

2
. (58)

Our analysis (equation (48)) can be easily modified to include (58) as a
constraint.
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