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Abstract

We present a classification of compact Kähler manifolds admit-
ting a hamiltonian 2-form (which were classified locally in part I of
this work). This involves two components of independent interest.

The first is the notion of a rigid hamiltonian torus action. This
natural condition, for torus actions on a Kähler manifold, was
introduced locally in part I, but such actions turn out to be re-
markably well behaved globally, leading to a fairly explicit classi-
fication: up to a blow-up, compact Kähler manifolds with a rigid
hamiltonian torus action are bundles of toric Kähler manifolds.

The second idea is a special case of toric geometry, which we call
orthotoric. We prove that orthotoric Kähler manifolds are diffeo-
morphic to complex projective space, but we extend our analysis
to orthotoric orbifolds, where the geometry is much richer. We
thus obtain new examples of Kähler–Einstein 4-orbifolds.

Combining these two themes, we prove that compact Kähler
manifolds with hamiltonian 2-forms are covered by blow-downs
of projective bundles over Kähler products, and we describe ex-
plicitly how the Kähler metrics with a hamiltonian 2-form are
parameterized. We explain how this provides a context for con-
structing new examples of extremal Kähler metrics—in particular
a subclass of such metrics which we call weakly Bochner-flat.

We also provide a self-contained treatment of the theory of
compact toric Kähler manifolds, since we need it and find the
existing literature incomplete.

We would like to thank C. Boyer, S. Boyer, R. Bryant, O. Collin, K. Galicki,
D. Guan and S. Maillot for stimulating discussions. The first author was supported in
part by FCAR grant NC-7264, and by NSERC grant OGP0023879, the second author
by the Leverhulme Trust, the William Gordon Seggie Brown Trust and an EPSRC
Advanced Research Fellowship. The first three authors are members of EDGE, Re-
search Training Network HPRN-CT-2000-00101, supported by the European Human
Potential Programme.

Received 03/30/2004.

277



278 APOSTOLOV, CALDERBANK, GAUDUCHON & TØNNESEN-FRIEDMAN

This paper is concerned with the construction of explicit Kähler met-
rics on compact manifolds, and has several interrelated motivations.
The first is the notion of a hamiltonian 2-form, introduced in part I of
this series [4].

Definition 1. Let φ be any (real) J-invariant 2-form on the Kähler
manifold (M,g, J, ω) of dimension 2m. We say φ is hamiltonian if

(1) ∇Xφ = 1
2(d tr φ ∧ JX − dc trφ ∧X)

for any vector field X, where tr φ = 〈φ, ω〉 is the trace with respect to
ω. When M is a Riemann surface (m = 1), this equation is vacuous and
we require instead that trφ is a Killing potential, i.e., a hamiltonian for
a Killing vector field J gradg trφ.

A second motivation is the notion of a weakly Bochner-flat (WBF)
Kähler metric, by which, we mean a Kähler metric whose Bochner tensor
(which is part of the curvature tensor) is co-closed. By the differential
Bianchi identity, this is equivalent (for m ≥ 2) to the condition that
ρ− Scal

2(m+1) ω is a hamiltonian 2-form, where ρ is the Ricci form. WBF
Kähler metrics are extremal in the sense of Calabi, i.e., the symplectic
gradient of the scalar curvature is a Killing vector field, and provide a
class of extremal Kähler metrics which include the Bochner-flat Kähler
metrics studied by Bryant [9] and products of Kähler–Einstein metrics.
The geometry of WBF Kähler metrics is tightly constrained, because
the more specific the normalized Ricci form is, the closer the metric is
to being Kähler–Einstein, while the more generic it is, the stronger the
consequences of the hamiltonian property.

A hamiltonian 2-form φ induces an isometric hamiltonian �-torus ac-
tion on M for some 0 ≤ � ≤ m, which we call the order of φ. This says
nothing for � = 0, but for � = m, it means that M is toric. Toric Kähler
manifolds are well understood, and a third motivation for our work is to
extend this understanding to certain torus actions with 0 < � < m. We
introduce the notion of a rigid hamiltonian �-torus action and prove that
a compact Kähler manifold with such an action has a blow-up which is
biholomorphic to a bundle of toric Kähler 2�-manifolds.

We shall be particularly interested in the projective bundles of the
form M = P (L0 ⊗ Cd0+1 ⊕ · · · ⊕ L� ⊗ Cd�+1) → S, where L0, . . .L� are
line bundles over a Kähler manifold S and the �-torus action is induced
by scalar multiplication on the vector bundles Lj ⊗ Cdj+1, with dj ≥ 0.
The blow-up of M along the submanifolds determined by setting the jth
fibrewise homogeneous coordinate (in Lj⊗Cdj+1) to zero, for j = 0, . . . �,
is a bundle of toric Kähler 2�-manifolds: the projective bundle P (L̃0 ⊕
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· · ·⊕L̃�) → CP d0×· · ·×CP d�×S, where L̃j = O(0, . . . 0,−1, 0, . . . 0)⊗Lj

(with O(−1) over the jth factor CP dj ).
When � = 1, projective line bundles have been well-used, since the

seminal work of Calabi [10], in the construction of explicit examples of
extremal Kähler metrics. The idea to consider blow-downs was intro-
duced by Koiso and Sakane [24, 25], who constructed Kähler–Einstein
metrics in this way. Our fourth motivation is to provide a general frame-
work for constructing extremal Kähler metrics on projective bundles,
and their blow-downs, and in doing so, we obtain new examples.

The toric Kähler 2m-manifolds arising from hamiltonian 2-forms of
order m are of a special class, which we call orthotoric. Compact ortho-
toric Kähler manifolds are necessarily biholomorphic to complex pro-
jective space, but there are many more examples on orbifolds. Our
final motivation is to study Kähler metrics on toric orbifolds, especially
orthotoric orbifolds, and to obtain new examples.

The main goal of this paper is to show that, up to a covering, a com-
pact Kähler manifold with a hamiltonian 2-form of order � is necessarily
biholomorphic to a projective bundle M of the form described above,
and conversely to show precisely how to construct Kähler metrics with
hamiltonian 2-forms of order � on such bundles.

We hope, however, that with the various motivations discussed above,
the Reader who does not share our enthusiasm for hamiltonian 2-forms
will find something of interest in this paper. Hamiltonian 2-forms rather
provide a device that unifies and underlies the above themes. The jour-
ney to our main result, and its consequences, yield a number of results
of independent interest.

• We obtain necessary and sufficient first order boundary condi-
tions for the compactification of compatible Kähler metrics on
toric symplectic orbifolds, clarifying work of Abreu [2, 1] (see Re-
mark 3 and Section 1.4).

• We introduce and study rigid hamiltonian torus actions, and or-
thotoric Kähler manifolds and orbifolds.

• We construct new explicit Kähler–Einstein metrics on 4-orbifolds.
• We unify and extend constructions of Kähler metrics on projective

bundles, obtaining new weakly Bochner-flat and extremal Kähler
metrics on projective line bundles and on the projective plane
bundle P (O ⊕O(1) ⊗ C2) → CP 1.

We have attempted to make this paper as independent as possible
from the first part [4]. However, we shall make essential use of the local
classification of Kähler manifolds with a hamiltonian 2-form of order
�, so we recall the result here. The Reader who is not interested in
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hamiltonian 2-forms per se, could take this local classification result as
a (rather complicated) definition of the class of Kähler metrics that, we
wish to classify globally.

We define the momentum polynomial of a hamiltonian 2-form φ to be

(2) p(t) := (−1)m pf(φ− tω) = tm − (tr φ) tm−1 + · · · + (−1)m pf φ

where the pfaffian is defined by φ ∧ · · · ∧ φ = (pf φ)ω ∧ · · · ∧ ω.

Theorem 1 ([4]). Let (M,g, J, ω) be a connected Kähler 2m-manifold
with a hamiltonian 2-form φ. Then:

(i) the functions p(t) on M (for each t ∈ R) are Poisson-commuting
hamiltonians for Killing vector fields K(t) := J gradg p(t);

(ii) there is a monic polynomial pc(t) with constant coefficients such
that p(t) = pc(t)pnc(t) and, if pnc(t) =

∑�
r=0(−1)rσrt

�−r (with
0 ≤ � ≤ m), then the Killing vector fields Kr := J gradg σr (r =
1, . . . �) are linearly independent on a connected dense open subset
M0 of M . The integer � is called the order of φ.

On the open subset M0, the roots ξ1, . . . ξ� of pnc(t) are smooth, func-
tionally independent and everywhere pairwise distinct, and they extend
continuously to M . Denote by ηa, a = 1, . . . N (N ≤ m − �) the dif-
ferent constant roots of pc(t) and by da their multiplicities. Then, there
are (positive or negative definite) Kähler metrics (ga, ωa) of real dimen-
sion 2da, functions F1, . . . F� of one variable, and 1-forms θ1, . . . θ� with
θr(Ks) = δrs such that the Kähler structure on M0 is of the form

g =
N∑

a=1

pnc(ηa)ga +
�∑

j=1

p′(ξj)
Fj(ξj)

dξ2j +
�∑

j=1

Fj(ξj)
p′(ξj)

(
�∑

r=1

σr−1(ξ̂j)θr

)2

,

(3)

ω =
N∑

a=1

pnc(ηa)ωa +
�∑

r=1

dσr ∧ θr, dθr =
N∑

a=1

(−1)rη�−r
a ωa,

and the hamiltonian 2-form φ is given by

(4) φ =
N∑

a=1

ηa pnc(ηa)ωa +
�∑

r=1

(σrdσ1 − dσr+1) ∧ θr

with σ�+1 = 0. (Here σr−1 (ξ̂j) denote the elementary symmetric
functions of the roots with ξj omitted. We remark also that p′(ξj) =
pc(ξj)

∏
k �=j(ξj − ξk).)

We shall obtain our global description of compact Kähler manifolds
admitting a hamiltonian 2-form of order � by exploiting three aspects
of the local geometry revealed by Theorem 1.
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(i) The components g(Kr,Ks) of the metric are constant on fibres
of the momentum map (σ1, . . . σ�) : M → R�. (This holds on all of M
by continuity.)

(ii) The Kähler quotient metrics
∑N

a=1 pnc(ηa)ga are simultaneously
diagonalizable (with respect to

∑N
a=1 ga) with constant eigenvalues for

each fixed (σ1, . . . σ�).

(iii) The roots ξ1, . . . ξ� of pnc have orthogonal gradients.

In [4], these properties were interpreted by saying that (M,g, J, ω)
is given locally by a rigid hamiltonian �-torus action with semisimple
Kähler quotient and orthotoric fibres. We shall see that this is not far
from being true globally.

If M is compact, the closure of the group of hamiltonian isometries
of M generated by K1, . . . K� is a torus T (with � ≤ dimT ≤ m). When
� = m, K1, . . . Km generate a torus action, and M is a toric Kähler man-
ifold. In the first section, we review the necessary background of toric
Kähler geometry and introduce a suitable invariant language. Then, in
section 2, we pursue a similar theory for � < m when property (i) holds.
In particular, we prove that dimT = � so there is a global rigid �-torus
action. We provide a generalized Calabi construction for such actions
which classifies them up to covering when the Kähler quotient is semi-
simple, i.e., when property (ii) is also satisfied. In section 3, we study
toric Kähler manifolds (and orbifolds) satisfying property (iii) in general,
and here we exhibit new explicit Kähler–Einstein metrics on compact
4-orbifolds. In section 4, we obtain a complete description of compact
Kähler manifolds with hamiltonian 2-forms, which we use to construct
new examples of compact weakly Bochner-flat and extremal Kähler
manifolds. In subsequent work, we shall construct many more examples
and classify weakly Bochner-flat Kähler metrics in dimension 6.

1. Hamiltonian actions and toric geometry

We begin by reviewing hamiltonian torus actions, paying particular
attention to the theory of toric Kähler manifolds. Toric Kähler geometry
can be studied either from the complex or symplectic viewpoint, and we
adopt, primarily, the latter. Furthermore, with a view to applications,
we do not restrict attention to manifolds, but also consider orbifolds:
this is a natural context in toric symplectic geometry [1, 28]. We refer
to [6, 18, 28] for general information about torus actions on symplectic
manifolds, and to [2, 11, 13, 16, 17] for further information about toric
Kähler manifolds and orbifolds.
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Our treatment has some novel features: in particular, we obtain first
order boundary conditions for the compactification of compatible Kähler
metrics on toric symplectic manifolds. Also, we present the theory in
invariant language, because for the torus actions generated by hamil-
tonian 2-forms, the natural basis of the Lie algebra t is not (in general)
compatible with the lattice in t defining the torus T.

1.1. Hamiltonian torus actions. Let T be an �-dimensional torus,
with Lie algebra t, acting effectively on a symplectic 2m-manifolds
(M,ω), and for ξ ∈ t, denote by Xξ the corresponding vector field on
M . Then, we say that the action is hamiltonian if there is a T-invariant
smooth map µ : M → t∗, called a momentum map for the action, such
that ιXξ

ω = −〈dµ, ξ〉 for any ξ ∈ t.

Remark 1. Note that our actions are hamiltonian in the strong
sense that µ is T-invariant (if µ has a critical point—as it does in the
compact case—this is automatic). Since T is abelian, this implies that
ω(Xξ,Xη) = 0 for any ξ, η ∈ t. We also remark that the action deter-
mines and is determined by µ up to a constant.

We shall normally be interested in the case that (M,ω, µ) has a com-
patible almost Kähler structure, i.e., a T-invariant metric g and almost
complex structure J with ω(X,Y ) = g(JX, Y ). Such compatible met-
rics always exist.

We shall make significant use of the symplectic slice theorem for T-
orbits in M , which we now recall. Let T · x be such an orbit for x ∈M .
Since T · x is isotropic with respect to ω, the isotropy representation of
Tx on TxM induces a 2(m − k)-dimensional symplectic representation
on Vx := Tx(T · x)0/Tx(T · x), where Tx(T · x)0 denotes the annihilator
with respect to ωx of Tx(T · x) in TxM . This is called the symplectic
isotropy representation.

Using the metric gx, TxM is an orthogonal direct sum of the subspaces

Tx(T · x) ∼= t/tx, JTx(T · x) ∼= (t/tx)∗ ∼= t0x, Vx

where t0x the annihilator of tx in t∗ (identified with JTx(T ·x) using ωx).

Lemma 1. Let (M,g, J, ω) be an almost Kähler manifold with an
isometric hamiltonian T-action. Fix x ∈M and a splitting χ : t → tx of
the inclusion.

Then, the action of Tx on the symplectic isotropy representation Vx

is effective, and there is a symplectic form ω0 on the normal bundle
N = T ×Tx (t0x ⊕ Vx) → T · x and a symplectomorphism f from a
neighbourhood of the zero section 0N in N to a neighbourhood of T · x
in M such that :
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• the obvious T-action on N by left multiplication is hamiltonian
with momentum map µ0([α, v]) = α + µV (v) ◦ χ, where α is an
element of the fibre belonging to t0x ⊂ t∗, and µV : Vx → t∗x is the
momentum map of the symplectic isotropy representation;

• f is T-equivariant, is equal to the bundle projection along 0N , and
its fibre derivative along 0N is the natural identification of the
vertical bundle with N .

Proof. The normal exponential map provides a T-equivariant diffeo-
morphism from a neighbourhood of 0N

∼= T · x of the normal bundle
N = T ×Tx (t0x ⊕ Vx) → T · x (with the natural T action induced by
left multiplication on T) to a neighbourhood of T · x in M ; then T acts
effectively on N while Tx acts trivially on t0x, so Tx acts effectively on
Vx.

The chosen projection χ : t → tx identifies the normal bundle N with
the symplectic quotient of T ∗T×Vx, by the diagonal action of Tx (since
T ∗T ∼= T × t∗). The induced symplectic form is T-invariant with the
given momentum map.

The pullback of ω by the normal exponential map gives another sym-
plectic form ω1 on a neighbourhood of 0N in N , agreeing with ω0 along
0N (ω1 and ω0 both equal ωx at T(x,0)N ∼= TxM). By the equivari-
ant relative Darboux theorem, there is a T-equivariant diffeomorphism
h of N fixing 0N , with dh = Id there, and such that h∗ω1 = ω0 on
a neighbourhood U of 0N in N . Then, f = exp ◦h is the equivariant
symplectomorphism we seek. q.e.d.

This result easily generalizes to orbifolds—see [28, Lemma 3.5 and
Remark 3.7].

1.2. Toric manifolds and orbifolds. A connected 2m-dimensional
symplectic manifold or orbifold (M,ω) is said to be toric if it is equipped
with an effective hamiltonian action of an m-torus T with momentum
map µ : M → t∗. Compact toric symplectic manifolds were classified
by Delzant [13], and this classification was extended to orbifolds by
Lerman–Tolman [28]. Essentially, they are classified by the image of the
momentum map µ, which is a compact convex polytope in t∗, but this
statement requires some interpretation, particularly in the orbifold case.

Definition 2. Let t be an m-dimensional real vector space. Then,
a rational Delzant polytope (∆,Λ, u1, . . . un) in t∗ is a compact convex
polytope ∆ ⊂ t∗ equipped with normals belonging to a lattice Λ in t

(5) uj ∈ Λ ⊂ t
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(j = 1, . . . n, n > m) such that

∆ = {x ∈ t∗ : Lj(x) ≥ 0, j = 1, . . . n}(6)

Lj(x) = 〈uj , x〉 + λjwith

for some λ1, . . . λn ∈ R, and such that for any vertex x ∈ ∆, the uj with
Lj(x) = 0 form a basis for t. If the normals form a basis for Λ at each
vertex, then ∆ is said to be integral, or simply a Delzant polytope.

The term rational refers to the fact that the normals span an m-
dimensional vector space over Q. A rational Delzant polytope is ob-
viously m-valent, i.e., m codimension one faces and m edges meet at
each vertex: by (6) the codimension one faces F1, . . . Fn are given by
Fj = ∆ ∩ {x ∈ t∗ : Lj(x) = 0}, so that uj is an inward normal vector
to Fj . In the integral case, the uj are necessarily primitive, and so are
uniquely determined by (∆,Λ). In general, the primitive inward nor-
mals are uj/mj for some positive integer labelling mj of the codimension
one faces Fj , so rational Delzant polytopes are also called labelled poly-
topes [28]. However, it turns out to be more convenient to encode the
labelling in the normals. Note that λ1, . . . λn are uniquely determined
by (∆,Λ, u1, . . . un).

The rational Delzant theorem [13, 28] states that compact toric sym-
plectic orbifolds are classified (up to equivariant symplectomorphism)
by rational Delzant polytopes (with manifolds corresponding to inte-
gral Delzant polytopes). Given such a polytope, (M,ω) is obtained as
a symplectic quotient of Cn by an (n −m)-dimensional subgroup G of
the standard n-torus (S1)n = Rn/2πZn: precisely, G is the kernel of the
map (S1)n → T = t/2πΛ induced by the map (x1, . . . xn) �→∑n

j=1 xjuj

from Rn to t, and the momentum level for the symplectic quotient is
the image in g∗ of (λ1, . . . λn) ∈ Rn∗ under the transpose of the natural
inclusion of the Lie algebra g in Rn.

Conversely, a toric symplectic orbifold gives rise to a rational Delzant
polytope as the image ∆ of its momentum map µ, where Λ is the lattice
of circle subgroups, and the positive integer labelling mj of the codimen-
sion one faces Fj is determined by the fact that the local uniformizing
group of every point in µ−1(F 0

j ) is Z/mjZ. (Here, and elsewhere, for
any face F , we denote by F 0 its interior.)

Remark 2. Toric symplectic manifolds and orbifolds are simply con-
nected (as topological spaces—the inverse image of the union of the faces
meeting a given vertex is contractible, and the complement has codimen-
sion two). However, one can consider orbifold coverings and quotients:
a compact convex polytope with chosen normals (giving a basis for t at
each vertex) is a rational Delzant polytope with respect to any lattice
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satisfying (5). In particular, if Λ is a (finite index) sublattice of Λ′, then
the torus T′ = t/2πΛ′ is the quotient of T = t/2πΛ by a finite abelian
group Γ ∼= Λ′/Λ. The corresponding toric symplectic orbifolds M and
M ′ (under the tori T and T′) are related by a regular orbifold covering:
M ′ = M/Γ.

Clearly there is a ‘smallest’ lattice Λ satisfying (5), namely the lat-
tice generated by the normals u1, . . . un. This is a sublattice of any
other lattice Λ′ with uj ∈ Λ′, so any toric symplectic orbifold M ′, cor-
responding to such a Λ′, is a quotient of the toric symplectic orbifold
M (corresponding to Λ) by a finite abelian group Γ.

In fact, M is the universal orbifold cover of M ′ in the sense of [33].
One may also characterize Λ as the unique lattice containing u1, . . . un

for which G is connected, i.e., M is a symplectic quotient of Cn by a
(n−m)-subtorus of (S1)n.

1.3. Compatible Kähler metrics: local theory. We turn now to
the study of compatible Kähler metrics on toric symplectic orbifolds. On
the union M0 := µ−1(∆0) of the generic orbits, such metrics have an
explicit description due to Guillemin [16, 17]. Orthogonal to the orbits
is a rank m distribution spanned by commuting holomorphic vector
fields JXξ for ξ ∈ t. Hence, there is a function t : M0 → t/2πΛ, defined
up to an additive constant, such that dt(JXξ) = 0 and dt(Xξ) = ξ for
ξ ∈ t. The components of t are ‘angular variables’, complementary to
the components of the momentum map µ : M0 → t∗, and the symplectic
form in these coordinates is simply

(7) ω = 〈dµ ∧ dt〉,
where the angle brackets denote contraction of t and t∗.

These coordinates identify each tangent space with t ⊕ t∗, so any
T-invariant ω-compatible almost Kähler metric is given by

(8) g = 〈dµ,G, dµ〉 + 〈dt,H, dt〉,
where G is a positive definite S2t-valued function on ∆0, H is its inverse
in S2t∗—observe that G and H define mutually inverse linear maps
t∗ → t and t → t∗ at each point—and 〈·, ·, ·〉 denotes the pointwise
contraction t∗×S2t×t∗ → R or the dual contraction. The corresponding
almost complex structure is defined by

(9) Jdt = −〈G, dµ〉
from which it follows that J is integrable if and only if G is the hessian
of a function on ∆0 [16].
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Remark 3. The description of T-invariant ω-compatible Kähler met-
rics on M0 shows that they are parameterized by functions on ∆0 with
positive definite hessian. There is a subtle point here, however, which is
often overlooked in the literature, namely that the angular coordinates
t depend on the (lagrangian) orthogonal distribution to the T-orbits in
M0, and there is no reason for two metrics to have the same orthogo-
nal distribution. This is not a problem on M0, since the obvious map
sending one set of angular coordinates to another is an equivariant sym-
plectomorphism, but this symplectomorphism may not extend to M .

The Delzant construction realizes (M,ω) as a symplectic quotient of
Cn, so there is an obvious choice of a ‘canonical’ compatible Kähler
metric g0, namely the one induced by the flat metric on Cn. An explicit
formula for this Kähler metric in symplectic coordinates was obtained
by Guillemin [16], and extended to the orbifold case by Abreu [1]: on
M0, the canonical metric is given by (8) with G equal to

(10)
1
2
Hess

 n∑
j=1

Lj(µ) log |Lj(µ)|
 =

1
2

n∑
j=1

uj ⊗ uj

Lj(µ)
.

Hence, the induced metric on ∆0 is 1
2

∑n
j=1 d(Lj)2/Lj . (See also [11].)

1.4. Compatible Kähler metrics: compactification. On any com-
pact toric symplectic manifold or orbifold, the canonical metric g0 is
globally defined on M—by construction. The study of other globally
defined Kähler metrics is greatly facilitated by the following elementary
lemma (see also [2] and Remark 4(ii) below).

Lemma 2. Let (M,ω) be a toric symplectic 2m-manifold or orb-
ifold with momentum map µ : M → ∆ ⊂ t∗, and suppose that (g0, J0),
(g, J) are compatible almost Kähler metrics on M0 = µ−1(∆0) of the
form (8)–(9), given by G0,G and the same angular coordinates, and
such that (g0, J0) extends to an almost Kähler metric on M . Then,
(g, J) extends to an almost Kähler metric on M provided that

G− G0 is smooth on ∆,(11)

G0HG0 − G0 is smooth on ∆.(12)

Proof of Lemma 2. The key point is that it suffices to show g is smooth
on M : it will then be non-degenerate because it is compatible with
ω (equivalently if J extends smoothly to M , it is an almost complex
structure on M by continuity). For the smoothness of g, we simply
compute the difference

g − g0 = 〈dµ,G − G0, dµ〉 + 〈dt,H − H0, dt〉
= 〈dµ,G − G0, dµ〉 + 〈J0dµ,G0HG0 − G0, J0dµ〉.
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Now µ, g0 and J0 are smooth on M , hence so is g by (11)–(12). q.e.d.

Remark 4.
(i) We use here the fact that any T-invariant smooth function on M

is the pullback by µ of a smooth function on ∆ (this follows from
the symplectic slice theorem and [31]: see [28]).

(ii) For generators Xξ,Xη of the T-action, g0(Xξ,Xη) is a T-invariant
smooth function on M , hence the pullback of a smooth function on
∆. Thus H0 is a smooth S2t∗-valued function on ∆ (degenerating
on ∂∆). Condition (11) thus implies that H0G is smooth on ∆.
We claim that in the presence of (11), (12) is equivalent to H0G
being non-degenerate on ∆. Indeed, if H0G is non-degenerate, its
inverse HG0 is smooth on ∆; now composing G−G0 on the right
by this, we obtain (12). Conversely, multiplying by H0, we deduce
from (12) that HG0 is smooth on ∆, so H0G is non-degenerate.

(iii) According to Abreu [2, 1], when g0 is the canonical (Guillemin)
metric on (M,ω), these conditions are not only sufficient but nec-
essary for the compactification of g. However, in our view there
are some shortcomings in his (rather sketchy) proof. In particu-
lar, he does not address the issue of the dependence of the angular
coordinates on the metric (see Remark 3). The following lemma
partially resolves this issue. For a complete resolution, see Re-
mark 5 below.

Lemma 3. Let (M,ω) be a compact toric symplectic manifold with
two compatible almost Kähler metrics which induce the same S2t-valued
function G on the interior of the Delzant polytope. Then, there is an
equivariant symplectomorphism of M sending one metric to the other.

Proof. By Remark 3, such a symplectomorphism exists on M0. It
extends uniquely to M , since M0 is dense and (M,g) is a complete.
The extension is a distance isometry by continuity, and is therefore
smooth by a standard argument. q.e.d.

Note that this lemma makes essential use of the completeness of
(M,g). It can, however, be extended to compact orbifolds, for instance
by lifting the distance isometry to compatible uniformizing charts.

On the other hand, we learn nothing about the dependence of the
angular coordinates on metrics which induce different S2t-valued func-
tions on the interior of the Delzant polytope. We shall therefore es-
tablish precise necessary and sufficient compactification conditions by a
self-contained argument. Our proof also has the merit of being elemen-
tary and, modulo the above lemma, local, in contrast to [2, 1], where
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the existence of a global biholomorphism is used. Indeed, compactifi-
cation is about boundary conditions, so it is a local question. We shall
present these boundary conditions in a form more closely analogous to
the well-known conditions in complex dimension one. As a warm-up for
the rest of the subsections, we first recall this case.

Let (M,ω) be a compact toric symplectic 2-orbifold. This must be
an orbifold 2-sphere (i.e., equivariantly homeomorphic to CP 1 with the
standard circle action, but the two fixed points may be orbifold singu-
larities), equipped with a rotation invariant area form. On M0, which
is diffeomorphic to C×, a compatible Kähler metric takes the form

(13) g =
dµ2

Θ(µ)
+ Θ(µ)dt2,

where ω = dµ∧dt. The rational Delzant polytope is an interval [α, β] ∈
t∗ with normals uα, uβ ∈ t. If we identify a generator of the lattice Λ
in t with 1 ∈ R (chosen so that uα is positive), then t : M0 → t/2πΛ
becomes a coordinate of period 2π, and the orbifold singularities have
cone angles 2π/mα, 2π/mβ where mα = uα,mβ = −uβ ∈ Z+.

Since Θ(µ) is the norm squared of the Killing vector field, Θ is smooth
on [α, β], positive on the interior, and zero at the endpoints. On the
other hand, µ is a Morse function (i.e., the two critical points are non-
degenerate—this follows easily using a symplectic slice) and ddcµ =
Θ′(µ)ω, so that Θ′(α) and Θ′(β) are non-zero.

Now, let Û ⊂ R2 be an orbifold chart covering an S1-invariant neigh-
bourhood U = Û/Zmα of µ−1(α), where Zmα acts in the standard way
on R2 and the covering map π sends 0 to µ−1(α). The S1-action on U

lifts to one on Û , fixing 0 and commuting with Zmα . Now, t̂ = t ◦π/mα

is a coordinate of period 2π on Û \ {0} while µ̂ = mα(µ ◦ π) is the mo-
mentum map of the S1 action on Û , with respect to ω̂ = dµ̂∧dt̂ = π∗ω.
The pull back of g to Û \ {0} is

ĝ =
dµ̂2

m2
αΘ(µ̂/mα)

+m2
αΘ(µ̂/mα)dt̂2.

If this metric compactifies smoothly at 0, we must have mαΘ′(α) = 2
(see [21]). With an analogous argument at µ−1(β), we deduce that
uαΘ′(α) = 2 = uβΘ′(β).

To show that these conditions are sufficient for the smooth exten-
sion of g (in the orbifold sense) to M , we put r2/2 = µ − α and let
t have period 2π/mα. Since Θ(α) = 0, g differs from a multiple of
g0 = dr2 + 1

4Θ′(α)2r2dt2 by a smooth bilinear form on M , vanishing at
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µ = α. Clearly, the condition Θ′(α) = 2/mα provides a smooth (orb-
ifold) extension of g0 to µ−1(α) by considering (r, t/mα) to be the polar
coordinates in a uniformising chart. The other endpoint is analogous.

To summarize, g given by (13) is globally defined on a toric orbifold
whose rational Delzant polytope is [α, β] ⊂ t∗, with normals uα, uβ ∈ t,
if and only if Θ smooth on [α, β], with

Θ(α) = 0 = Θ(β),(14)

Θ′(α)uα = 2 = Θ′(β)uβ

and Θ positive on (α, β). The derivative conditions make invariant
sense, since Θ takes values in (t∗)2, so its derivative takes values in t∗.
Also note that the conditions are manifestly independent of the choice
of lattice (as they should be).

In order to generalize this criterion to the case m > 1, we introduce
some notation. For any face F ⊂ ∆, we denote by tF ⊂ t, the vector
subspace spanned by the inward normals uj ∈ t to all codimension
one faces of ∆, containing F ; thus the codimension of tF equals the
dimension of F . Furthermore, the annihilator t0F of tF in t∗ is naturally
identified with (t/tF )∗.

Proposition 1. Let (M,ω) be a compact toric symplectic 2m-mani-
fold or orbifold with momentum map µ : M → ∆ ⊂ t∗ and H be a
positive definite S2t∗-valued function on ∆0. Then, H comes from a
T-invariant, ω-compatible almost Kähler metric g via (8) if and only if
it satisfies the following conditions:

• [smoothness] H is the restriction to ∆0 of a smooth S2t∗-valued
function on ∆;

• [boundary values] for any point y on the codimension one face
Fj ⊂ ∆ with inward normal uj, we have

(15) Hy(uj , ·) = 0 and (dH)y(uj, uj) = 2uj ,

where the differential dH is viewed as a smooth S2t∗ ⊗ t-valued
function on ∆;

• [positivity] for any point y in interior of a face F ⊆ ∆, Hy(·, ·) is
positive definite when viewed as a smooth function with values in
S2(t/tF )∗.

Proof. We first prove the necessity of these conditions. Let (M,ω, µ)
be a compact toric symplectic orbifold with polytope ∆, and (g, J)
a compatible Kähler metric. For any x ∈ M and ξ, η ∈ t, we put
Hµ(x)(ξ, η) = gx(Xξ ,Xη). Clearly, H is an S2t∗-valued function on ∆
and the smoothness and positivity properties follow immediately from
the definition.
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It remains to establish the boundary values (15) for y = µ(x) in a
codimension one face Fj . The vanishing of Hy(uj , ·) = 0 is immediate
from the definition (the Killing vector field corresponding to uj vanishes
on µ−1(Fj)). This implies in particular that dHy(uj , uj) is proportional
to uj . To obtain the correct constant, we use a symplectic slice, as in
Lemma 1, to pullback the metric g to the normal bundle N of the orbit
T · x for a point x ∈ M with µ(x) = y, and restrict to the symplectic
isotropy representation Vx. By construction, the Killing vector field cor-
responding to uj induces the generator X of the standard circle action
on Vx, and the metric induced by g agrees to first order at 0 with the
constant metric g0 given by gx. It is now straightforward to check that
the constant is 2 (indeed, (Vx, g0, ω0) is a toric Kähler 2-orbifold, so we
have already computed this above).

Now, we explain why the given conditions are sufficient to conclude
H that comes from a smooth compatible metric on (M,ω).

We know that the function H0 = G0
−1, with G0 defined by (10), does

correspond to a globally defined invariant Kähler metric on (M,ω) (and
so it satisfies the given conditions, as one can easily check directly). By
virtue of Lemma 2, it is enough to show that for any H = G−1 satisfying
the given conditions, the sufficient conditions (11)–(12) are satisfied. As
explained in Remark 4, we have to check that both HG0 and G − G0

are smoothly extendable about each point y0 ∈ ∂∆. We shall establish
this by a straightforward argument using Taylor’s Theorem.

Suppose that y0 belongs to the interior of a k-dimensional face F of
∆. Let us choose a vertex of F . Since ∆ is a rational Delzant polytope,
the affine functions Li(y) = 〈ui, y〉+λi which vanish at this vertex form
a coordinate system on ∆. By reordering the inward normals u1, . . . un,
we can suppose that these coordinate functions are L1(y), . . . Lm(y) (so
u1, . . . um form a basis for t) and that L1(y), . . . Lm−k(y) vanish on F (so
u1, . . . um−k span tF ). We set yi = Li(y)−Li(y0) for i = 1, . . . m. These
functions also form a coordinate system on ∆, with y0 corresponding to
the origin, and y1, . . . ym−k vanish on F .

We now let Hij(y) = Hy(ui, uj) and let (Gij(y)) be the inverse ma-
trix to (Hij(y)) (which is the matrix of G with respect to the dual
basis). Similarly, we define inverse matrices (H0

ij(y)) and (G0
ij(y)). The

conditions (i)–(iii) imply:

• Hij(y) are smooth functions on ∆;
• on any codimension one face Fi containing F (with inward normal
ui, i = 1, . . . m− k), we have

(16)
Hij(y) = Hji(y) = 0 for all j = 1, . . . m and ∂Hii/∂yi = 2;
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• the matrix (Hij(y))mi,j=m−k+1 is positive definite on the interior of
F ;

We conclude from (16) that for i = 1, . . . m−k, Hij(y) = Hji(y) = O(yi)
(for all j = 1, . . . m) and Hii(y) = 2yi(1 + O(yi)), where O(yi) denotes
the product of yi with a smooth function of y.

Putting these conditions together, we then have:

Hij(y) = 2yiδij + yiyjFij(y) for i, j = 1, . . . m− k

Hij(y) = yiFij(y) for i = 1, . . . m− k

and j = m− k + 1, . . . m,

where Fij are smooth functions. (Recall also that Hij = Hji.)
It follows that det(Hij(y)) = 2m−ky1y2 · · · ym−kP (y) where the func-

tion P (y) = det(Hij(y))mi,j=m−k+1 +O(y1)+O(y2)+ · · ·O(ym−k) is pos-
itive at the origin. Since the same holds for H0

ij(y), it follows that
det(Hij(y))/det(H0

ij(y)) can be extended to the origin as a smooth and
positive function.

On the other hand, Gpq(y) is the determinant of a cofactor matrix of
(Hij(y)) divided by det(Hij(y)). This will be smooth if the determinant
of the cofactor is O(yi) for each i = 1, . . . m − k. We see that this is
true unless 1 ≤ p = q ≤ m − k, in which case, we obtain Gpp(y) =
(1 +O(yp))/2yp. The same holds for G0

pq(y).
We deduce that G− G0 is smooth at y0, and hence H0G is smooth

at y0. Since it is non-degenerate there, its inverse HG0 is also smooth.
q.e.d.

Remark 5. By continuity, it suffices that the boundary conditions
(15) hold on the interior of the codimension one faces. However, they
and their tangential derivatives imply that for a point y on any face
F ⊂ ∆, we have

(17) Hy(uj, ·) = 0 and (dH)y(uj , uk) = 2δjkuj

for any inward normals uj , uk in tF .
The proof also shows that any H satisfying the given conditions de-

fines an ω-compatible almost Kähler metric on M with the same angular
coordinates as the Guillemin metric. Using Lemma 3, this shows that
the group of equivariant symplectomorphisms of M acts transitively on
the set of angular coordinates on M0 which come from ω-compatible
almost Kähler metrics on M . It also follows that the conditions (11)–
(12) in Lemma 2 are necessary as well as sufficient. When g0 is the
Guillemin metric, this agrees with [1, Theorem 2].
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1.5. Toric complex manifolds and orbifolds. We now turn briefly
to the complex point of view on toric Kähler manifolds and orbifolds.
Given a rational Delzant polytope (∆,Λ, u1, . . . un), we obtain a complex
subgroup Gc of (C×)n as the complexification of G. The relation be-
tween complex quotients and symplectic quotients then shows [6, 16, 22]
that the canonical complex structure on the toric symplectic orbifold
(M,ω) constructed from ∆ is equivariantly biholomorphic to the quo-
tient by Gc of a dense open subset Cn

s of Cn given by

(18) Cn
s =

⋃
F Cn

F , Cn
F = {(z1, . . . zn) ∈ Cn : zj = 0

iff Lj(x) = 0 for x ∈ F 0}.
Thus, Cn

s is Cn with the coordinate subspaces removed that do not cor-
respond to faces of ∆. Observe that the complex quotient only depends
on the inward normals (which determine Gc) and the combinatorics of
the faces (which determine Cn

s ), i.e., by specifying which sets of codimen-
sion one faces have non-empty intersection. These data can be encoded
in a family of convex simplicial cones called a fan.

Furthermore, any T-invariant ω-compatible complex structure on M
is equivariantly biholomorphic to the standard one (see [28] for the
result in the general orbifold case). Of course, this biholomorphism
does not preserve ω in general. Thus, two toric Kähler manifolds (or
orbifolds) are equivariantly biholomorphic if and only if they have the
same fan.
1.6. Restricted toric manifolds. Toric Kähler manifolds can be used
to provide examples of Kähler manifolds with non-toric isometric hamil-
tonian torus actions simply by restricting the action to a subtorus.
These torus actions can be surprisingly complicated in general. How-
ever, the subtori generated by a subset of the normals to the Delzant
polytope have much simpler actions.

Example 1. We can illustrate this in the simplest non-trivial case
of S1 actions on CP 2, which is toric under the action of T ∼= S1 × S1

given by (λ1, λ2) : [z0, z1, z2] �→ [z0, λ1z1, λ2z2]. The ‘tame’ S1 subgroups
generated by the normals are given by λ1 = 0, λ2 = 0 or λ1 = λ2. The
momentum map of the S1 action is then the projection of the momentum
map of T along the corresponding face of the Delzant polytope ∆ (which
is a simplex). The momentum map of ‘wild’ S1 subgroups, such as
λ1 = λ2, λ2 = λ3, are given by more general projections. We wish to
draw attention to two distinctions between these two types of S1 action.

(i) For tame actions, the momentum map of the S1 action has no
critical values on the interior of the momentum interval, whereas
for wild actions it does.
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(ii) For tame actions, the orbits of the complexified action (of C×)
have smooth closures, whereas for wild actions, they do not—for
instance, they are singular cubics for the case λ1 = λ2, λ2 = λ3.

Momentum levels Images of complex orbits

Momentum levels Images of complex orbits

A wild circle action on the projective plane

A tame circle action on the projective plane

Figure 1. Circle actions on CP 2.

The blow up of CP 2 at a point is the first Hirzebruch surface F1 =
P (O⊕O(1)) → CP 1. If this point is one of the three fixed points of the
T-action corresponding to a vertex of ∆, then the standard fibrewise S1

action on F1 descends to the tame S1 action on CP 2 corresponding to
the opposite edge. Thus, a tame S1 action realises CP 2 as the blowdown
of a toric bundle (of projective lines) over CP 1.

We generalize this by considering torus actions on blowdowns of toric
bundles (with fibre any toric Kähler manifold) over a product of complex
projective spaces.

Let V be a toric Kähler 2�-manifold, under a torus T, with Delzant
polytope ∆. By the Delzant construction V is (T-equivariantly sym-
plectomorphic to) a symplectic quotient of Cn by an n− � dimensional
subgroup G of the standard n-torus Tn (with T = Tn/G). From Sec-
tion 1.5, V is also (Tc-equivariantly biholomorphic to) the holomorphic
quotient Cn

s/G
c, where Cn

s is the set of stable points in Cn.
Given integers d1, . . . dn ≥ 0, there are now two constructions we can

make.
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(i) Let CD = Cd1+1 × Cd2+1 × · · ·Cdn+1. Then, we have a block
diagonal action of Tn on CD as a subtorus of the standard torus TD:
the ith circle in Tn acts by scalar multiplication on Cdi+1 and trivially
on the other factors. Since G is a subtorus of Tn, we can form the
symplectic quotient of CD by G and this will be diffeomorphic to the
stable quotient by Gc. Let us denote the corresponding manifold by M .

The standard Kähler structure on CD can be written in block diagonal
momentum coordinates (x1, . . . xn) of Tn as

g̃0 =
n∑

j=1

(
xjgj +

dx2
j

2xj
+ 2xjθ

2
j

)

ω̃ =
n∑

j=1

(
xjωj + dxj ∧ θj

)
, dθj = ωj

where xj = r2j/2, for the radial coordinate rj on Cdj+1, and gj is the
Fubini–Study metric on CP dj , normalized so that θj is the connection
1-form of the Hopf fibration and 1

2gj +θ2
j is the round metric on the unit

sphere S2dj+1: we obtain the flat metric in spherical polar coordinates
on each Cdj+1 factor by substituting xj = r2j/2.

This induces a Kähler structure on M by writing the momentum
coordinates xj = Lj(µ) of Tn in terms of the momentum map µ of
T, where L1, . . . Ln are the affine functions defining ∆. The resulting
Kähler metric, in the notation of Section 1.3, is

g′0 =
n∑

j=1

Lj(µ)gj + 〈dµ,G0, dµ〉 + 〈θ,H0,θ〉,(19)

ω′ =
n∑

j=1

Lj(µ)ωj + 〈dµ ∧ θ〉, dθ =
n∑

j=1

ωj ⊗ uj

with G0 given by (10) and H0 is inverse to G0. This reduces to the
canonical toric Kähler structure on V when dj = 0 for all j.

Our aim is to show that there is a compatible Kähler structure on
M generalizing the given toric Kähler structure of V, which is deter-
mined by an arbitrary matrix H satisfying the necessary and sufficient
compactification conditions of Proposition 1. To do this, and to un-
derstand better the holomorphic geometry of M , we consider another
construction.

(ii) Let M̃ =
⊕n

j=1 O(−1)j →
∏n

j=1 CP dj , where O(−1)j = O(0, . . . 0,
−1, 0, . . . 0) is the line bundle which is O(−1) over CP dj and trivial over
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the other factors. Let M̃0 =
∏n

j=1 O(−1)×j be the associated holomor-
phic principal (C×)n-bundle (given by removing the zero section from
each line bundle). Now, M̃ = M̃0 ×(C×)n Cn admits a fibre-preserving
holomorphic action of (C×)n.

Since G is a subtorus of Tn, we can form the holomorphic stable quo-
tient of M̃ by Gc to obtain a complex manifold M̂ . We see immediately
that M̂ = M0 ×Tc V where M0 = M̃0/Gc. Thus, M̂ is a bundle of toric
complex manifolds.

It is easy to see how constructions (i) and (ii) are related, since
O(−1) → CP dj is the blow-up of Cdj+1 at the origin, so that M̃ is
(equivariantly biholomorphic to) the blow-up of CD =

∏
j Cdj+1 along

the union over j of the coordinate subspaces with zero in the jth factor.
The stable quotients of M̃ and CD that we consider are related by this
blow-up (by construction), and so M̂ is (equivariantly biholomorphic
to) a blow-up of M .

The Kähler structure (19) on M therefore pulls back to give a Kähler
structure on M̂ , except that the metric and symplectic form degenerate
on the exceptional divisor. Again by construction, this induces the
canonical toric Kähler structure of V on each fibre of M̂ .

Let G = H−1 be the matrices inducing the given toric Kähler struc-
ture on V. Then, we obtain a new Kähler structure on M̂ , degenerating
on the exceptional divisor and inducing the given toric Kähler structure
on each fibre:

g′ =
n∑

j=1

Lj(µ)gj + 〈dµ,G, dµ〉 + 〈θ,H,θ〉,(20)

ω′ =
n∑

j=1

Lj(µ)ωj + 〈dµ ∧ θ〉, dθ =
n∑

j=1

ωj ⊗ uj .

There is no reason a priori why this should descend to M (in partic-
ular, the complex structure is different). Nevertheless, it does, because
of the strong control over the boundary behaviour of H given by Propo-
sition 1.

Proposition 2. The degenerate Kähler structure (20) on M̂ descends
to give a (non-degenerate) Kähler structure on M .

Proof. We know that (19) is globally defined smooth Kähler structure
on M . We shall show that (20) defines a compatible Kähler metric on
the same symplectic manifold (with the same angular coordinates). For
this, it suffices to show that the difference g′−g′0 is smooth on M . How-
ever, since the compatible Kähler metrics defined on V by H and H0 are
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smooth, Proposition 1 and Remark 5 show that G−G0 and G0HG0−
G0 are smooth functions on the Delzant polytope ∆ of V. Now, the
momentum map µ on (M,ω′) is smooth, with image ∆. It therefore
follows, as in the proof of Lemma 2, that g′ − g′0 is smooth. q.e.d.

2. Rigid hamiltonian torus actions

In this section, we introduce the notion of a rigid hamiltonian torus
action. Toric Kähler manifolds automatically carry such an action: our
goal is to extend some of the rigid properties of toric Kähler manifolds
to rigid torus actions in general, and to classify them. In the first three
subsections, we study respectively the differential topology, symplectic
geometry and biholomorphism type of compact (smooth) Kähler man-
ifolds with such an action, then we combine these threads to describe
the Kähler geometry. In the final subsection, we specialize to the case
that the torus action is ‘semisimple’ and give a generalized Calabi con-
struction of all compact Kähler manifolds with a semisimple rigid torus
action.

2.1. Stratification of the momentum polytope. Before defining
the torus actions, we will consider, we establish a couple of basic facts.
We shall make essential use of the convexity theorem of Atiyah and
Guillemin–Sternberg [5, 18].

Lemma 4. Let T be a torus in the group of hamiltonian isome-
tries of a compact connected Kähler manifold (M,g, J, ω), which is the
closure of the group generated by � hamiltonian Killing vector fields
Kr = J gradg σr (r = 1, . . . �) that are independent on a dense open set.
Suppose that g(Kr,Ks) depends only on (σ1, . . . σ�) for r, s = 1, . . . �.
Then:

(i) the torus T has dimension �;
(ii) the image of the momentum map µ : M → t∗ of T is a compact

convex polytope such that µ is regular (i.e., submersive) as a map
to the interior of any of its faces.

Proof. By the Atiyah–Guillemin–Sternberg convexity theorem [5, 18],
the image of µ is a compact convex polytope ∆ in t∗, the convex hull
of the finite image I of the fixed point set of T. The momentum coor-
dinates σ = (σ1, . . . σ�) are related to µ by the natural inclusion

R� ∼= span(K1, . . . K�) ⊆ t,

which in turn gives rise to a linear projection π : t∗ → R�∗ such that
σ = π ◦ µ.
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Let us first consider the image of ∆ by π. We claim that π is injective
on I. Indeed, since K1, . . . K� generate T, the fixed point set is precisely
the set of common zeros of K1, . . . K�, and since g(Kr,Ks) depends only
on σ, the preimage of an element of π(∆), containing an element of I,
consists entirely of elements of I. Now, I is finite and the preimages of
π are convex, so each such preimage has just one point.

Second, we note that the set of regular values of σ is connected.
Indeed, the critical point set of σ in M has codimension at least two—
it is the set where the holomorphic �-vector K1,0

1 ∧· · ·∧K1,0
� vanishes—so

the set of regular points U is connected. Now, as g(Kr,Ks) depends
only on σ, the inverse image of a critical value consists entirely of critical
points, so the set of regular values is σ(U).

Third, consider the orbits of the commuting vector fields JK1, . . . JK�

—this is the gradient flow of σ, and so the orbit of any regular point
consists entirely of regular points and its boundary points are all critical.
Now, regular points map to regular values and critical points to critical
values, so by the connectivity of the regular values, all regular orbits
have the same image—and the closure is the image of σ since regular
values are dense.

These facts imply the conclusions of the lemma as follows.

(i) Suppose x is a regular point of σ and µ(x) belongs to a closed
face F of ∆. Then, the Tc orbit of x also maps to F , where Tc is the
complexification of T. Since the orbit under JK1, . . . JK� is contained
in the Tc orbit, π maps F onto Im σ. Now, π is bijective on vertices, so
F = ∆. In other words, the inverse image (under π) of a regular value
of σ meets no proper face of ∆: this clearly implies π is bijective, hence
µ = σ and dimT = �.

(ii) We have seen that the image of the closure C of any regular Tc

orbit is the whole of ∆. Atiyah [5] shows that the inverse image in C
of any open face F 0 is a single Tc-orbit and µ is a submersion from this
orbit to F 0. Since this is true for all regular orbits, and the union of
the regular orbits is dense, the claim follows. q.e.d.

Definition 3. Let (M,g, J, ω) be a connected Kähler 2m-manifold
with an effective isometric hamiltonian action of an �-torus T with mo-
mentum map µ : M → t∗. We say the action is rigid iff for all x ∈ M ,
R∗

xg depends only on µ(x), where Rx : T → T · x ⊂M is the orbit map.

In other words, for any two generators Xξ,Xη of the action (ξ, η ∈ t),
g(Xξ ,Xη) is constant on the levels of the momentum map µ. We remark
that the inverse image of a critical value of µ can be approximated (to
first order on a dense open subset) by inverse images of nearby regular
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values. Hence, it suffices to know that the generators have constant
inner products on the generic level sets of µ. Thus, part (i) of Lemma 4
implies that on a compact manifold, a local rigid torus action (as in [4])
is necessarily a global one. In particular, on a compact Kähler manifold
with a hamiltonian 2-form of order �, the associated Killing vector fields
K1, . . . K� generate a rigid �-torus action. Another example is any toric
Kähler manifold.

Part (ii) of Lemma 4 has further consequences for compact Kähler
manifolds with a rigid torus action.

Proposition 3. Suppose (M,g, J, ω) is a compact connected Kähler
manifold of dimension 2m, with a rigid hamiltonian �-torus action with
momentum map µ whose image is a compact convex polytope ∆.

(i) If F is a k-dimensional closed face (0 ≤ k ≤ �) of ∆, then
MF := µ−1(F ) is a compact totally geodesic Kähler submanifold of
M of dimension 2(mF + k) (0 ≤ mF ≤ m− �) with a rigid hamil-
tonian action of a k-torus T/TF , where TF is the intersection of
the isotropy subgroups of points in MF .

(ii) If F 0 is the interior of F , then M0
F := µ−1(F 0) ∼= F 0 × PF where

PF is a compact manifold of dimension 2mF +k with a locally free
action of T/TF . Moreover, the levels of µ are compact connected
submanifolds of M .

Proof.
(i) Let TF be the intersection of the isotropy subgroups of points

in MF . Then, the connected component of the identity in TF is an
(� − k)-dimensional subtorus of T, and MF is a connected component
of its fixed point set. Since TF acts on M effectively by hamiltonian
isometries, MF is a compact totally geodesic Kähler submanifold of M ,
of dimension at most 2m−2(�−k). By definition, MF carries an effective
hamiltonian action of T/TF (which is connected, hence a k-torus), so it
has dimension at least 2k. The momentum map is essentially µ, viewed
as a map from MF to the affine span of F , so the action is rigid.

(ii) By Lemma 4, the critical values of µ, regarded in the above
way, are precisely the boundary points of F , and µ is regular as a map
from M0

F to F 0. The gradient flow of µ commutes with T and hence,
provides an equivariant trivialization of M0

F . Thus, M0
F is diffeomorphic

to F 0 × PF and the action of T/TF is given by an effective locally free
action on PF , with trivial action on F 0. The levels of µ are smooth since
any point in the image of µ is in some open face; they are connected
by [5]. q.e.d.
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The absense of interior critical values for rigid actions shows that
‘wild’ S1 actions on CP 2 (as a symplectic manifold) of Example 1 cannot
be rigid with respect to any compatible Kähler metric.

2.2. The symplectic isotropy representations. We now wish to
obtain precise information about the symplectic isotropy representations
of the torus action. If µ(x) belongs to an open k-dimensional face F 0,
then the Lie algebra tx of the isotropy group Tx ≥ TF of x is the vector
subspace of elements of t, annihilated by the elements of the vector
subspace of t∗ parallel to F : indeed, this is clearly the image of dµx,
and tx is the kernel of the transpose of dµx.

Since the orbit T · x is k-dimensional, the symplectic isotropy repre-
sentation Vx = Tx(T · x)0/Tx(T · x) of Tx (and its Lie algebra tx) has
dimension m−k. Hence, it is an orthogonal direct sum of m−k complex
1-dimensional representations with (not necessarily distinct) characters
Tx → S1. Differentiating this action gives the weights α1, . . . αm−k of
the action of tx, which are integral elements of t∗x.

Since the tx action is effective, the weights α1, . . . αm−k span t∗x, and
we order them so that α1, . . . α�−k form a basis for t∗x.

Lemma 5. Suppose µ(x) belongs to an open k-dimensional face F 0 of
∆ and let Vx be the symplectic isotropy representation of Tx at x ∈M .

(i) The induced tx action has exactly �− k distinct non-zero weights.
(ii) Tx is connected.

Proof.
(i) We choose a projection χ : t → tx and introduce a symplectic

slice as in Lemma 1. Thus, there is a T-equivariant symplectomorphism
from a neighbourhood U of the zero section 0N in the normal bundle
N → T · x to a neighbourhood of T · x in (M,ω), where the normal
bundle N = T×Tx (t0x ⊕ Vx) → T · x is realised as a symplectic quotient
of T ∗T × Vx by the diagonal action of Tx. The symplectomorphism
identifies 0N with T · x and its differential along the zero section is
essentially the identity map. Let us denote the pullback of (g, J, ω) by
(g0, J0, ω0). We then have that g0 agrees with gx at x.

We now bring in the rigidity condition that the induced metric on
T depends only on µ. This implies that for any vector fields Xξ,Xη

(ξ, η ∈ t) induced by the action of Tx on (U, g0, J0, ω0), g0(Xξ ,Xη),
as a function on U , depends only on the momentum map µ0 of N ,
µ0([α, v]) = α+µV (v)◦χ with µV = 1

2

∑m−k
i=1 |zi|2αi, where z1, . . . zm−k

are the standard complex coordinates on the weight spaces in Vx. It
follows from [31] that (being smooth on U) g0(Xξ ,Xη) is a smooth
function of µ0. In particular, for α = 0 ∈ t0x, g0(Xξ,Xη) is a smooth
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function of µV . Thus, on Vx ∩ U , d(g0(Xξ ,Xη)) is a pointwise linear
combination of the components of

(21) dµV =
1
2

m−k∑
i=1

(zidzi + zidzi)αi.

In other words, (since it vanishes at the origin of Vx) it equals
〈dµV , B(ξ, η)〉 for a smooth bilinear form B : Vx ∩ U → S2t∗x ⊗ tx.
Now, since Xξ and Xη vanish at the origin, g0(Xξ,Xη) differs from
gx(Xξ ,Xη) =

∑m−k
i=1 αi(ξ)αi(η)|zi|2 by a smooth function vanishing to

second order at the origin, so its exterior derivative on Vx ∩U is, to first
order, equal to

(22) d(gx(Xξ,Xη)) =
m−k∑
i=1

(zidzi + zidzi)αi(ξ)αi(η).

If we differentiate d(g0(Xξ ,Xη)) = 〈dµV , B(ξ, η)〉 with respect to zi,
using (21) and (22), and evaluate at the origin of Vx, the error terms
and derivative of B go away. Equating coefficients of dz1, . . . dzm−k

therefore gives
2αi(ξ)αi(η) = αi(B0(ξ, η))

for all i, i.e., B∗
0αi = 2αi ⊗ αi. (We remark that this generalizes the

conditions (17) in the toric case.) Now, α1, . . . α�−k is a basis for t∗x, so
we may write α�−k+1, . . . αm−k as αi =

∑�−k
j=1 λijαj . We then deduce

from B∗
0αi = 2αi ⊗ αi that

λijλik = δjkλij.

Thus, for each i, λij is non-zero for at most one j, and then equal to
one, i.e., for any i = �− k+ 1, . . . m− k, the weight αi is either zero, or
it is one of α1, . . . α�−k.

(ii) We prove that all isotropy groups of the T-action are connected.
Since the gradient flow of µ commutes with T, it suffices to prove this
near a fixed point y of the T-action, where the symplectic slice gives a
T-equivariant symplectomorphism with a neighbourhood of the origin in
a symplectic vector space Vy. Now, since the T-action on Vy is effective,
with �-distinct non-zero weights, these form a basis for the dual lattice.
This ensures the isotropy groups of points in Vy are connected. q.e.d.

Part (i) of Lemma 5 is the key to the theory of rigid hamiltonian
torus actions. In particular, it allows us to refine Proposition 3.

Proposition 4. Suppose (M,g, J, ω) is a compact connected Kähler
manifold with a rigid hamiltonian �-torus action, as in Proposition 3.
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(i) If F 0 is an open k-dimensional face, then the isotropy group of all
points in M0

F is an (� − k)-torus TF , and the isotropy represen-
tations are all equivalent, with the distinct non-zero weights in t∗F
forming a basis for the lattice dual to the lattice of circle subgroups
of tF .

(ii) The image ∆ of µ is a Delzant polytope.
(iii) PF is a principal k-torus bundle (under T/TF ) over a compact

manifold SF of dimension 2mF , with a family of Kähler structures
parameterized by F 0.

Proof.

(i) This is immediate from Lemma 5: the distinct non-zero weights
form a basis for tF , the Lie algebra of the (connected) isotropy group of
any point in M0

F .
(ii) Applying this to a fixed point, observe that the directions of the

distinct non-zero weights are the edges meeting the corresponding vertex
of ∆. There are � of these and the dual basis gives a basis for the lattice
of circle subgroups of T consisting of normals to the faces meeting the
vertex.

(iii) By Proposition 3, PF has a locally free action of T/TF , and
by Lemma 5, the isotropy groups are connected, so the action is free.
Hence, PF is a principal T/TF bundle over a compact manifold SF .
Choosing a point v in F 0 identifies SF with the Kähler quotient of MF

at momentum level v. q.e.d.

2.3. The complexified torus action. We now turn to the structure of
the orbits of the complexified torus action. If the T action is generated
by vector fields K1, . . . K�, then the complexified action of Tc is gen-
erated by the (real) holomorphic vector fields K1, . . . K�, JK1, . . . JK�.
These are linearly independent on a dense open set (since the T ac-
tion is hamiltonian) and generate a foliation of M by complex orbits,
whose generic leaf is 2�-dimensional. As we have already remarked in
Section 2.1, JK1, . . . JK� generate the gradient flow of µ, and therefore
the momentum image of a 2k-dimensional leaf is a k-dimensional open
face F 0 of ∆; the isotropy group of any point in this leaf is the com-
plexification Tc

F of TF and the closure (in M) of the leaf maps onto the
closed face F .

To understand the complex orbits further, we reinterpret Vx as the
fibre of the normal bundle to Tc · x at x, carrying the complex isotropy
representation, and we linearize the Tc action using a holomorphic slice
rather than a symplectic one.
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In general, let G be a compact Lie group of hamiltonian isometries
of a Kähler manifold M , and let Gc be the complexification, which
acts holomorphically on M . Then, the holomorphic slice theorem [19,
30] states that if Gc · x is the orbit through x ∈ M with isotropy
representation (Gc

x, Vx), then there is a Gc-equivariant biholomorphism
from a neighbourhood of Gc · x in M to a neighbourhood of the zero
section in Gc ×Gc

x
Vx → Gc · x.

Remark 6. For many purposes, it suffices to know that a neighbour-
hood of x is locally Gc-equivariantly biholomorphic to a neighbourhood
of the zero section in Gc ×Gc

x
Vx. This is quite easy to establish. Indeed,

let ψ : U → M be a holomorphic chart with ψ(0) = x and dψ0 = Id,
where U is an open neighbourhood of the origin in TxM . We can as-
sume U and ψ are Gx-equivariant by averaging, since Gx is compact.
Now, by acting with G, we obtain a G-equivariant biholomorphism ψ̃
from a neighbourhood Ũ of G · x in M to a neighbourhood of the zero
section in G×Gx Ṽx → G · x. Here, Ṽx is the orthogonal complement of
Tx(G · x): note Ṽx = Vx ⊕Wx where Vx is the orthogonal complement
of Tx(Gc · x), and Wx = JTx(G · x).

Now, since ψ̃ is holomorphic and G-equivariant, it is (locally) Gc-
equivariant. This is only a local result, because the domain Ũ is a priori
only G-invariant, not Gc-invariant. The hard part of the holomorphic
slice theorem is to show such a ‘local’ slice can be analytically continued
to a Gc-invariant neighbourhood of Gc · x.

Lemma 6. Suppose µ(x) belongs to an open k-dimensional face F 0 of
∆ and let Tc

1,T
c
2, . . .T

c
�−k be the complexifications of the circle subgroups

of the isotropy subgroup TF dual to the basis of distinct non-zero weights
in the symplectic isotropy representation of TF .

Then, Tc
F = Tc

1 × · · · ×Tc
�−k and there is a Tc-equivariant biholomor-

phism from a neighbourhood U of Tc · x in M to a neighbourhood W of
the zero section in

Tc ×Tc
F

(
V0 ⊕ V1 ⊕ · · · ⊕ V�−k

)→ Tc/Tc
F

where V0 is the trivial representation (possibly zero), while for i =
1, . . . � − k, Vi is a non-zero vector space carrying the standard action
of Tc

i
∼= C× by scalar multiplication, with Tc

j acting trivially for j �= i.
Under this biholomorphism:

(i) the p-dimensional faces F ′ meeting F correspond bijectively to
(p− k)-element subsets JF ′ ⊆ {1, . . . �− k} in such a way that
• MF ′ ∩U is the intersection of W with those elements whose Vj

component vanishes for j ∈ {1, . . . �− k} � JF ′ ;
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(i) if Y is a p-dimensional complex orbit with x ∈ Y ⊆MF ′, dimF ′ =
p, then there are one dimensional subspaces of Vj for j ∈ JF ′ such
that

(23) Y ∩ U ∼= Tc ×Tc
F

⊕
j∈JF ′ Lj

under the obvious inclusion into Tc ×Tc
F

(
V0 ⊕ · · · ⊕ V�−k

)
.

Proof. By the holomorphic slice theorem, there is a Tc-equivariant
biholomorphism from a neighbourhood of Tc ·x to neighbourhood of the
zero section in Tc×Tc

F
Vx where Vx is normal to Tc ·x at x. Equivalently,

Vx is the symplectic isotropy representation of TF , now equipped with
the natural complexified action of Tc

F . By Lemma 5, the distinct non-
zero weights of the tF action on Vx are dual to a basis for the lattice
of circle subgroups of TF , and we take the Vi’s to be the weight spaces
(with V0 the zero weight space). This gives what we want.

(i) It is clear that the faces F ′ containing F correspond to subsets
JF ′ of {1, . . . � − k} with Tc

j acting non-trivially on MF ′ for j ∈ JF ′ .
The biholomorphism identifies MF ′∩U with those elements of W whose
isotropy group is contained in Tc

F ′ . Since the latter is the product of
the Tc

j for j ∈ {1, . . . �− k} � JF ′ , the result follows.

(ii) Under the biholomorpism, the complex orbits Y near Tc · x are all
of the form Tc ×Tc

F
(v0 + U1 × · · · × U�−k), where v0 ∈ V0 and either

Uj = L×
j := Lj � {0}, where Lj is a one-dimensional subspace of Vj , or

Uj = {0} ⊂ Vj .
If Y is a p-dimensional orbit in M0

F ′ , then these two cases occur
accordingly as j ∈ JF ′ or not. Clearly, x ∈ Y if and only if v0 = 0, and
then the biholomorpism identifies Y ∩ U with

⊕
j∈JF ′ Lj as stated.

q.e.d.

Lemma 6 gives a lot of information about the equivariant holomorphic
geometry of M . For instance, applying it at a fixed point gives a Tc-
equivariant chart from a neighbourhood of the fixed point to U0 + V1 ⊕
· · · ⊕ V�, where V1, . . . V� are the non-trivial weight spaces associated to
the corresponding vertex v of ∆, and U0 is a neighbourhood of the origin
in the trivial weight space V0. In the toric case, V0 = 0 and dimVj = 1
for all j, and we obtain the linear charts underlying the toric complex
manifold. In the general case, such charts provide a finite atlas, since
there are finitely many vertices v and they have compact preimages
Sv = µ−1(v).
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Proposition 5. Suppose (M,g, J, ω) is a compact connected Kähler
manifold with a rigid hamiltonian �-torus action, as in Proposition 3.

(i) The closure of a 2k-dimensional complex orbit in M is a toric
Kähler submanifold of M whose Delzant polytope is a k-dimen-
sional face F of ∆.

(ii) For any k-dimensional face F of ∆, M0
F = F 0 ×PF is a holomor-

phic principal Tc/Tc
F -bundle over a complex manifold SF .

(iii) The blow-up of MF along the inverse images of the codimension
one faces of F is equivariantly biholomorphic to the total space of
M0

F ×Tc/Tc
F
VF → SF for some smooth toric complex manifold VF .

(iv) If F is a k-dimensional face, with the (k− 1)-dimensional face F ′
in its boundary, then SF is a holomorphic CP d-bundle over SF ′

with d = mF −mF ′ ≥ 0.
Furthermore, if QF denotes the fibrewise Hopf fibration over

the CP d-bundle SF → SF ′, then PF → SF is the pullback of
PF ′ → SF ′ along the S2d+1-bundle map QF → SF ′ composed with
the S1-bundle map QF → SF .

Proof.
(i) For all x ∈M , any complex orbit has a smooth closure along Tc ·x

by Lemma 6. Hence, the closures of the complex orbits are smoothly
embedded, and become toric Kähler manifolds under the induced met-
ric. We have already remarked that µ maps any such orbit closure to
a face F of ∆, and clearly, µ, viewed as a map to the affine span of
F (with a choice of origin), is a momentum map for the induced toric
action.

(ii) For convenience, we prove this result for F = ∆: the general
result follows by replacing M with MF and Tc by Tc/Tc

F .
Since Tc acts freely on M0, it defines a holomorphic fibration over S∆.

To verify that the fibration is locally trivial, observe that a neighbour-
hood of a Tc orbit in M0 is equivariantly biholomorphic to a neighbour-
hood of the zero section in Tc×V0 → Tc. The latter, being Tc-invariant,
is of the form Tc ×U0, and the projection to U0 gives the required local
trivialization. Since Tc acts simply transitively on the fibers, M0 is a
principal Tc-bundle over S∆.

(iii) We again prove the result when the face is the whole polytope
∆.

We first consider the blow-up M̂ of M along all MF with F codi-
mension one in ∆. (Of course, the blow-up is trivial if MF already has
complex codimension one in M). Thus, M̂ is the complex manifold ob-
tained from M by replacing each MF by its projectivized normal bundle
M̂F ; these become divisors (i.e., of complex codimension one) in M̂ , and
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the Tc action lifts naturally to M̂ . Lemma 6 shows that the generic Tc

orbits for the lifted action have disjoint smooth closures in M̂ , and this
gives a holomorphic fibration of M̂ whose fibres are all toric Kähler man-
ifolds with Delzant polytope ∆. In particular (forgetting the symplectic
structure), they are all isomorphic toric complex manifolds [17, 28].

Let V∆ be a toric complex manifold in this isomorphism class, and
choose a basepoint on the generic orbit V0

∆ to identify it with Tc. Then,
there is an equivariant biholomorphism M0 ×Tc V0

∆ →M0 = M̂0 (here,
M̂0 stands for the subset of points of M̂ with generic Tc orbits; it is
the same as M0 because the blow-up is the identity on the complement
of the exceptional divisor). Since V∆ has the same isotropy representa-
tions as the fibres of M̂ , this extends to an equivariant biholomorphism
M0 ×Tc V∆ → M̂ (indeed, the holomorphic slices of Lemma 6 provide
the extension).

(iv) Consider, as in (iii), the blow-up M̂ of M along its codimension
one faces. This is equivariantly biholomorphic to M0 ×Tc V∆ and for
any face F , the inverse image M̂F of MF in M̂ is M0×TcVF (where only
Tc/Tc

F acts effectively on VF , which is the inverse image of F in V∆).
Now, V0

F is equivariantly biholomorphic to a Tc
F ′/Tc

F bundle over V0
F ′ ,

namely the punctured normal bundle of V0
F ′ in VF , so it follows that the

same is true for M̂0
F : it is equivariantly biholomorphic to the punctured

normal bundle of M̂0
F ′ in M̂F . Passing to the blow-down, we deduce

that M0
F is equivariantly biholomorphic to the punctured normal bun-

dle of M0
F ′ in MF , which is a Tc/Tc

F -equivariant bundle with Tc
F ′/Tc

F
acting by scalar multiplication on the fibres.

The quotient by Tc/Tc
F identifies SF biholomorphically with a bundle

over SF . To describe this bundle, we first divide the punctured normal
bundle of M0

F ′ by Tc
F ′/Tc

F to obtain the projectivized normal bundle
as a Tc/Tc

F ′-equivariant CP d bundle over M0
F ′ with trivial action on

the fibres. Now, the quotient by Tc/Tc
F ′ shows that SF → SF ′ is a

holomorphic CP d-bundle.
The unit normal bundle of M0

F ′ is the sphere bundle induced by
the Hopf fibtration over the projectivized normal bundle and the result
follows. q.e.d.

One can easily check that the ‘tame’ S1 actions on CP 2 given in
Example 1 are rigid with respect to the Fubini–Study metric, and the
complex orbits do indeed have smooth closures. On the other hand, we
again see that the ‘wild’ actions cannot be rigid with respect to any
compatible Kähler metric.
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2.4. Kähler geometry of rigid hamiltonian torus actions. Given
a Kähler 2m-manifold M with a rigid hamiltonian action of an �-torus
T, we have obtained a description of the equivariant biholomorphism
type of M , stratified by the inverse images of the faces of the momentum
polytope ∆: M0 is a principal Tc-bundle over a complex manifold S∆ of
dimension 2m∆, with m∆ = m−�, and there is a toric complex manifold
V∆ such that the blow up of M along the codimension one faces of ∆
is biholomorphic to M0 ×Tc V∆ → S∆; mutatis mutandis, the inverse
image MF = µ−1(F ) of a face of ∆ has the same structure; further, if
F1, . . . Fn denote the codimension one faces of ∆, then SFj has dimension
2mFj ≤ 2m∆ and S∆ is a CP dj -bundle over SFj with dj = m∆ −mFj ,
and we say a blow-down occurs over Fj if dj > 0. (We remark that if F ′
is a codimension one face of F , it must be F ∩Fj for some codimension
one face Fj of ∆. We then have mF −mF ′ = dj = m∆ −mFj .)

It remains to descibe the Kähler structure of M in terms of this equi-
variant biholomorphism type. To do that, we first recall some equivalent
formulations of the rigidity condition established (locally) in [4].

Suppose, generally, that M is a Kähler manifold endowed with an
isometric hamiltonian action of an �-torus T with momentum map µ.
For a contractible open subset U of the regular values of µ, the gradient
flow of µ identifies µ−1(U) with µ−1(v) × U for any v in U , and hence
µ−1(U)/T ∼= S × U for a complex manifold S, with a family ωh of
compatible symplectic forms on the fibres of S × U → U . We can,
therefore, define the derivative dµωh with respect to µ, and this will be
a 2-form on S with values in t. Now, µ−1(U) is a principal T-bundle
with connection over S ×U , so it has a curvature form Ω, which is also
a closed 2-form with values in t. If dµωh = Ω on S×U , we say that the
rigid Duistermaat–Heckman property holds (so-called because it holds
in cohomology by work of Duistermaat and Heckman). We then have
the following global version of [4, Proposition 8].

Lemma 7. For an isometric hamiltonian T-action, the following are
equivalent.

(i) The action is rigid.
(ii) The Tc-orbits are totally geodesic.
(iii) The orthogonal distribution to the Tc-orbits is Tc-invariant.
(iv) The rigid Duistermaat–Heckman property holds.

Proof. This is essentially the same as [4, Proposition 8]. LetX denote
a vector field which is orthogonal to a Tc-orbit. The rigidity condition
is equivalent to the statement that ∂X(g(Kr ,Ks)) = −2g(∇KrKs,X)
vanishes along the given orbit for all such vector fields X. Since J is
parallel and Ks is holomorphic, this is equivalent to the fact that the
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Tc orbit is totally geodesic. It is easy to compute that this condition
is equivalent to the fact that LKrX and LJKrX are orthogonal to the
given Tc orbit for all X, r = 1, . . . �, i.e., the orthogonal distribution is
Tc-invariant.

(iv) is equivalent to the local rigidity of the action on M0 by the
Pedersen–Poon construction (see [29, 4]); this implies rigidity on M by
continuity. q.e.d.

We next show that a compact Kähler manifold with a rigid hamil-
tonian action of a torus gives rise in a natural way to the following
data.

Definition 4. Let V be a compact toric Kähler manifold under an
�-torus T with Delzant polytope ∆. Then, rigid hamiltonian data for V
consists of a quadruple (VF , SF , PF , ωF ) for each face F of ∆, where:

(i) VF is the inverse image of F in V, which is a compact toric Kähler
manifold under T/TF , where TF is the isotropy subgroup of T

associated to F ;
(ii) SF is a compact complex manifold which is a holomorphic pro-

jective space bundle over SF ′ for any codimension one face F ′ of
F ;

(iii) π : PF → SF is a principal T/TF -bundle with connection θF : TPF

→ t/tF , whose curvature ΩF ∈ C∞(SF ,Λ1,1SF ⊗ t/tF ) pulls back
to the fibres of SF → SF ′ to give the Fubini–Study metric in
2πc1(O(1)) tensored with the (primitive inward) normal to the
codimension one face F ′;

(iv) ωF is a section of (the pullback of) Λ1,1SF over SF × F , which
• is positive on SF × F 0,
• satisfies dµωF = ΩF on SF × {v} for all v ∈ F 0,
• and whose restriction to SF ×F ′, for any codimension one face
F ′ of F , is the pullback of ωF ′ along the map SF×F ′ → S′

F×F ′.

Proposition 6. Let M be a compact connected Kähler 2m-manifold
with a rigid hamiltonian action of an �-torus T and momentum map
µ : M → ∆. Then, there are rigid hamiltonian data (VF , SF , PF , ωF )
(for the faces F of ∆) associated to a toric Kähler manifold V with
Delzant polytope ∆ such that :

• the pullback of the Kähler metric on MF = µ−1(F ) to the fibres
of the blow-up M̂F

∼= PF ×T VF (see Proposition 5) is induced by
the Kähler metric on VF ;

• SF is the Kähler quotient of MF by T/TF and the Kähler quotient
metric at momentum level v ∈ F 0 is induced by ωF on SF × {v};
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• the orthogonal distribution to the generic Tc/Tc
F orbits in MF is

the joint kernel of θF and dµ.
In particular, on M0 ∼= P∆ ×T V0

∆, the Kähler structure is given by

g = h0 + 〈µ,h〉 + 〈dµ,G, dµ〉 + 〈θ,G−1,θ〉,(24)

ω = Ω0 + d〈µ,θ〉 = Ω0 + 〈µ,Ω〉 + 〈dµ ∧ θ〉,
where ω∆ = Ω0 + 〈µ,Ω〉, h0 + 〈µ,h〉 is the corresponding family of
hermitian metrics, θ = θ∆, Ω = Ω∆, the toric Kähler metric on V0

∆ is
given by (8), for G : ∆0 → S2t, and (as before) angled brackets denote
pointwise contractions.

Proof. It suffices to prove the result for the whole polytope ∆. We
know by Propositions 4 and 5 that the blow-up M̂ is equivariantly bi-
holomorphic to M0 ×Tc V∆

∼= P∆ ×T V∆ for a toric complex manifold
V∆, and the fibres of P∆ ×T V∆ → S∆ map biholomorphically onto the
complex orbit closures in M . The Kähler metric of M induces a Kähler
structure on each complex orbit closure, which depends only on the mo-
mentum map µ. Since µ is T-invariant, there is a toric Kähler structure
on V∆, with Delzant polytope ∆, such that the fibres of P∆×TV∆, with
the metric induced from V∆, map isometrically onto the complex orbit
closures in M .

The Kähler metric on M0 induces a principal T-connection on M0 →
B∆ = S∆ × ∆0 (the orthogonal distribution to the fibres), and by
Lemma 7, this is the pullback of a principal T-connection θ on π : P∆ →
S∆. The lemma also shows that the family ω∆ of Kähler forms induced
on S∆ depends affinely on µ ∈ ∆0 and π∗dµω∆ = dθ, so the linear part
is the curvature Ω of the connection θ for all µ ∈ ∆0; ω∆ is therefore,
smoothly defined for all µ.

The Kähler form on M pulls back to the blow-up M̂ to give a 2-form
which degenerates on the exceptional divisor. Using the description of
this divisor given in Proposition 5 and the smooth dependence of the
Kähler form on µ, it follows that the Kähler form ω∆ approaches to the
pullback of ωF along S∆ → SF as µ� F 0 ⊂ F , for a codimension one
face F of ∆. We then deduce that the pullback of dµω∆ to a fibre of
S∆ → SF takes values, for µ ∈ F 0, in the annihilator tF of TµF , i.e.,
is of the form Ω ⊗ uF , where uF is the primitive inward normal to F ,
and Ω is a (1, 1)-form on SF . Since the normal bundle to the divisor
M̂F in M̂ must have degree −1 on each fibre of S∆ → SF and Ω is the
curvature of a connection on this degree −1 line bundle, we must have
[−Ω/2π] ∈ c1(O(−1)).

To show that Ω is the Fubini–Study metric in its Kähler class, we
take v ∈ F 0, the interior of a codimension one face of ∆, and construct
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a symplectic slice, as in Lemma 1, to a point x in µ−1(v) projecting
to the given fibre of S∆ → SF . Thus, a neighbourhood of T · x in
M is equivariantly symplectomorphic to a neighbourhood U of the zero
section 0N

∼= T·x of the normal bundleN = T×TF
(t0x⊕Vx) → T·x, with

the obvious T-action, and canonical symplectic form ω0. Pulling back
the Kähler structure of M , and restricting to the fibre Vx at x, gives
a Kähler metric on a neighbourhood of the origin in Vx with a rigid
hamiltonian circle action of TF and constant symplectic form. Observe
that the Kähler quotient P (Vx) of Vx �{0} by TF is a fibre of S∆ → SF .

Let z = r2/2 be half the distance squared to the origin in Vx—which
is the momentum map of the TF action contracted with uF ∈ tF . Then,
the Kähler structure on Vx may be written

g = zh+
dz2

H(z)
+H(z)θ2, ω = zΩ + dz ∧ θ,

for some function H(z), where dθ = Ω and Ω is as before, and (h,Ω)
is independent of z (the Kähler quotient depends affinely on z and de-
generates at z = 0). The vector field dual to θ generates the S1 action,
and this preserves z, so it is tangent to the level surfaces of z (which are
spheres), and generates a (topological) Hopf fibration of them. Now, z
is a function of the geodesic distance to z = 0 (the geodesic distance
is obtained by integrating 1/

√
H(z)). For smooth compactification at

z = 0, the metric on geodesic spheres must have constant curvature
when z → 0. Hence, (h,Ω) must tend to the Fubini–Study metric,
so that θ tends to the standard connection as z → 0. Since (h,Ω) is
independent of z, it is the Fubini–Study metric.

The explicit form of the metric on M0 easily follows from Lemma 7
and Proposition 6. Note that a similar formula can be established on
M0

F = µ−1(F 0) for any face F , but an origin needs to be chosen in F
so that µ|MF

can be considered to take values in (t/tF )∗ = t0F . q.e.d.

Remark 7. In the absense of blow-downs, Ω0 + 〈µ,Ω〉 is positive for
all µ in ∆, and for all F , SF = S∆, PF = P∆/TF , with the induced
Kähler metrics and connections; then the data of this proposition clearly
do define (uniquely) a Kähler metric on M with a rigid hamiltonian ac-
tion of T. However, the existence of the connection θ implies integrality
conditions on the curvature form Ω, and the compactification of the
toric Kähler metric on V∆ implies boundary conditions on G.

When there are blow-downs, it is difficult to describe the data needed
to construct the Kähler metric on M , because of the family of fibrations
SF ′ → SF : the Kähler quotient metrics are related by pullback, and the
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fibrations and pullbacks must commute. Rather than attempt this in
full generality, we restrict attention to a special case, which is all we
shall need for the application to hamiltonian 2-forms.

2.5. Semisimple actions and the generalized Calabi construc-
tion.

Definition 5. A hamiltonian torus action is semisimple if for any
regular value v of the momentum map µ, the derivative with respect
to µ of the family ωh of Kähler forms on the complex quotient S is
parallel and diagonalizable with respect to ωh at µ = v. (Observe that
S is well defined, as a complex orbifold at least, for µ in the connected
component Uv of v in the regular values, since the gradient flow of µ is
transitive on Uv.)

Integrating this condition, we deduce that on any connected com-
ponent of the regular values of µ, the corresponding Kähler quotient
metrics ωh are simultaneously diagonal with the same Levi–Civita con-
nections. Thus, for a semisimple rigid hamiltonian torus action, there is
a symplectic (1, 1)-form ΩS on S∆ such that the family of Kähler forms
induced by µ ∈ ∆0 are parallel and simultaneously diagonalizable with
respect to ΩS .

Definition 6. By generalized Calabi data of dimension m, rank �, we
mean:

(i) a 2(m − �)-dimensional product S of N ≥ 0 Kähler manifolds
(Sa,±ga,±ωa) of dimension 2ma > 0 (if � = m, N = 0);

(ii) a compact toric 2�-dimensional Kähler manifold V with Delzant
polytope ∆ ⊂ t∗ and momentum map µV : V → ∆;

(iii) a principal T-bundle P → S, with a principal connection of cur-
vature Ω ∈ C∞(S,Λ1,1S ⊗ t), where T is the �-torus acting on
V;

(iv) a (1, 1)-form Ω0 on S such that Ω0 + 〈v,Ω〉 is positive for v ∈ ∆0;
(v) constants ca0 ∈ R and ca ∈ t such that Ω0 =

∑N
a=1 ca0ωa and

Ω =
∑N

a=1 caωa;
(vi) a subset C ⊂ {1, . . . N} such that for a /∈ C, {v ∈ ∆ : ca0+〈v, ca〉 =

0} is empty, while for a ∈ C they are distinct codimension one
faces of ∆ with (primitive) inward normals ua ∈ t, and Sa = CP da

with da > 0, ±ga is a Fubini–Study metric and ca ⊗ ωa/2π ∈
ua ⊗ c1(O(−1)).

Given these data, we define the manifold M̂ = P ×T V = M0 ×Tc

V → S, where M0 = P ×T µ
−1
V (∆0). Since the curvature 2-form of

P has type (1, 1), M0 becomes a holomorphic principal Tc-bundle with
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connection and M̂ is a complex manifold. The toric Kähler structure on
V endows M̂ with a fibrewise metric and ‘momentum map’ µ̂ : M̂ → ∆:
indeed, being T invariant, the momentum map µV of V can be defined on
M̂ = P ×T V.

According to (vi), the set C corresponds bijectively to a subset B of
the codimension one faces of ∆, and for F ∈ B corresponding to a ∈ C,
the connection on M̂F := µ̂−1(F ) is flat over each fibre of S →∏

b�=a Sb.
This gives a CP da fibration of M̂F such that the normal bundle to M̂F

in M̂ is a line bundle which has degree −1 on each CP da fibre. Since a
tubular neighbourhood of M̂F in M̂ is diffeomorphic to a neighbourhood
of the zero section in the normal bundle, it follows that the topological
space M , obtained by contracting M̂ along the CP da fibration of each
such M̂F , is a smooth manifold and M0 is an open dense submanifold.

If the Kähler structure given by (24) (which pulls back to the fibrewise
metric on the fibres of M̂ → S) extends smoothly to M , then we say
that this Kähler manifold (M,g, J, ω) is given by the generalized Calabi
construction (with blow-downs).

We shall see that the contraction M̂ → M realises M̂ (with the
complex structure described above) as a blow-up of M . We therefore
refer to this contraction as a blow-down. Our main result shows that all
generalized Calabi data give rise to a generalized Calabi construction,
and that this classifies compact Kähler manifolds with a semisimple
rigid hamiltonian torus actions up to a covering.

Theorem 2. Let M be a compact connected Kähler 2m-manifold with
a semisimple rigid hamiltonian action of an �-torus T and momentum
map µ : M → ∆ ⊂ t∗. Then, some cover of M is given by the generalized
Calabi construction.

Conversely, for any generalized Calabi data (i)–(vi), the generalized
Calabi construction produces a smooth Kähler manifold with a semisim-
ple rigid hamiltonian action of an �-torus.

Proof. We construct the generalized Calabi data from Proposition 6,
imposing the condition that the action is semisimple. As remarked
in [4, Section 3.3], the condition that Ω0 and the components of Ω
are simultaneously diagonalizable and parallel (with respect to some
Kähler metric ΩS) implies that the (distinct) eigendistributions Ha

(a = 1, . . . N) are parallel. By the deRham decomposition theorem,
some cover of S∆ (for instance, the universal cover), is a Kähler prod-
uct (S,ΩS) =

∏N
a=1(Sa, ωa) (note that S may not be compact). The

generalized Calabi data (i)–(v) are then obtained from Proposition 6
by setting V = V∆, pulling back P∆, θ∆, Ω0 and Ω to give a principal
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bundle P with connection over S, and defining the constants ca0 and ca

by (v).
Let B be the set of codimension one faces F of ∆ such that a blow-

down occurs (i.e., MF is not a divisor); then, M̂ is the blow-up of M
along MF with F ∈ B. The pullback of the metric to M̂ degenerates
on the fibres of a CP d-bundle S∆ → SF for some d > 0. Now, CP d is
simply connected, so this is covered by a CP d-bundle with total space
S, whose base is a cover of SF . Hence, there must be at least one a such
that ca0 + 〈v, ca〉 = 0 for v ∈ F 0; since CP d does not admit a Kähler
product metric, this a is unique, and SF is covered by

∏
b�=a Sb, while

Sa = CP da with da = d. On the other hand, ca0 + 〈v, ca〉 is an affine
function of v, so it can vanish on at most one codimension one face of
the Delzant polytope ∆. Thus, B corresponds bijectively to a subset
C ⊂ {1, . . . N}. Now, note that for any face F , with v ∈ F 0, the metric
induced on SF is non-degenerate, so ca0 + 〈v, ca〉 does not vanish on ∆
for a /∈ C. This establishes (vi).

The pullback of M̂ to S is a cover of M̂ , and by construction, this
descends toM . Hence, up to a cover, M is obtained from the generalized
Calabi construction.

Conversely, given the data of Definition 6, we will prove that there
exists a smooth compact Kähler manifold (M,g, J, ω) with a semisimple
rigid hamiltonian action of the �-torus T given by the generalized Calabi
construction. The main difficulty is to deal with the blow-downs.

Let us suppose there are k ≥ 0 blow-downs: then, after reordering,
we may assume C = {1, . . . k} and that S = CP d1 × · · · ×CP dk ×S′′ for
some Kähler product S′′. The conditions (iii) and (v) of Definition 6
imply that Ω′′ :=

∑N
a=k+1 caωa is the curvature of a principal T-bundle

P ′′ → S′′. We are going to let M be of the form P ′′×TM
′, where M ′ is a

2(�+d1 + · · ·+dk) dimensional Kähler manifold with a rigid semisimple
isometric hamiltonian action of T, obtained from the generalized Calabi
construction with respect to the following data:

(i) S′ = CP d1 × · · · × CP dk ;
(ii) (V, ω, µ,∆), with the given compatible toric Kähler metric;
(iii) a principal T-bundle P ′ with curvature form Ω′ =

∑k
a=1 caωa;

(iv) Ω′
0 =

∑k
a=1 ca0ωa;

(v) the given constants ca0 and ca for a = 1, . . . k;
(vi) C = {1, . . . k}.

Since the data for M are generalized Calabi data, so are these data for
M ′. If M ′ can be constructed with these data, it follows from Propo-
sition 6 and Remark 7 that M is equipped with a Kähler metric and a
semisimple rigid action of T; using the first part of the theorem, we also
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see that M is given by the generalized Calabi construction associated
to the initial data.

Thus, it remains only to establish the generalized Calabi construction
for M ′. However, such an M ′ is obtained as a restricted toric Kähler
manifold, the construction of which we discussed already in Section 1.6.

q.e.d.

Just as toric complex manifolds may be described in terms of lin-
ear charts, i.e., in terms of a family of vector spaces, each with a de-
composition into one dimensional subspaces, glued together by Laurent
monomials, so bundles of toric complex manifolds (arising in the gener-
alized Calabi construction without blow-downs) may be decribed (by the
holomorphic slice theorem) in terms of families of vector bundles, each a
direct sum of line bundles, glued together in a similar way. The simplest
case is the case of projective bundles P (L0 ⊕L1 ⊕ · · · ⊕L�) → S, which
are obtained by gluing together the vector bundles L−1

j ⊗ (⊕k �=j Lk

)
for j = 0, . . . �. This is the only case we shall need in the sequel.

3. Orthotoric geometry

We now return to our primary aim: the classification of compact
Kähler manifolds endowed with a hamiltonian 2-form. In this section,
we treat the case when the order of the hamiltonian 2-form is maximal,
and therefore, the corresponding Kähler manifolds are toric. Motivated
by the orthogonality of the gradients of the roots of the momentum
polynomial, see Theorem 1, we define orthotoric Kähler manifolds and
orbifolds, and classify the compact ones.

3.1. The polytope of an orthotoric orbifold.

Definition 7. An orthotoric Kähler manifold (or orbifold) M is a
toric Kähler 2m-manifold (or orbifold) with a momentum map σ =
(σ1, . . . σm) and (rational) Delzant polytope ∆ = σ(M), such that on
the dense open set M0 = σ−1(∆0) of regular points of σ, the roots
ξ1, . . . ξm of the momentum polynomial

∑m
r=0(−1)rσrt

m−r (σ0 = 1) are
smoothly defined, pairwise distinct and functionally independent, and
the Kähler metric has the explicit form

g =
m∑

j=1

∆j

Θj(ξj)
dξ2j +

m∑
j=1

Θj(ξj)
∆j

(
m∑

r=1

σr−1(ξ̂j) dtr

)2

(25)

=
m∑

r,s,j=1

(
(−1)r+s∆jξ

2m−r−s
j

Θj(ξj)
dσr dσs
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+
Θj(ξj)σr−1(ξ̂j)σs−1(ξ̂j)

∆j
dtr dts

)

ω =
m∑

j=1

dξj ∧
(

m∑
r=1

σr−1(ξ̂j) dtr

)
=

m∑
r=1

dσr ∧ dtr,

for functions Θ1, . . .Θm of one variable. Here, ∆j =
∏

k �=j(ξj − ξk).

Clearly, the gradients of ξ1, . . . ξm are orthogonal with respect to g.
Conversely, it was shown in [4, Section 3.4] that this property charac-
terizes orthotoric Kähler manifolds (and the result applies equally to
orbifolds).

Note that the basisK1, . . . Km of the Lie algebra of the torus identifies
it with Rm, and we view the invariant 1-forms dt1, . . . dtm as the dual
basis of Rm∗.

Proposition 7. Let M be a compact orthotoric Kähler 2m-manifold
or orbifold with momentum map σ = (σ1, . . . σm) and rational Delzant
polytope ∆.

(i) ∆ is the (one to one) image under the elementary symmetric func-
tions of a domain of the form

D = {(ξ1, . . . ξm) ∈ Rm : αj ≤ ξj ≤ βj}
where

α1 < β1 ≤ α2 < β2 ≤ · · · < βm−1 ≤ αm < βm.

Thus, setting σ0 = 1, ∆ = {(σ1, . . . σm) : (−1)m−j
m∑

r=0
(−1)rσrα

m−r
j

≤ 0 and (−1)m−j
∑m

r=0(−1)rσrβ
m−r
j ≥ 0 for j = 1, . . . m}. This

is a simplex if and only if αj+1 = βj for j = 1, . . . m− 1.
(ii) If M is non-singular (i.e., a manifold), then ∆ is a simplex.

Proof. (i) σ1, . . . σm are the elementary symmetric functions of the
roots ξ1, . . . ξm of the momentum polynomial, and we want to find the
domain D in the ξj coordinates corresponding to ∆. We first remark
that this domain must be bounded. Also, the functions Θj(ξj) must be
non-zero on the interior D0 of D in order that the metric be finite and
non-degenerate.

Now, consider in particular the metric on the torus given by

g(Kr,Ks) =
m∑

j=1

Θj(ξj)σr−1(ξ̂j)σs−1(ξ̂j)
∆j

.

The determinant of this matrix is (up to a sign)
∏m

j=1 Θj(ξj). As we
approach a special orbit of the m-torus action, i.e., as σ approaches the
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boundary of ∆, this must tend to zero, i.e., at least one of the functions
Θj of one variable must tend to zero. Since these functions are non-
vanishing on D0, it follows thatD0 is a domain of the form

∏m
j=1(αj , βj),

where Θj is non-vanishing on the interval (αj , βj) and tends to zero at
the endpoints. Now, ξ1, . . . ξm must be pairwise distinct on D0, so we
may assume (after reordering) that ξ1 < · · · < ξm on D0. Hence,

α1 < β1 ≤ α2 < β2 ≤ · · · < βm−1 ≤ αm < βm.

Noting that the elementary symmetric functions are affine in each vari-
able, we readily check that this domain does indeed map bijectively to
a convex polytope. Indeed, any (ξ1, . . . ξm) in D satisfy

(26) (−1)m−j
m∏

k=1

(αj − ξk) ≤ 0, (−1)m−j
m∏

k=1

(βj − ξk) ≥ 0

for all j = 1, . . . m; equality is attained in one of these expressions on
any face, and in any of these expressions on some face. Expanding in
terms of the elementary symmetric functions of (ξ1, . . . ξm) gives the
explicit description of ∆.

A compact convex polytope in Rm∗ is a simplex if and only if it has
m+ 1 vertices. The vertices of D are the points where ξj ∈ {αj , βj} for
all j = 1, . . . m. Now, observe that a vertex of D maps to a vertex of ∆
if and only if it does not lie on one of the diagonals ξj = ξk for j �= k.

(ii) We shall show that αj+1 = βj for j = 1, . . . m − 1. Suppose for
contradiction that this does not hold for some j ∈ {1, . . . m − 1} and
consider the four vertices

(α1, . . . αj−1, αj , αj+1, αj+2, . . . αm),

(α1, . . . αj−1, αj , βj+1, αj+2, . . . αm),

(α1, . . . αj−1, βj , αj+1, αj+2, . . . αm),

(α1, . . . αj−1, βj , βj+1, αj+2, . . . αm).

Since αj < βj < αj+1 < βj+1, these four points map to four distinct
vertices spanning a two dimensional face of ∆ (ξk = αk defines a hyper-
plane). Now, any face of a Delzant polytope is Delzant (as one easily
checks) and the Delzant property is invariant under affine transforma-
tion. Hence, we may as well map this 2-dimensional face into R2 by
sending (σ1, . . . σm) to (σ1 − a1, σ2 − a1σ1 + a2

1 − a2), where a1 and a2

are the first two elementary symmetric functions of {αk : k �= j, j + 1}:
in terms of ξj, ξj+1 (fixing ξk = αk for k �= j, j + 1), this formula gives
(ξj +ξj+1, ξjξj+1), and so our face gets mapped to the quadrilateral with
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vertices

(αj + αj+1, αjαj+1), (αj + βj+1, αjβj+1),

(βj + αj+1, βjαj+1), (βj + βj+1, βjβj+1)

and normals (up to scale)

(αj ,−1), (βj ,−1), (αj+1,−1), (βj+1,−1).

Again, αj < βj < αj+1 < βj+1, so these four normals point in distinct
directions, and so cannot be scaled to form a basis for the same lattice
at each vertex. Our quadrilateral is therefore not Delzant, hence neither
is ∆, a contradiction. q.e.d.

For the rest of this subsection, we suppose ∆ is a simplex: the above
proposition shows that this is necessarily true if M is non-singular.

By the Delzant construction, any symplectic orbifold M whose ratio-
nal Delzant polytope is a simplex is a symplectic quotient of Cm+1 by
a one dimensional subgroup G of (S1)m+1. From the relation between
complex and symplectic quotients, cf. (18), it follows that M is a quo-
tient of a weighted projective space CPm

a0,...am
—here a0, . . . am ∈ Z+ have

highest common factor 1 and CPm
a0,...am

is the quotient of Cm+1 � {0}
by the holomorphic action

(z0, . . . zm) → (ζa0z0, . . . ζ
amzm) for ζ ∈ C×;

note that CPm
1,...1 is the usual (non-singular) CPm.

We want to describe ∆ more explicitly as a rational Delzant simplex.
We put β0 = α1, so ∆ is the image under the elementary symmetric
functions of the domain

D = {(ξ1, . . . ξm) ∈ Rm : βj−1 ≤ ξj ≤ βj}(27)
β0 < β1 < · · · < βm−1 < βm.where

Proposition 8. Let M be a compact orthotoric Kähler 2m-orbifold
whose Delzant polytope ∆ is the image of (27) under the elementary
symmetric functions.

(i) ∆ = {σ : 〈vj ,σ〉 + κj ≥ 0}, where κj = βm
j /
∏

k �=j(βj − βk) and

(28) vj =

(
−βm−1

j∏
k �=j(βj − βk)

, . . .
(−1)rβm−r

j∏
k �=j(βj − βk)

, . . .
(−1)m∏

k �=j(βj − βk)

)
.

The codimension one faces of ∆ are F0, . . . Fm, where
• F0 is the image of the boundary component ξ1 = β0 of D,
• Fm is the image of the boundary component ξm = βm of D,

and
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• Fj , for j = 1, . . . m − 1, is the union of the images of the
boundary components ξj = βj and ξj+1 = βj of D.

(ii) The normals are of the form uj = 2njvj/c, where c > 0 and
nj ∈ Z+ (j = 0, . . . m) have highest common factor 1; then, M is
equivariantly biholomorphic to an orbifold quotient of CPm

a0,...am
,

where nj =
∏

k �=j ak.
(iii) M is non-singular if and only if it is biholomorphic to CPm if

and only if nj = 1 (for all j) and the lattice of circle subgroups is
generated by u0, . . . um. The dual lattice in Rm∗ is then generated
by

(29) θp,q =
m∑

r=0

1
2c
(
σβ

r (β̂q) − σβ
r (β̂p)

)
dtr

where σβ
r (β̂p) denotes the rth elementary symmetric function of

the m variables {βj : j = 0, . . . m, j �= p}.
Proof. (i) When ∆ is a simplex, the inequalities in (26) may be

written ∏m
k=1(βj − ξk)∏
k �=j(βj − βk)

≥ 0

for all j = 0, . . . m, which immediately gives the stated form of ∆. (Note
that the apparent codimension two face ξj = βj = ξj+1 is ‘straightened
out’ by the elementary symmetric functions; this is why ∆ has only
m+ 1 faces, not 2m.)

(ii) From the form of the simplex ∆, it is immediate that the normals
u0, . . . um are positive multiples of v0, . . . vm. They belong to a com-
mon lattice if and only if the linear dependence relation among them
can be written

∑m
j=0 uj/nj = 0, where n0, . . . nm are non-zero rational

numbers. We now observe that the vj ’s already satisfy
∑m

j=0 vj = 0 by
the Vandermonde identity (cf. [4, Appendix B]). Hence, we must have
uj = Cnjvj for some non-zero constant C and without loss of general-
ity, we can take C and nj’s to be positive and suppose n0, . . . nm are
integers with highest common factor 1. We then put C = 2/c.

We have already seen that any toric Kähler orbifold with polytope
a simplex is equivariantly biholomorphic to an orbifold quotient of a
weighted projective space. It remains to show that the integers nj are
related to the weights ak by nj =

∏
k �=j ak. For this, we note [1] that

any weighted projective space has an orbifold quotient whose simplex is
standard with respect to the lattice Λ, i.e., the primitive normals sum
to zero. The primitive normals are uj/mj and Abreu shows that the
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labels (in this case) are given by mj =
∏

k �=j ak. Since
∑m

j=0 vj = 0,
and the mj have highest common factor 1, we have mj = nj.

(iii) The only (orbifold quotient of a) weighted projective space which
is non-singular is CPm. Clearly, M is equivariantly biholomorphic to
CPm if and only if the nj all equal 1 and the lattice Λ of circle subgroups
is the minimal one. In terms of the vector fields K1, . . . Km, it follows
that vector fields generating Λ are

(30) Xj =
2
c

m∑
r=1

(−1)rβm−r
j Kr∏

k �=j(βj − βk)
= J gradg

2
∏�

k=1(βj − ξk)
c
∏

k �=j(βj − βk)
,

with
∑m

j=0Xj = 0. To see that (29) generate the dual lattice, we note
that

θp,q =
m∑

r=1

1
2c σ

β
r−1(β̂p, β̂q)(βp − βq)dtr

for 0 ≤ p < q ≤ m, where σβ
r−1(β̂p, β̂q) is the (r − 1)st elementary

symmetric function of the m − 1 variables {βj : j = 0, . . . m, j �= p, q}.
We compute

θp,q(Xj) =
m∑

r=1

(−1)rσβ
r−1(β̂p, β̂q) (βp − βq)βm−r

j∏
k �=j(βj − βk)

=

∏
k �=p,q(βj − βk)∏
k �=j(βj − βk)

(βq − βp) = δjq − δjp

and the result follows. q.e.d.

The constant c determines the scale of M : the symplectic volume is
proportional to 1/c. The other constants β0, . . . βm are related to the
fact that the Killing vector fields K1, . . . Km do not necessarily form an
integral basis.

We remark that all simplices are equivalent under affine transforma-
tion, and so for any β0 < · · · < βm, any rational Delzant simplex is
equivalent to the simplex of this proposition for some lattice Λ in Rm

and some normals uj = 2njvj/c ∈ Λ.

3.2. Compactification of orthotoric Kähler metrics. We next es-
tablish necessary and sufficient conditions for the compactification of
the orthotoric Kähler metric (25) on a compact 2m-orbifold M . We
obtain these conditions by specializing those of Proposition 1 to the
orthotoric case.
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Proposition 9. Let M be a compact symplectic 2m-orbifold such
that the rational Delzant polytope ∆ ⊂ Rm∗ is the image of

∏m
j=1[αj , βj ]

under the elementary symmetric functions, where

α1 < β1 ≤ α2 < β2 ≤ · · · < βm−1 ≤ αm < βm.

Let Lα
j (σ) = 〈uα

j ,σ〉 + λα
j and Lβ

j (σ) = 〈uβ
j ,σ〉 + λβ

j where

λα
j = −cαj αm

j , uα
j = cαj

(
αm−1

j , . . . (−1)r−1αm−r
j , . . . (−1)m−1

)
,

λβ
j = −cβj βm

j , uβ
j = cβj

(
βm−1

j , . . . (−1)r−1βm−r
j , . . . (−1)m−1

)
,

and the constants cαj , c
β
j ∈ R are such that the normals of ∆ are the

distinct elements among uα
j , u

β
j , i.e., ∆ = {σ ∈ Rm∗ : Lα

j (σ) ≥ 0 and
Lβ

j (σ) ≥ 0 for j = 1, . . . m}, but if αj+1 = βj, we have cαj+1 = cβj as the
normals uα

j+1, u
β
j are then not distinct.

Then, the Kähler metric (25), defined for ξj ∈ (αj , βj), extends to an
orthotoric Kähler metric on M if and only if for j = 1, . . . m, Θj is the
restriction to (αj , βj) of a smooth function Θ on

⋃m
j=1[αj , βj ] satisfying

(for j = 1, . . . m):

Θ(αj) = 0 = Θ(βj),

Θ′(αj)cαj = 2 = Θ′(βj)cβj ;
(31)

(−1)m−jΘ > 0 on (αj , βj).(32)

Proof. By (25), H is given by

Hrs =
m∑

j=1

Θj(ξj)σr−1(ξ̂j)σs−1(ξ̂j)
∆j

.

This is a smooth and symmetric function of ξ1, . . . ξm, so by Glaeser [14],
it is a smooth function of σ1, . . . σm. The positivity condition is clear,
so it remains to consider the boundary conditions (31). We must show
these are equivalent to (15).

The form of the normals shows that H(uα
i , ·) is given by

m∑
r=1

Hrs(uα
i )r =

m∑
j,r=1

cαi Θj(ξj) (−1)r−1σr−1(ξ̂j)αm−r
i σs−1(ξ̂j)

∆j

=
m∑

j=1

cαi Θj(ξj)σs−1(ξ̂j)
∏

k �=j(αi − ξk)
∆j

.

On the codimension one face ξi = αi, this reduces to cαi Θi(αi)σs−1(ξ̂i),
which vanishes for all s if and only if Θi(αi) = 0. For the derivative
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conditions, we differentiate

H(uα
i , u

α
i ) =

m∑
j=1

(cαi )2Θj(ξj)
∏

k �=j(αi − ξk)2

∆j

and evaluate along ξi = αi to obtain

(cαi )2Θ′
i(αi)

∏
k �=i

(αi − ξk) dξi = cαi Θ′
i(αi)d

m∏
k=1

cαi (αi − ξk)
∣∣∣∣
ξi=αi

.

This equals 2uα
i if and only if cαi Θ′

i(αi) = 2. The boundary conditions
at the β endpoints are analogous. q.e.d.

Note that (31) could be taken as the definition of the constants cαj
and cβj . However, these are then required to satisfy positivity and inte-
grality conditions, since (−1)m−jcαj and (−1)m−j+1cβj must be positive
for the normals to be inward pointing, while uα

j and uβ
j must belong to

a common lattice in Rm.
We summarize our results for the case that the rational Delzant poly-

tope is a simplex. The following is immediate from Propositions 7, 8
and 9.

Theorem 3. Let M be a compact orthotoric 2m-manifold or orbifold
with momentum map σ, whose rational Delzant polytope is a simplex
∆ with normals u0, u1, . . . um ∈ Rm, where the Kähler metric is given
by (25) on M0 = σ−1(∆0).

(i) M is equivariantly biholomorphic to a toric orbifold quotient of
CPm

a0,...am
and, with nj =

∏
k �=j ak, there are constants β0 < β1 <

· · · < βm, c > 0, and a smooth function Θ on [β0, βm], such that
for j = 0, . . . m:

uj =
2nj

c

(
−βm−1

j∏
k �=j(βj − βk)

, . . .
(−1)rβm−r

j∏
k �=j(βj − βk)

, . . .
(−1)m∏

k �=j(βj − βk)

)
;

(33)

Θj = Θ on [βj−1, βj ];(34)

(−1)m−jΘ > 0 on (βj−1, βj);(35)

Θ(βj) = 0, Θ′(βj) = − c

nj

∏
k �=j

(βj − βk).(36)

(ii) Conversely, given constants β0 < β1 < · · · < βm, c > 0 and
a smooth function Θ on [β0, βm] satisfying (35)–(36), the Kähler
metric given by (25) and (34) defines an orthotoric structure on
CPm

a0,...am
and its toric orbifold quotients, such that the rational
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Delzant polytope is the image of [β0, β1]× [β1, β2]×· · ·× [βm−1, βm]
under the elementary symmetric functions, with normals given
by (33).

(iii) Any (non-singular) compact orthotoric Kähler 2m-manifold M
arises in this way (with nj = 1 for j = 0, . . . m) and is equivari-
antly biholomorphic to CPm.

3.3. Examples on weighted projective spaces.

3.3.1. The Fubini–Study metric. We recall from [4, Section 5.4]
that an orthotoric Kähler metric has constant holomorphic sectional
curvature c if and only if Θj = Θ0 for all j = 1, . . . m, where Θ0 is a
polynomial of degree m + 1 with distinct roots and leading coefficient
−c. We then have Θ0(t) = −c∏m

j=0(t− βj) with β0 < · · · < βm, which
clearly satisfies (35)–(36). Thus, we see directly that this orthotoric
metric is defined on CPm, in accordance with [4, Section 2.4], where it
was shown more generally that the Fubini–Study metric on CPm admits
hamiltonian 2-forms of arbitrary order ≤ m, in one to one correspon-
dence with Killing potentials.

This form of the Fubini–Study metric is familiar for m = 1, when (25)
yields

g =
dξ2

c(ξ − β0)(β1 − ξ)
+ c(ξ − β0)(β1 − ξ)dt2.

Setting 2ξ = (β1 − β0)z + β0 + β1, t = 2ψ/c(β1 − β0) and rescaling g by
c, we get

gFS =
dz2

1 − z2
+ (1 − z2)dψ2.

In arbitrary dimension m, the Fubini–Study metric is the ‘canonical’
metric associated to its simplex, hence is given here by (8) with

G =
1
2
Hess

 m∑
j=0

Lj(σ) log |Lj(σ)|


Lj(σ) = 〈uj ,σ〉 + λj =
2
c

∏m
k=1(βj − ξk)∏
k �=j(βj − βk)

.where

It follows that
m∑

r,s=1

Grsdσr dσs

=
1
2

m∑
j=0

Lj

(
dLj

Lj

)2
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=
1
c

m∑
j=0

∏m
k=1(βj − ξk)∏
k �=j(βj − βk)

(
m∑

k=1

dξk
ξk − βj

)2

=
m∑

p,q=1

1
Θ0(ξp)

m∑
j=0

∏
k �=q

(βj − ξk)

∏
k �=j

ξq − βk

βj − βk

 dξp dξq

which immediately yields the orthotoric description (25), since the inner
sum over j is ∆q δpq by the Lagrange interpolation formula.

3.3.2. Bochner-flat metrics. More generally, any extremal orthotoric
metric (25) for which Θj = Θ is necessarily Bochner-flat [4, Section 5.4];
in this case, Θ must be a polynomial of degree ≤ m+2, and the boundary
conditions (31) imply that Θ has m + 1 or m + 2 distinct roots. The
former case gives the Fubini–Study metric and its orbifold quotients,
while the latter recovers the Bochner-flat examples of [9], which are
defined on CPm

a0,...am
for distinct weights a0, . . . am. Indeed, for any

positive integers a0 > · · · > am we take the metric (25) with

Θj(t) = Θ(t) = −(t− β)Θ0(t) = c(t− β)
m∏

j=0

(t− βj),

where c > 0 is a homothety factor for the metric, and we deduce
from (36) that the real numbers β0 < · · · < βm < β and c > 0 sat-
isfy

(37) βj = β − aj∏m
k=0 ak

.

This metric is Bochner-flat (see [4, Proposition 16]) and compactifies on
CPm

a0,...am
(see Theorem 3). As shown by Bryant [9], there are actually

Bochner-flat metrics on CPm
a0,...am

for any choice of weights. An alter-
native, easy way to see this [12] uses the relation between Bochner-flat
metrics and flat CR structures found by Webster [35]. Indeed, CPm

a0,...am

is a quotient of S2m+1 by a weighted S1-action by CR automorphisms
of the flat CR structure, and the Sasakian structure induced by the
associated Reeb field gives rise to a Bochner-flat Kähler metric on the
quotient.

The Bochner-flat metrics on weighted projective spaces are all toric
(see [1] for the general form in momentum coordinates). However, when
the weights are not distinct, they are not orthotoric (apart from the
Fubini–Study metric): from our point of view, the Bochner-flat metric
is endowed with a natural hamiltonian 2-form which is (an affine defor-
mation of) the normalized Ricci form [4] and it has order m if and only
if the weights aj are distinct.
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Remark 8. Note that the orthotoric Bochner-flat Kähler metric on
a weighted projective space is unique (up to isomorphism and scale):
β0, . . . βm are determined as above (the choice of β can be absorbed in
the coordinate freedom). In fact, a stronger uniqueness result is true:
the Bochner-flat metric is the unique extremal Kähler metric (up to
isomorphism and scale) on any weighted projective space. To see this,
recall that the second deRham cohomology group of CPm

a0,...am
is one di-

mensional, so there is only one Kähler class up to scale (this follows, for
instance, by the Smith–Gysin sequence for the space of orbits, CPm

a0,...am
,

of the weighted S1-action on the (2m+1)-sphere); therefore, the unique-
ness result of Guan [15] (which readily generalizes to orbifolds) applies
to the Kähler class of CPm

a0,...am
.

The uniqueness implies that any toric 2m-orbifold of constant scalar
curvature, whose rational Delzant polytope is a simplex, is an orbifold
quotent of CPm. Note that the Futaki invariant of CPm

a0,...am
vanishes

if and only if a0 = a1 = · · · = am.

3.4. Kähler–Einstein orthotoric surfaces. In this subsection, we
present new examples of Kähler–Einstein metrics on compact orbifolds.
As we have seen in the previous subsection, we have to work beyond
the context of weighted projective spaces, so we consider polytopes with
more thanm+1 codimension one faces. We restrict attention to complex
orbifold surfaces (m = 2) in order to make the construction completely
explicit. In this case, a polytope with more than m + 1 = 3 faces
necessarily has 2m = 4 faces and we are in the ‘generic’ case where the
roots ξ1, ξ2 are everywhere distinct on ∆.

According to [4, Section 5.3], an orthotoric Kähler metric on a 4-
orbifold is Kähler–Einstein if and only if Θj(t) = −Pj(t)/C, j = 1, 2 for
some positive constant C, and some ±-monic polynomials Pj of degree
3, such that P1(t) − P2(t) = c where c is a constant. The Bochner
tensor vanishes precisely when c = 0, and the metric is then the Fubini–
Study metric. We, therefore, assume that c �= 0 in order to obtain new
examples. Also, for compactness, the scalar curvature must be positive
(otherwise the Ricci tensor would be non-positive, contradicting the
existence of Killing vector fields with zeros), which implies that the
polynomials Pj are monic.

It remains to solve the compactification conditions. For simplicity,
we shall take the lattice Λ ⊂ R2 to be Z2 or a sublattice. The condi-
tions of Proposition 9 can then be satisfied by supposing that Pj has
integer roots (including the endpoints αj and βj) and C is chosen so
that 2/Θ′(αj) = cαj = −2C/P ′

j(αj) and 2/Θ′(βj) = cβj = −2C/P ′
j(βj)

are all integers for j = 1, 2.
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The condition (31) implies that P1 and P2 have three distinct roots,
p1 < q1 < r1 and p2 > q2 > r2, respectively. The condition P1 − P2 = c
reads

p1 + q1 + r1 = p2 + q2 + r2,

p2
1 + q21 + r21 = p2

2 + q22 + r22.

Positivity and (31) give α1 = p1, β1 = q1, α2 = q2, β2 = p2 and hence
(without loss) q1 < q2. Taking the roots to be all integral, we note
that, up to an affine deformation of the hamiltonian 2-form and orbifold
coverings/quotients, we can also assume that gcd(p1, q1, r1, p2, q2, r2) =
1 and

p1 + q1 + r1 = 0 = p2 + q2 + r2.

A class of solutions to this problem is obtained by taking any coprime
positive integers (p, q) with p > q and putting

p1 = −p, q1 = −q, r1 = p+ q, p2 = p, q2 = q, r2 = −p− q.

With these assumptions, we have

α1 = −p, β1 = −q, α2 = q, β2 = p;

Θ1(ξ) = −(ξ + p)(ξ + q)(ξ − p− q)
C

;(38)

Θ2(ξ) = −(ξ − p)(ξ − q)(ξ + p+ q)
C

.(39)

The corresponding Delzant polytope ∆ is the quadrilateral with vertices

(0,−p2), (0,−q2), (p− q,−pq), (q − p,−pq)
and one-dimensional faces Fα

j , F β
j , j = 1, 2 determined by the lines

{σ : �αj (σ) = 0}, {σ : �βj (σ) = 0},
where

�α1 (σ) = p2 + pσ1 + σ2, �β1 (σ) = q2 + qσ1 + σ2,

�α2 (σ) = q2 − qσ1 + σ2, �β2 (σ) = p2 − pσ1 + σ2.

Furthermore, letting 2C = (p− q)(2q + p)(2p + q) in (38) and (39), we
get

Θ′
1(α1) = Θ′

2(β2) = 2/(2p + q), Θ′
1(β1) = Θ′

2(α2) = −2/(2q + p),

so the conditions of Proposition 9 are satisfied with

cα1 = cβ2 = 2q + p, cα2 = cβ1 = 2p+ q.



HAMILTONIAN 2-FORMS IN KÄHLER GEOMETRY, II 325

Thus, according to Proposition 9, the corresponding Kähler–Einstein
orthotoric metric gp,q compactifies on the toric orbifold Kähler surface
M(p, q) classified by

(∆,Λ, cα1 , c
β
1 , c

α
2 , c

β
2 ),

where Λ is the standard lattice Z2 ⊂ R2 (in which case cαj , c
β
j are nothing

but the integer labels corresponding to the 1-dimensional faces of ∆, see
Section 1.2).

We claim that two orbifold surfaces M(p, q) and M(p′, q′) are bi-
holomorphically equivalent iff p = p′ and q = q′. Indeed, in order to
be biholomorphic as complex orbifolds, M(p, q) and M(p′, q′) must be
isomorphic as toric varieties. Therefore, the cooresponding polytopes
∆ and ∆′ must determine congruent fans [28, Thm.9.4]. One easily
checks that the latter happens iff (p, q) = (p′, q′); alternatively, using
the uniqueness of the hamiltonian 2-form established in Propostion 10
below, one can see that the Kähler–Einstein metrics gp,q and gp′,q′ are
locally isometric if and only if (p, q) = (p′, q′).

We summarize our construction as follows.

Theorem 4. There is a family of non-equivalent compact Kähler–
Einstein orthotoric orbifold surfaces (M(p, q), gp,q), depending on co-
prime positive integers q < p.

Remark 9.
(i) According to the results of [3], the primitive part of the hamil-

tonian 2-form φ associated to gp,q defines an integrable almost-
complex structure I on M(p, q), which is compatible with gp,q,
but induces the opposite orientation to the one of M(p, q). With
respect to this structure, (M(p, q), gp,q, I) become a compact, Ein-
stein, non-Kähler hermitian complex orbifold surface (see [27] for
a classification in the smooth case).

(ii) A similar construction yields a countable family of compact orb-
ifold complex surfaces supporting orthotoric weakly Bochner-flat
metrics which are neither Bochner-flat nor Kähler–Einstein (see
[3] for a classification in the smooth case).

(iii) According to [8], any Kähler–Einstein orbifold (M,g, J, ω) of com-
plex dimension m gives rise to a Sasaki–Einstein structure on the
total space S of a principal S1 V -bundle over M (which is suit-
ably associated to the canonical bundle of M). In general, S is a
(2m+ 1)-dimensional orbifold rather than a manifold, but it may
happen that S is non-singular even though M is singular [8]: in
fact, S is non-singular if and only if all local uniformizing groups
of M inject into the structure group S1 (see [8, Theorem 2.3]).
In the case of toric Kähler orbifolds, all local uniformizing groups
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are abelian [28] so that if S is non-singular, then all local uni-
formizing groups of M must be cyclic. Using this observation,
one can show that the universal orbifold covers M̂(p, q) of M(p, q)
(the one which corresponds to the lattice generated by the nor-
mals of ∆, see Remark 2) give rise only to singular 5-dimensional
Sasaki–Einstein orbifolds.

4. Compact Kähler manifolds with hamiltonian 2-forms

We now combine the work of the previous three sections to classify,
up to a covering, compact Kähler manifolds with a hamiltonian 2-form.
In the case of Kähler surfaces, we can refine the classification. We end
by giving some examples of extremal and weakly Bochner-flat Kähler
metrics with hamiltonian 2-forms.

4.1. General classification. There are two parts to a general classi-
fication of compact Kähler manifolds with a hamiltonian 2-form. First,
we must classify the possible equivariant biholomorphism types of man-
ifolds which can admit a hamiltonian 2-form. Second, we describe the
compatible Kähler structures on such manifolds which do admit hamil-
tonian 2-forms.

The equivariant biholomorphism type is described in parts (ii)–(iv) of
the following theorem: we show that, up to a blow-up and a covering, a
compact Kähler manifold with a hamiltonian 2-form of order � is biholo-
morphic to a projective bundle of the form P (L0 ⊕ L1 ⊕ · · · ⊕ L�) → S
where Lj are holomorphic line bundles over a product S of Kähler man-
ifolds Sa. Such a bundle admits an action of a complex �-torus Tc,
defined by scalar multiplication in each line bundle (an (� + 1)-torus
action on L0 ⊕ · · · ⊕ L�) modulo overall scalar multiplication (which
acts trivially on the projectivization). In part (v) of the theorem, we
show that the relevant Kähler structures are given by a special case
of the generalized Calabi construction with V = CP �. Conversely, we
show that this construction produces compact Kähler manifolds with a
hamiltonian 2-form.

Theorem 5. Let (M,g, J, ω) be a compact connected Kähler 2m-
manifold with a hamiltonian 2-form φ of order � ≥ 0, with non-constant
roots ξ1, . . . ξ� and (distinct) constant roots η1, . . . ηN , N ≥ 0.

(i) The elementary symmetric functions (σ1, . . . σ�) of (ξ1, . . . ξ�) are
the components of the momentum map σ : M → R�∗ of an �-
torus T ≤ Isom(M,g). The image ∆ of σ is a Delzant simplex in
R�∗, whose interior is the image under the elementary symmetric
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functions of a domain D =
∏�

j=1(βj−1, βj) with β0 < β1 < · · · <
β�.

(ii) Let S∆ be the stable quotient of M by the complex torus Tc and let
M̂ be the blow-up of M along the inverse image of the codimension
one faces F0, F1, . . . F� of ∆. Then, there are holomorphic line
bundles L0,L1, . . .L� over S∆ (uniquely determined up to overall
tensor product with a holomorphic line bundle) such that M̂ is
Tc-equivariantly biholomorphic to P (L0 ⊕ L1 ⊕ · · · ⊕ L�) → S∆.

(iii) S∆ is covered by a product S of N Hodge Kähler manifolds (Sa,
±ga,±ωa) of dimension 2da, indexed by the constant roots ηa (S
is a point if N = 0). There are constants c > 0, C1, . . . CN such
that for j = 0, . . . �, a = 1, . . . N

(40) 1
2c

∏
k �=j

(ηa − βk)

(Ca(ηa − βj) − 1
)
[ωa/2π]

is an integral cohomology class on Sa, and the pullback of Lj to S
is a tensor product

⊗N
a=1 π

∗
aLj,a, where πa is the projection of S

to Sa and Lj,a → Sa is a holomorphic line bundle with first Chern
class given by (40).

(iv) The subset B of those j ∈ {0, . . . �} for which the blow up over
the face Fj is non-trivial corresponds bijectively to a subset C of
{1, . . . N} such that for j ∈ B corresponding to a ∈ C, ηa = βj ,
Sa = CP da , ±ga is the Fubini–Study metric on Sa of constant
holomorphic sectional curvature ±c∏k �=j(βj − βk), and (without
loss) Lj,a = O(−1) and Lk,a = O for k �= j.

For a /∈ C either ηa < β0 or ηa > β�.
(v) The Kähler metric on M and its pullback to M̂ are determined by

the explicit metric (3) on M0, where:
• the pullback to S =

∏N
a=1 Sa of the Kähler quotient metric on

S∆ induced by σ(ξ1, . . . ξ�) ∈ ∆0 is the Kähler product metric

(41)
N∑

a=1

( �∏
j=1

(ηa − ξj)
)
ga;

• θ1, . . . θ� are the components of a connection on M̂ → S∆ as-
sociated to a principal T-connection;

• for j = 1, . . . �, Fj(t) = pc(t)Θ(t), where pc(t) =
∏N

a=1(t−ηa)da ,

(−1)�−jΘ > 0 on (βj−1, βj),(42)

Θ(βj) = 0, Θ′(βj) = −c
∏
k �=j

(βj − βk),(43)
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and the metric on the CP �-fibres of M̂ → S∆ is the orthotoric
Kähler metric (25) with Θj(t) = Θ(t);

Conversely, suppose S is a product of Hodge manifolds (Sa,±ga,±ωa)
and constants β0, . . . β�, η1, . . . ηN , c, C1, . . . CN satisfying the conditions
in (i)–(iv) above and such that (41) is positive for σ(ξ1, . . . ξ�) ∈ ∆0.

Then, there is a complex manifold M obtained by a blow-down of a
projective bundle M̂ = P (L0⊕L1⊕· · ·⊕L�) → S which gives rise to these
data. Further, for any smooth function Θ on [β0, β�] satisfying (42)–
(43), a Kähler metric of the form (3), with Fj(t) = pc(t)Θ(t), is globally
defined on M and admits a hamiltonian 2-form of order �.

Proof. Consider the explicit form (3) of the metric on the open sub-
set M0 of M . By Lemma 4, the map σ = (σ1, . . . σ�) : M → R� gener-
ates a rigid hamiltonian torus action, and the Kähler quotient metric
(i.e., (41)) is clearly semisimple, so that by Theorem 2, there is a cover of
M which is given by the generalized Calabi construction. The covering
is straightforward: there is a discrete group Γ of holomorphic isometries
of S which lifts to the bundle M0×Tc V and M̂ is the quotient. We shall
therefore, suppose Γ is trivial in the following.

The Kähler metrics ±ωa are determined by (41) and the constants
ca0 and ca = (ca1, . . . ca�) appearing in the generalized Calabi data are

(44) ca0 = η�
a, car = (−1)rη�−r

a , r = 1, . . . �.

Since the roots ξ1, . . . ξ� of the momentum polynomial pnc(t) are smooth,
functionally independent and pairwise distinct on M0, with orthogonal
gradients, the toric Kähler manifold V appearing in the generalized Cal-
abi data is orthotoric.

(i) σ is a momentum map by definition, and by Proposition 7, its
image ∆ is a simplex as stated. In particular, the codimension one faces
F0, F1, . . . F� correspond to the boundary points β0 < β1 < · · · < β� of
D, and V is biholomorphic to CP �.

(ii) M0 is a holomorphic principal Tc-bundle over S and the blow up
of M̂ along the inverse image of the codimension one faces is equivari-
antly biholomorphic to a projective bundle M0 ×Tc CP � with a global
fibre preserving Tc action. This action identifies M̂ with P (L0 ⊕ L1 ⊕
· · ·⊕L�) for holomorphic line bundles L0,L1 . . .L� over S (uniquely de-
termined as stated) in such a way that the 2(� − 1)-dimensional orbits
of Tc in each fibre are orbits of elements of P (L0 ⊕ · · · ⊕ L�) with one
homogeneous coordinate vanishing. We label the line bundles so that
the codimension one face Fj corresponds to the orbit of Tc with Lj

component vanishing.
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(iii) We only need to construct the line bundles Lj,a and establish the
formula (40) for their first Chern classes. The explicit form (3) of the
metric on the principal bundle M0 shows that the connection 1-forms
θr, with θr(Ks) = δrs, satisfy

(45) dθr =
N∑

a=1

(−1)rη�−r
a ωa,

where ±ωa are the Kähler forms of the globally defined metrics ±ga on
Sa. Note that the θr are not necessarily integral. The integral principal
connection forms are those which evaluate to integers on the Euler fields
X0, . . . X�, which, according to Proposition 8, are given by (29):

θp,q =
�∑

r=0

1
2c
(
σβ

r (β̂q) − σβ
r (β̂p)

)
θr,

More specifically, this is the connection form of the line bundle L−1
p ⊗Lq.

The curvature form of L−1
p ⊗ Lq is therefore, (up to a sign convention)

dθp,q =
N∑

a=1

�∑
r=0

1
2c(−1)r

(
σβ

r (β̂q) − σβ
r (β̂p)

)
η�−r

a ωa(46)

=
N∑

a=1

1
2c

(∏
k �=q

(ηa − βk) −
∏
k �=p

(ηa − βk)
)
ωa.

It follows that for each a = 1, . . . N , the corresponding 2-form in this
sum is integral in the sense that the cohomology class

(47) 1
2c

∏
k �=q

(ηa − βk) −
∏
k �=p

(ηa − βk)

 [ωa/2π]

is in the image of H2(Sa,Z) in H2(Sa,R). If ηa = βj for some j, we
deduce (by taking p = j, q �= j) that 1

2c
(∏

k �=j(ηa − βk)
)
ωa is integral.

Otherwise, this will differ from an integral class by a constant. Hence,
there are constants C1, C2, . . . CN such that for each j = 0, . . . � and
a = 1, . . . N , the 2-form

(48) 1
2c

∏
k �=j

(ηa − βk)

 (1 − Ca(ηa − βj))ωa

is also integral. The Lefschetz Theorem for (1, 1)-classes implies there
are holomorphic line bundles Lj,a with connection over Sa with cur-
vature forms given by (48): with our sign convention, the first Chern
classes are then as stated in (40). It follows that Lj is the tensor product
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of
⊗N

a=1 π
∗
aLj,a by a flat line bundle Fj. Since any flat line bundle on S

is a tensor product of flat line bundles pulled back from the factors Sa,
we may use the freedom in the choice of Lj,a to make Fj trivial.

Finally, note that for each a, the Chern classes c1(Lj,a) cannot vanish
for all j. It follows that the manifold Sa is Hodge, i.e., admits a Kähler
metric whose Kähler class is integral in cohomology.

(iv) For any σ in ∆0, the Kähler quotient metric (41) is global on S,
so that pnc(ηa) =

∏�
j=1(ξj − ηa) does not vanish on ∆0. Hence, no ηa

can belong to any of the open intervals (βj−1, βj). Clearly, when ηa = βj

for some j = 0, . . . �, pnc(ηa) vanishes on the codimension one face Fj

of ∆ and this is precisely the condition that a blow-down occurs (over
the factor Sa). The rest is immediate from the definition of generalized
Calabi data apart from the normalization of the Fubini–Study metric
on Sa. For this, we note that the formula (40) gives

(49) c1(Lj,a) = −1
2c

∏
k �=j

(βj − βk)

 [ωa/2π]

(and c1(Lk,a) = 0 for k �= j). Since Lj,a has to be O(−1), we must have

[ρa/2π] = −(da + 1)c1(Lj,a) = 1
2c(da + 1)

∏
k �=j

(βj − βk)

 [ωa/2π],

where ρa = Scala
2da

ωa is the Ricci form of the Fubini–Study metric ±ga.
The holomorphic sectional curvature ± 1

da(da+1) Scala is therefore, as
stated. (Note that this can be always achieved by rescaling ωa.)

(v) This is immediate from the explicit form of the metric, the gen-
eralized Calabi construction, and the necessity of the conditions of The-
orem 3 for the compactification of orthotoric Kähler metrics on CP �.

For the converse, observe first that the integrality conditions ensure
(by the Lefschetz Theorem for (1,1)-classes) that there are holomorphic
line bundles Lj,a over Sa with first Chern classes given by (40), equipped
with compatible connections whose curvatures are given by (48), and
we define Lj =

⊗N
a=1 π

∗
aLj,a.

Let M̂ = P (L0 ⊕ L1 ⊕ · · · ⊕ L�) ∼= M0 ×Tc CP �, where Tc acts
by scalar multiplication on each line bundle Lj modulo overall scalar
multiplication on the direct sum (which acts trivially on the projective
bundle), M0 is the union of the open Tc orbits in each fibre of M̂ → S,
and CP � is toric under Tc.
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By Section 1.6, (see also Theorem 2) M̂ has a blow-down M , which
collapses a family of divisors (which are closures of complex codimen-
sion one Tc-orbits) corresponding to ηa ∈ C along the CP da fibrations
induced by the connection on M̂ .

Because of the sufficiency of the conditions of Theorem 3 for the com-
pactification of orthotoric Kähler metrics on CP �, we have generalized
Calabi data for the construction of a Kähler metric on M using The-
orem 2, where V = CP � equipped with this orthotoric structure, the
connection has curvature (48), and the constants are given by (44). On
M0, the Kähler structure is given by (3).

The hamiltonian 2-form φ =
∑�

r=1(σrdσ1 − dσr+1) ∧ dtr (defined on
M0) also extends on M . Indeed, it follows from [4, Section 2.2] that the
2-jet of φ is a parallel section (over M0) of a vector bundle with linear
connection globally defined on M . Since M � M0 has codimension at
least two in M , φ extends to the whole of M . q.e.d.

Remark 10. It follows from the proof of Theorem 2 that M is cov-
ered by a bundle of restricted toric Kähler manifolds over

∏
a/∈C Sa.

The typical fibre X is a toric Kähler manifold of dimension 2k, k =
� +

∑
a∈C da, obtained as a blow-down of a CP � bundle over a prod-

uct of #C < � + 1 projective spaces as in Section 1.6, and admits a
hamiltonian 2-form of order �. However, by [4, Section 2.4, Section 5.4],
the Fubini–Study metric on CP k admits a hamiltonian 2-form of or-
der � with any number of distinct constant roots between 0 and � + 1,
with all factors in the Kähler quotient being blown down over some
face of the Delzant polytope of CP �. It follows that X is biholomor-
phic to CP k, and M is covered by a bundle of projective spaces over∏

a/∈C Sa. However, the metric on the fibres need not be orthotoric un-
less k = �. In fact, it is not hard to see directly that the blow-down of
P (L0 ⊗O ⊕L1 ⊗O⊕ · · · ⊕ Lj ⊗O(−1) ⊕ · · · ⊕ L� ⊗O) → S′ × CP d is
biholomorphic to P (L0 ⊕ L1 ⊕ · · · Lj ⊗ Cd+1 ⊕ · · · ⊕ L�) → S′.

We also note that any two compact Kähler metrics of the form (3),
corresponding to the same data (Sa,±ga,±ωa), β0, . . . β�, η1, . . . ηN , c,
C1, . . . CN ,Θ are isometric on M0 and hence also on M , by the argu-
ment in Lemma 3. If we fix all the data except the smooth function Θ,
we get Kähler metrics on the same smooth manifold M , parametrized
by smooth functions Θ satisfying (42)–(43). In the context of our con-
struction, these metrics are compatible with the same symplectic form
ω. However, the corresponding complex structures are isomorphic un-
der diffeomorphisms in the connected component of the identity [2], so
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that one can equally think of these as Kähler metrics on a fixed complex
manifold (M,J), which belong to the same Kähler class [ω].
4.2. Kähler surfaces with hamiltonian 2-forms. In this subsec-
tion, we specialize to the case that (M,g, J, ω) is a smooth compact
Kähler surface with a non-trivial hamiltonian 2-form; here non-trivial
means that φ is not a constant multiple of ω. We obtain a complete
classification, overcoming the issue of coverings raised in the previous
subsection. We first recall that if φ is a non-trivial hamiltonian 2-form,
then for any real numbers a, b (a �= 0), the affine deformation aφ + bω
is again a non-trivial hamiltonian 2-form (of the same order as φ).

Proposition 10. Let (M,g, J) be a connected Kähler surface not of
constant holomorphic sectional curvature. Then, (M,g, J) admits at
most one (up to an affine deformation) non-trivial hamiltonian 2-form,
even locally.

Proof. According to [3, Lemmas 2 and 6], the primitive part φ0 of
a non-trivial hamiltonian 2-form φ defines (on the open dense subset
U where φ0 �= 0) a conformally Kähler hermitian structure (g, I), such
that I and J induce opposite orientations on U ; then the antiselfdual
tensorW− of g, with respect to orientation induced by J , has degenerate
spectrum on U , hence on M ; moreover, φ0 is an eigenform of W−, whose
eigenvalue, at each point where W− does not vanish, is the (unique)
simple eigenvalue of W−. We also know that φ commutes with the
Ricci form ρ—see [4, Section 2.2]—so on an open subset where ρ0 �= 0,
φ0 is proportional to ρ0.

It follows that on any open subset where W− �= 0 or ρ0 �= 0, the
primitive parts of two non-trivial hamiltonian 2-forms, φ and φ′, are
related by φ0 = fφ′0 for a smooth function f ; since the primitive part
of any hamiltonian 2-form satisfies d(φ0/|φ0|3) = 0 (see [3, Lemma
2]), f must be a constant, i.e., φ0 = aφ′0. By unique continuation [4,
Section 2.2], this equality holds everywhere on M and so φ − aφ′ is a
hamiltonian 2-form with vanishing primitive part, hence a multiple of ω.
Thus, φ and φ′ are affinely equivalent unless W− and ρ0 are identically
zero. q.e.d.

Remark 11. The above result is optimal: according to [4, Sec-
tion 2.3], each of the manifolds CP 2, C2 and CH2 endowed with its
canonical Kähler structure admits a 9-dimensional family of non-trivial
hamiltonian 2-forms.

Theorem 6. Let (M,J) be a compact complex surface which supports
a Kähler metric g with a non-trivial hamiltonian 2-form φ. Then, the
following cases occur.
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(i) φ is of order zero; then, (M,J) is biholomorphic to a compact
locally symmetric Kähler surface of reducible type.

(ii) φ is of order one; then, (M,J) is biholomorphic to either CP 2

or to a ruled surface of the form P (O ⊕ L) → S where S is a
compact complex curve and L is a holomorphic line bundle over S
of positive degree.

(iii) φ is of order two; then, (M,J) is biholomorphic to CP 2.

Each complex surface listed in (i)–(iii) above admits (infinitely many)
Kähler metrics with non-trivial hamiltonian 2-forms of the correspond-
ing order.

Proof.
(i) If the order of φ is zero, i.e., if φ is parallel, then, by the deRham

decomposition theorem, the universal cover (M̃, g̃) of (M,g) is a Kähler
product (U1 × U2, g1 × g2) where each Ui biholomorphic to CP 1, CH1

or C, equipped with a Kähler metric gi. Taking the conjugate complex
structure on one of the factors defines a Kähler structure (g, I) on M ,
with the opposite orientation to (g, J). By a result of Kotschick [26],
(M,J) is either a geometric complex surface [33] or is a minimal ruled
surface.

If (M,J) is geometric Kähler surface, the fundamental group acts
biholomorphically and isometrically with respect to the product of con-
stant curvature metrics on Ui, i.e., (M,J) carries a reducible locally
symmetric Kähler structure [34].

If (M,J) is a minimal ruled surface, then it is biholomorphic to the
total space of the projectivization P (E) of a rank 2 holomorphic vector
bundle E over a compact complex curve S (see, for instance, [7]) and so,
without loss, U1 is the universal cover of S and U2 = CP 1: the Kähler
product metric g̃ = g1 × g2 must be compatible with the holomorphic
splitting. If U1 = CP 1 as well, then M = CP 1 × CP 1 so it admits a
product symmetric structure. Suppose U1 = C or CH1; by Liouville’s
Theorem, any holomorphic isometry of (M̃ , g̃) has the form Ψ(z,w) =
(ψ1(z), ψ2(z,w)), where ψ1 is a holomorphic isometry of (U1, g1) and
(for any fixed z) w �→ ψ2(z,w) is a holomorphic isometry of (CP 1, g2).
Since ψ1 is a holomorphic automorphism of U1, it preserves a constant
curvature metric on U1; similarly, since Isom(g2) is a compact subgroup
of PSL(2,C), it lies in a conjugate of PSU(2) and hence preserves
a constant curvature metric on CP 1. Thus, the fundamental group
preserves the product of constant curvature metrics on U1 and CP 1,
so (M,J) is again a geometric complex surface supporting a reducible
locally symmetric Kähler structure.
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(ii) Suppose now that φ has order 1. By Theorem 5, after blowing up
M at most once, we get a compact complex surface M̂ which is a holo-
morphic CP 1-bundle over a compact complex curve S, i.e., M is a ruled
complex surface [7]. If S ∼= CP 1, then M is either CP 1×CP 1 or a Hirze-
bruch surface Fk = P (O ⊕O(k)) → CP 1. Of these surfaces, only F1 is
not minimal: it is the blow-up CP 2 at one point. We conclude that M
is either CP 2 or can be written as P (O⊕O(k)) → CP 1, k ∈ Z. If S has
genus g(S) ≥ 1, by using again Theorem 5, we have M = M̂ and there-
fore M is a (minimal) ruled surface P (E) over a compact complex curve
S, with the induced C×-action tangent to the projective fibers. Clearly,
in the latter case, E must be split, and so without loss, E = O ⊕ L.

As a final point, we have to show that we can assume degL > 0
(or k > 0 in the case of Fk). But this is an immediate consequence of
Theorem 5: the formula (40) specializes to give (see also (48)) c1(L) =
−1

2c(β1 − β0)[ωS/2π], where β0 < β1 and c > 0, while ±ωS is the
Kähler structure induced on stable quotient S. Thus, degL �= 0 and
since P (E) ∼= P (E ⊗ L∗), we can assume that degL > 0.

(iii) This is an immediate consequence of Proposition 7.
It follows from Theorem 5 that each complex surface listed in Theo-

rem 6 does admit infinitely many (non-isometric) Kähler metrics with
non-trivial hamiltonian 2-forms of the corresponding order. q.e.d.

Remark 12. The complex surfaces in Theorem 6 also admit extremal
Kähler metrics with non-trivial hamiltonian 2-forms, see [10, 32].

4.3. Examples: extremal and weakly Bochner-flat Kähler met-
rics. We turn now to the construction of particular types of Kähler met-
rics with hamiltonian 2-forms. From this point of view, the notion of a
hamiltonian 2-form is simply a device which provides constructions of
interesting Kähler manifolds, and this uses very little of the theory that
we have developed: the converse part of Theorem 5, which essentially
amounts to the sufficiency of the conditions for the compactification
of a toric Kähler metric and for the construction of Kähler metrics on
blow-downs. In fact, we shall mainly restrict attention here to metrics
on projective line bundles (with no blow-downs) where these issues are
trivial.

We recall from [4] how Bochner-flat, weakly Bochner-flat and ex-
tremal Kähler metrics with hamiltonian 2-forms arise. A Kähler mani-
fold M is Bochner-flat if the Bochner tensor (a component of the Kähler
curvature) vanishes, weakly Bochner-flat (WBF) if the Bochner tensor
is co-closed, and extremal if the scalar curvature is a Killing potential
(i.e., its symplectic gradient is a Killing vector field).
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By the differential Bianchi identity, a Kähler metric is WBF if and
only if its normalized Ricci form ρ̃ = ρ − Scal

2(m+1) ω is a hamiltonian 2-
form. It follows that a WBF Kähler manifold is extremal. Any Kähler–
Einstein manifold is WBF, since ρ̃ a constant multiple of ω; however, the
hamiltonian 2-form in this case is trivial. To deal with this, and the case
of extremal Kähler metrics, we shall suppose that there is a non-trivial
hamiltonian 2-form φ on M such that ρ̃ = aφ+ bω in the case of WBF
Kähler metrics, and such that the scalar curvature Scal = a trω φ+ b in
the case of extremal Kähler metrics (for constants a, b).

Suppose that we have a Kähler manifold (M,g, J, ω) with a hamil-
tonian 2-form φ of order � where the Kähler quotient is a product of N
Kähler manifolds Sa of dimension 2da, corresponding to the constant
roots ηa of φ. The Kähler metric then has the explicit form (3) and
there is the following local classification result [4].

(i) g is extremal, with Scal as above, if and only if
• for all j, F ′′

j (t) = p̌c(t)q(t), where p̌c(t) =
∏N

a=1(t−ηa)da−1 and
q is a polynomial of degree �+N independent of j;

• for all a, ±ga has constant scalar curvature ∓q(ηa)/
∏

b�=a(ηa −
ηb).

g then has constant scalar curvature if and only if q has degree
�+N − 1.

(ii) g is weakly Bochner-flat, with ρ̃ as above, if and only if
• for all j, F ′

j(t) = pc(t)q(t), where pc(t) =
∏N

a=1(t− ηa)da and q
is a polynomial of degree �+ 1 independent of j;

• for all a, ±ga is Kähler–Einstein with scalar curvature ∓daq(ηa).
g is then Kähler–Einstein if and only if q has degree �.

(iii) [9] g is Bochner-flat, with ρ̃ as above, if and only if
• for all j, Fj(t) = p̂c(t)q(t) where p̂c(t) =

∏N
a=1(t− ηa)da+1 and

q is a polynomial of degree �+ 2 −N independent of j;
• for all a, ±ga has constant holomorphic sectional curvature

with scalar curvature ∓da(da + 1)q(ηa)
∏

b�=a(ηa − ηb).
g has constant holomorphic sectional curvature if and only if q has
degree �+ 1 −N .

We want to combine this local classification with the global construc-
tion of Theorem 5. To do this, we have to satisfy the boundary conditions
of (43), and the integrality conditions for the first Chern classes c1(Lj,a)
given by (40).

Remark 13. In practice, we need enough freedom in the choice of
F (t) and the constants both to satisfy these boundary conditions and
to prescribe the first Chern classes freely (up to some open conditions),
since otherwise, we face potentially non-trivial diophantine problems
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on our data. Let us analyse the implications of this in the case that
there are no blow-downs, i.e., M = P (L0⊕· · ·⊕L�) → S where S is the
product of compact Hodge manifolds S1, . . . SN . Thus, we have N(�+1)
integrality conditions, together with 2(� + 1) boundary conditions for
the function F (t) = pc(t)Θ(t), giving (N +2)(�+1) constraints on F (t)
and the constants β0, . . . β�, η1, . . . ηN and c, C1, . . . CN . Three of these
constants, say c, β0, β� are useless for satisfying the constraints, since
there is a homethety freedom g �→ kg in the Kähler metric and an affine
freedom ξj �→ aξj + b in the orthotoric coordinates. We therefore have
2N+�−1 effective constants. This leaves N(�+1)+2(�+1)−2N−�+1 =
(N+1)(�−1)+4 constraints on F (t). Subtracting this from the number
of coefficients defining F (t) gives the expected dimension of the moduli
space of solutions, which we require to be non-negative.

(i) In the extremal case, F (t) is determined by �+ 3 +N constants,
giving N(2 − �) dimensional moduli and forcing � ≤ 2.

(ii) In the WBF case, F (t) is determined by � + 3 constants, giving
N(1 − �) dimensional moduli and forcing � ≤ 1

(iii) In the Bochner-flat case, F (t) is determined by � + 3 − N con-
stants, giving −N� dimensional moduli and forcing � = 0, N ≤ 2.
This paremeter count agrees with the classification of Bryant [9]:
the only compact Bochner-flat Kähler manifolds are products of
at most two constant holomorphic sectional curvature manifolds
(which corresponds to the case when the normalized Ricci form
is a hamiltonian form of order zero). Note that Bryant’s result
can be derived from our classification as follows. If, for a smooth
compact Bochner-flat manifold, the normalized Ricci form is a
hamiltonian 2-form of order � > 0, it would define a hamiltonian
action of an �-torus T whose complexified action has totally ge-
odesic orbits (Lemma 7) with smooth closures biholomorphic to
CP � (Theorem 5). Since the restriction of the metric to such an
orbit is Bochner-flat[4, 9], it must be a Fubini-Study metric. This
shows that F (t) is a polynomial of degree m+1 (rather thanm+2)
which in turn implies � = 0, a contradiction.

We concentrate here on WBF Kähler metrics on projective line bun-
dles, by assuming the existence of a hamiltonian 2-form φ of order 1. In
this case, once we fix the base manifolds Sa and the line bundles Lj,a,
the moduli are zero dimensional.

4.3.1. The general setting. In order to render our discussion as self-
contained as possible, we first recall our notations. Let (Sa,±ga,±ωa),
a = 1, . . . N , be compact connected Kähler manifolds of real dimension
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2da, associated to the distinct constant roots ηa of the hamiltonian 2-
form. A Kähler metric with a hamiltonian 2-form of order 1 is defined
on a projective line bundle over S = S1 × · · · × SN , using a metric of
the form

g =
N∑

a=1

(z − ηa)ga +
∏N

a=1(z − ηa)da

F (z)
dz2 +

F (z)∏N
a=1(z − ηa)da

θ2,(50)

ω =
N∑

a=1

(z − ηa)ωa + dz ∧ θ, dθ =
N∑

a=1

ωa,

where we normalize the momentum interval for z to [−1, 1] and require
|ηa| > 1. Note that each Kähler metric ga can be positive or negative
definite, depending on the sign of ηa, and for convenience, it is taken
here with the opposite sign to the one used in equation (3)—observe that
pnc(ηa) = ηa−z rather than z−ηa). It is convenient to set ηa = −1/xa:
now, the sign of ga is the sign of xa.

The projective line bundle is M = P (O⊕L) ∼= P (O⊕L−1), where up
to a sign convention, θ is a connection form on the principal S1-bundle
associated to L with curvature dθ. By Theorem 5, g compactifies on M
when F (z) satisfies the following boundary conditions (for the fibrewise
compactification on CP 1):

(51) F (±1) = 0, F ′(±1) = ∓2pc(±1).

For the existence of L, we require that ωa is integral, i.e., [ωa/2π] is in
the image of H2(Sa,Z) in H2(Sa,R), and we write L =

⊗
a La, where

La is (the pullback to M of) a line bundle on Sa with c1(La) = [ωa/2π].
In order to obtain WBF Kähler metrics, the Sa must be Kähler–

Einstein, i.e., with Ricci form ρa = saωa. Since [ρa/2π] is an integral
class, the first Chern class of the anti-canonical bundle, sa = pa/qa for
integers pa, qa. If sa �= 0, we take pa maximal so that the anti-canonical
bundle has a path root (i.e., [ρa/2πpa] is a primitive class); then, La

is K−qa/pa
a twisted by a flat line bundle. Note that any flat bundle is

(holomorphically) trivial if H1(Sa,R) = {0}. In particular, such flat
factors do not appear when Sa is a compact positive Kähler–Einstein
manifold.

Remark 14. If Sa is a Riemann surface Σg of genus g, then pa =
2|g − 1|, while if Sa = CP da , then pa = da + 1 so that K−1/pa = O(1).
More generally, if the scalar curvature of Sa is positive, then pa ≤ da +1
by Kobayashi–Ochiai [23].
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The remaining conditions to obtain a WBF metric (as in Section 4.3(ii)
above) are

(52) F ′(z) = pc(z)(b−1z
2 + b0z + b1),

where pc(z) =
∏N

a=1(z − ηa)da , and

(53) 2sa = b−1η
2
a + b0ηa + b1.

Using the boundary conditions (51) and the equation (52) for F ′, we
deduce that b0 = −2 and b1 = −b−1. So, re-naming b−1 to B, equation
(52) becomes

(54) F ′(z) = pc(z)
(
B(z2 − 1) − 2z

)
and (53) gives

(55) B(1 − x2
a) = 2xa(xasa − 1).

g is Kähler–Einstein if and only if B = 0, which holds if and only if
sa = 1/xa for all a. (This implies in particular that the base factors
have positive scalar curvature.)

On the other hand, given the above, then (51) is satisfied if and only
if we set F (z) =

∫ z
−1 pc(t)

(
B(t2 − 1) − 2t

)
dt and

(56)
∫ 1

−1
pc(t)

(
B(t2 − 1) − 2t

)
dt = 0.

Since F ′(z) only changes sign once on the interval (−1, 1), F (z) as de-
fined above will not have any zeroes between z = −1 and z = 1. There-
fore, as the sign of F (z) equals the sign of pc(z) between −1 and 1, the
metric g will be positive definite.

So, in conclusion, the problem of constructing a WBF Kähler metric
on M (for given Kähler–Einstein manifolds Sa with sa = pa/qa) reduces
to finding solutions B,x1, . . . xN to (55) and (56). However, pc(t)(1 −
t2) has constant sign on (−1, 1), so B is uniquely determined by (56):
substituting for B from (55) (for each a), it suffices to show that there
exist distinct (x1, . . . xN ) with 0 < |xa| < 1 such that

(57) ha(x1, . . . xN ) :=
∫ 1

−1
p̃c(t)Ha(t)dt

vanishes for a = 1, . . . N , where p̃c(t) =
∏N

b=1(xbt+ 1)db and

Ha(t) = xa(xasa−1)(1− t2)+ t(1−x2
a) = x2

asa(1− t2)+(t−xa)(xat+1)

Remark 15. If sb �= sa, xb cannot equal xa, again since pc(t)(1− t2)
has constant sign on (−1, 1). Hence if xa = xb, then sa = sb and
Sa×Sb is Kähler–Einstein. Thus, we do not actually need to check that
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x1, . . . xN are distinct: if xa = xb, we still get a WBF Kähler metric,
but the hamiltonian 2-form has fewer distinct constant roots.

4.3.2. WBF Kähler metrics over Kähler–Einstein manifolds.
We consider the simplest case N = 1, when S = S1 is a Kähler–Einstein
manifold. Replacing the momentum coordinate z by −z if necessary
(and dropping the 1 subscripts), we may suppose that we have to find
0 < x < 1 such that h(x) = 0, where

h(x) :=
∫ 1

−1
(xt+ 1)d

(
x(xs− 1)(1 − t2) + t(1 − x2)

)
dz.

Since h(0) = 0, h′(0) = 2(d − 2)/3 and the sign of h(1) is equal to the
sign of s−1, we certainly have a solution 0 < x < 1 to h(x) = 0 if d > 2
and s < 1.

For the case d = 2, we calculate directly that

(58) h(x) =
4x2

15
(
s(x2 + 5) − 6x

)
and there is a solution 0 < x < 1 to h(x) = 0 if and only if 0 < s < 1.

Theorem 7. There are WBF Kähler metrics of the form (50) on:
• P (O ⊕ L) → S, where S is a compact Ricci-flat Kähler manifold

of complex dimension ≥ 3 whose Kähler form ωS is integral, and
L is a holomorphic line bundle with c1(L) = [ωS/2π];

• P (O ⊕ K−q/p⊗L0) → S, where S is a compact negative Kähler–
Einstein manifold of complex dimension ≥ 3, q ∈ Z with q < 0, K
is the canonical bundle on S, and L0 is a flat line bundle on S;

• P (O⊕K−q/p) → S, where S is a compact positive Kähler–Einstein
manifold of complex dimension ≥ 2, q ∈ Z with q > p, and K is
the canonical bundle on S.

For the case d = 1, we compute that

(59) h(x) = −2x
3
(
x2 + 1 − 2sx

)
and there is a solution 0 < x < 1 to h(x) = 0 if and only if s > 1.
Since S in this case is CP 1, K = O(2) and the only possibility is s = 2,
L = O(1), in accordance with the classification of [3].

4.3.3. WBF Kähler metrics over products of two Kähler–Ein-
stein manifolds. In this section, we give a taste of the case N = 2, but
we postpone a more thorough analysis to a subsequent paper. In this
case, we are looking for common zeros of the functions

ha(x1, x2) :=
∫ 1

−1
(x1t+1)d1(x2t+1)d2

(
xa(xasa−1)(1−t2)+t(1−x2

a)
)
dt
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(for a = 1, 2) with 0 < |xa| < 1. Analysing this problem in general
involves some delicate calculus arguments, but there are some special
cases which are straightforward. One of the simplest is the case that
d1 = d2, and s1 = −s2, when symmetry solves the problem for us, and
we recover some of the Kähler–Einstein metrics of Koiso and Sakane.

Theorem 8. [24, 25] On the total space of P (O ⊕ O(k,−k)) →
CP d × CP d, with 1 ≤ k ≤ d, there is a Kähler–Einstein metric, given
(on a dense open set) by

g =
(
d+ 1
k

+ z

)
g1 +

(
d+ 1
k

− z

)
g2

+
z2 − (d+1)2

k2

F (z)
dz2 +

F (z)

z2 − (d+1)2

k2

θ2,

where (g1, ω1) and (g2, ω2) are Fubini–Study metrics on the CP d factors
with holomorphic sectional curvature 2/k, dθ = ω1 − ω2 and F (z) =∫ z
−1 2t

( (d+1)2

k2 − t2
)
dt = − (d+1)2

k2 (1 − z2) + 1
2 (1 − z4).

Proof. Let s1 = −s2 = d+1
k and x1 = −x2 = k

d+1 . Then clearly,
0 < |xa| < 1 and ha(x1, x2) = 0 for a = 1, 2. Further, xa = 1/sa so the
WBF metric is Kähler–Einstein. q.e.d.

In a subsequent paper, we generalize these metrics by proving the
following.

Theorem 9. There is a WBF Kähler metric on the total space P (O⊕
O(k1, k2)) → CP d1 × CP d2 in the following cases:

• k1 > d1 + 1 and k2 > d2 + 1;
• 1 ≤ k1 ≤ d1 and 1 ≤ −k2 ≤ d2.

We illustrate this with the case P (O ⊕ O(1,−2)) → CP 2 × CP 3,
where d1 = 2, d2 = 3, s1 = 3, s2 = 4/(−2) = −2. The graphs of h1 = 0
(solid) and h2 = 0 (dashed) for 0 < x1 < 1 and −1 < x2 < 0 are plotted
below. Proving that the graphs do cross as shown is a tedious calculus
exercise.

We end this section by giving an example with a blow-down. Consider
again P (O ⊕ O(1,−1)) → CP 1 × CP 1. This carries a Koiso–Sakane
Kähler–Einstein metric by setting x1 = −x2 = 1/2, but it also admits
two blow-downs in which a CP 1 factor collapses at an endpoint of the
momentum interval [−1, 1]. Such a collapse corresponds to setting x1 =
1 and/or x2 = −1. If we carry out both blow-downs, the resulting
manifold is CP 3, which admits a WBF metric, namely the Fubini–
Study metric, so let us consider the case of a single blow-down. The two
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Figure 2. d1 = 2, d2 = 3, s1 = 3, s2 = −2.

complex manifolds we obtain are both isomorphic to P (O⊕O(1)⊗C2) →
CP 1, so without loss, we suppose x1 = 1, −1 < x2 < 0.

This changes the boundary condition for F ′(z) at z = −1, since
pc(z) = (z+1)(z+1/x2) vanishes at one of the endpoints. By a straight-
forward application of L’Hôpital’s rule, we obtain

(F ′/pc)(−1) = 4

Thus, (54) is replaced by:

F ′(z) = (z + 1)(z + 1/x2)
(
B(z2 − 1) − 2z + z(z − 1)

)
.

Setting x1 = 1 automatically solves one of the integrality constraints
with s1 = 2, so it remains to show that we can find x2 to satisfy the
second constraint, with s2 = −2. Proceeding as in the case of no blow-
downs, this reduces to showing there is −1 < x < 0 with f(x) = 0
where

f(x) =
∫ 1

−1
(t+ 1)(xt+ 1)

(
−x(2x+ 1)(1 − t2) + t(1 − x2)

+ 1
2(x+ 1)(t − 1)(xt + 1)

)
dt.

This holds because f(−1) is negative, while f(0) = 0 and f ′(0) is neg-
ative. Further, f(−1/2) is non-zero. So, the solution x = x2 does not
equal 1/s2, and the metric is not Kähler–Einstein.

Theorem 10. There is a WBF Kähler metric on P (O⊕O(1)⊗C2) →
CP 1 whose normalized Ricci form is a hamiltonian 2-form of order one.
In particular, this is an extremal Kähler metric with non-constant scalar
curvature.

4.3.4. Further extremal Kähler metrics. Since any WBF metric is
extremal, the results presented so far provide new examples of extremal
Kähler metrics on projective line bundles and their blow-downs. Fur-
thermore, to obtain an extremal Kähler metric, it suffices that the base
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manifolds Sa are Hodge manifolds of constant scalar curvature, giving
examples which are not WBF in general.

On the other hand, such an approach is not very satisfactory, since
it produces only one extremal Kähler metric in each case, whereas the
parameter count of Remark 13 suggests that these metrics should come
in N dimensional families (parameterized by admissible Kähler classes
on M). When the base manifolds have non-negative scalar curvatures,
we can obtain such N dimensional families.

Theorem 11. For a = 1, . . . N , let (Sa,±ωa) be Hodge Kähler mani-
folds of constant non-negative scalar curvature, let La be a holomorphic
line bundles on each Sa with c1(La) = [ωa/2π] and let L =

⊗N
a=1 La.

Then M = P (O⊕L) admits an N parameter family of extremal Kähler
metrics. Furthermore, if the Kähler forms ±ωa do not all have the same
sign (i.e., if c1(L) is strictly indefinite) there is an N − 1 dimensional
subfamily of constant scalar curvature Kähler metrics on M .

This Theorem generalizes results of Hwang [20] and Hwang–Singer
[21], and the proof is not materially different. The first of these two
papers considers the case that the base manifold has constant eigenval-
ues of the Ricci tensor (e.g., a product of Kähler–Einstein manifolds)
and the idea to weaken this condition is explored in the second paper.
However, it is the notion of a hamiltonian 2-form that has selected for
us a more general hypothesis for the base. We shall discuss this, and
further results, in more detail in a subsequent paper.

Finally, we note that the parameter count of Remark 13 suggests that
one should be able to construct examples of extremal Kähler metrics on
projective plane bundles (and their blow downs) over products of con-
stant scalar curvature manifolds. Unfortunately, the existence problem
here is considerably less tractible than in the case of WBF metrics on
projective line bundles. Nevertheless, we hope to be able obtain exam-
ples in subsequent work.
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