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Abstract. We consider a connected symplectic manifold M acted on properly and in
a Hamiltonian fashion by a connected Lie group G. Inspired by recent results, we study La-
grangian orbits of Hamiltonian actions. The dimension of the moduli space of the Lagrangian
orbits is given. Also, we describe under which condition a Lagrangian orbit is isolated. If M is
a compact Kähler manifold, we give a necessary and sufficient condition for an isometric ac-
tion to admit a Lagrangian orbit. Then we investigate homogeneous Lagrangian submanifolds
on the symplectic cut and on the symplectic reduction. As an application of our results, we
exhibit new examples of homogeneous Lagrangian submanifolds on the blow-up at one point
of the complex projective space and on the weighted projective spaces. Finally, applying our
result which may be regarded as Lagrangian slice theorem for a Hamiltonian group action with
a fixed point, we give new examples of homogeneous Lagrangian submanifolds on irreducible
Hermitian symmetric spaces of compact or noncompact type.

1. Introduction. Let (M,ω) be a symplectic manifold. A Lagrangian submanifold
of M is a submanifold of half dimension of M on which the symplectic form ω vanishes.
Lagrangian submanifolds are intensively studied and have classically played an important
role in symplectic geometry (see [18, 25, 26, 34]). Recently, their role has been expanded
beyond that of understanding symplectic diffeomorphisms.

In [26] Oh asked for a group theoretical machinery producing Lagrangian submanifolds
in Hermitian symmetric spaces and in a recent paper by Bedulli and Gori [4] the existence
problem of homogeneous Lagrangian submanifolds in compact Kähler manifolds has been
studied, obtaining a characterization of isometric actions admitting a Lagrangian orbit for a
large class of compact Kähler manifolds, including irreducible Hermitian symmetric spaces.

In this paper we study homogeneous Lagrangian submanifolds in a symplectic mani-
fold, and determine the dimension of the moduli space of Lagrangian orbits, describing under
which condition a Lagrangian orbit of a reductive Lie group G is isolated. Our uniqueness
result generalizes Theorem 2 in [4].

Our main tool will be the moment map that can be defined whenever we consider Hamil-
tonian action on M . More precisely, let (M,ω) be a connected symplectic manifold, G a
connected Lie group of symplectic diffeomorphisms acting in a Hamiltonian fashion, and g
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the Lie algebra of G. This means that there exists a map µ : M → g∗, called the moment
map, satisfying the following:

(1) For each X ∈ g, let
• µX : M → R, µX(p) = µ(p)(X), be the component of µ along X, and
• X# be the vector field on M generated by the one parameter subgroup {exp(tX) :

t ∈ R} ⊆ G.
Then

dµX = iX#ω ,

i.e., µX is a Hamiltonian function for the vector field X#.

(2) µ is G-equivariant, i.e., µ(gp) = Ad∗(g)(µ(p)), where Ad∗ is the coadjoint rep-
resentation on g∗.

In general, the matter of existence/uniqueness of µ is delicate. However, whenever g is
semisimple the moment map exists and is unique ([16]). If (M,ω) is a compact Kähler man-
ifold and G is a connected compact Lie group of holomorphic isometries, then the existence
problem is solved ([20]): a moment map exists if and only if G acts trivially on the Albanese
torus Alb(M).

In the sequel we always assume that the G-action on M is proper and for every α ∈
g∗, Gα is a locally closed coadjoint orbit of G. Observe that the condition for a coadjoint
orbit to be locally closed is automatic for reductive groups and for their semidirect products
with vector spaces. There exists an example of a solvable Lie group due to Mautner [33, p.
512], with non-locally closed coadjoint orbits. These assumptions are needed to apply the
symplectic slice (see [3, 16, 27, 32]), and the symplectic stratification of the reduced space
given in [3].

Before we state our first main result, we fix our notation for later use. Let Gx = G/Gx

be a G-orbit. Since Gx is compact, we may split g = gx ⊕ m, as Gx -modules. We denote by
n(gx) the Lie algebra ofN(Gx), i.e., the normalizer ofGx inG. Let v = vx+vm ∈ gx⊕m be
an element of n(gx). Then [vm, gx ] ⊂ gx , i.e., vm ∈ n(gx), which implies that [vm, gx ] = 0,
since m is Gx -invariant. This means

n(gx) = gx ⊕ {v ∈ m ; [v, gx ] = 0} = gx ⊕ s .(1)

Let z(g) be the Lie algebra of the center of G. Clearly, z(g) ⊆ n(gx) and the projection
π : n(gx) → gx maps z(g) to z(gx).

THEOREM 1.1. Let (M,ω) be a connected symplectic G-Hamiltonian manifold with
moment map µ : M → g∗. Assume thatG/Gx = Gx is a Lagrangian orbit. Then the dimen-
sion of the moduli space of the Lagrangian orbits containingGx is dim z(g)∩s. Therefore the
dimension of the moduli space of the Lagrangian orbits is equal or less than dimN(Gx)/Gx
and Gx is an isolated Lagrangian orbit if and only if the projection π : n(gx) → gx maps
z(g) one-to-one to z(gx). Hence, if G is a semisimple Lie group, a Lagrangian orbit, if exists,
is isolated. Moreover, in any level set µ−1(c), a Lagrangian orbit, if exists, is isolated.



HAMILTONIAN ACTIONS AND LAGRANGIAN SUBMANIFOLDS 605

Note that Theorem 1.1 answers under which condition an action have infinitely many
Lagrangian orbits. The next result characterizes the actions having isolated Lagrangian orbit,
generalizing Theorem 2 in [4].

THEOREM 1.2. Let G be a connected reductive Lie group acting properly and in a
Hamiltonian fashion on a connected symplectic manifold M . A Lagrangian G-orbit, Gp, is
isolated if and only if there exists a semisimple connected closed Lie subgroup G′ of G such
that Gp = G′p.

We may also characterize isometric actions on compact Kähler manifolds admitting a
Lagrangian orbit, applying a result of Kirwan [21] together with the symplectic stratification
of the reduced space given in [3].

THEOREM 1.3. Let G be a compact connected Lie group acting isometrically and
in a Hamiltonian fashion on a compact connected Kähler manifold M . Let µ denote the
corresponding moment map. Then G admits a Lagrangian orbit if and only if there exists
c ∈ z(g) such that µ−1(c) is a Lagrangian submanifold.

As an immediate corollary we have the following.

COROLLARY 1.4. If G is a compact connected Lie group acting isometrically in a
Hamiltonian fashion on compact Kähler manifold. Then at any level set µ−1(c) there exists
at most one Lagrangian orbit. Moreover, if G is a compact connected semisimple Lie group,
then G admits a Lagrangian orbit if and only if µ−1(0) is a Lagrangian submanifold of M .

IfG is compact, it is standard to fix an Ad(G)-invariant scalar product 〈·, ·〉 and identify
g with g∗ by means of 〈·, ·〉, regarding µ as a g-valued map. It is also natural to study the
squared moment map ‖µ‖2 and its critical set. This function has been intensively studied
in [21], obtaining strong information on the topology of M . In [6] we prove that if a point
x realizes a local maximum of ‖µ‖2, then the G-orbit through x is symplectic. It is natural
to study the “dual” problem, i.e., the points realizing the minimum of ‖µ‖2. Note that a
Lagrangian orbit could describe this set by Theorem 1.3, whenever M is a compact Kähler
manifold.

Next, we use Hamiltonian actions to construct non-standard homogeneous Lagrangian
submanifolds in Kähler manifolds. Non-standard examples on the complex projective space
are given in [2, 13, 14, 15]. Recently in [4], the classification of isometric actions of simple
Lie groups admitting a Lagrangian orbit on complex projective spaces is given.

We study homogeneous Lagrangian submanifolds on the symplectic reduction ([11]) as
well as on the symplectic cut ([10, 24]) by making use of a connection between Lagrangian
orbits on M and those on symplectic reduction and on symplectic cut, see Proposition 3.1
and Proposition 3.5. These results are interesting, since the complex projective space is the
reduced space of the standard S1-action on C n and the symplectic cut can be obtained by
blowing-upM along a symplectic submanifold ([10, 24]).



606 L. BILIOTTI

TABLE 1.

G M M∗

G2 ⊆ SO(7) ⊆ SO(8) SO(8)/U(4)

SO(2)× SO(n), n ≥ 3 SO(n+ 2)/SO(2)× SO(n) SOo(2, n)/SO(2)× SO(n)

Z(S(U(1)× U(n)))× SO(n) CP n SU(1, n)/S(U(1)× U(n))

Z(S(U(2)× U(2n)))× Sp(n), n ≥ 2 SU(2n+ 2)/S(U(2)× U(2n)) SU(2, 2n)/S(U(2)× U(2n))

U(2n) SO(4n)/U(2n) SO∗(4n)/U(2n)
U(2n+ 1) ⊂ U(2n+ 2), n ≥ 2 SO(4n+ 4)/U(2n+ 2) SO∗(4n+ 4)/U(2n+ 2)

U(n) Sp(n)/U(n) Sp(n,R)/U(n)

T1 · E6 E7/T1 · E6 E−25
7 /T1 · E6

T1 · Spin(9) ⊆ T1 · Spin(10) E6/T
1 · Spin(10) E−14

6 /T1 · Spin(10)

Spin(7) ⊂ SO(8) ⊂ SU(8) SU(8)/S(U(2)× U(6))

We use these results to construct non-standard homogeneous Lagrangian submanifolds
on the blow-up at one point of the complex projective space (Example 3.6 and Section 5). We
also deduce, using the classification given in [4], the classification of the simple compact Lie
groups K acting isometrically on C n such that S1 ×K admits a Lagrangian orbit on C n, (see
Corollary 3.3 and Remark 3.4).

Since our result also holds when the symplectic reduction is an orbifold (see [11] for
more detail about orbifolds), in Section 4 we give new examples of homogeneous Lagrangian
submanifolds on weighted projective spaces.

Finally, applying Proposition 3.7 which deals with Lagrangian slice for a group acti-
ng with a fixed point, we give new examples of homogeneous Lagrangian submanifolds on
irreducible Hermitian symmetric spaces of compact or noncompact type.

PROPOSITION 1.5. Let G be a Lie group which appears in Table 1. Then G admits a
Lagrangian orbit.

We note that in Table 1, Z(G) denotes the center ofG.

2. Existence and uniqueness. Here we follow the notation as in [3] and in Introduc-
tion. The first easy remark is the following: if Gx is a Lagrangian submanifold of M , then
µ(x) ∈ z(g∗), where

z(g∗) = {α ∈ g∗ ; ad∗
X(α) = 0 for any X ∈ g} .

Indeed, since Ker dµx = (TxGx)
⊥ω we have µ|Gx = c ∈ g∗, which implies that c ∈ z(g∗).

PROOF OF THEOREM 1.1. Suppose thatGx is a Lagrangian orbit. We may assume that
µ(x) = 0. It follows from the symplectic slice that there exists a G-invariant neighborhood
which is symplectomorphic to a neighborhood of the zero section of Y = G×Gx (g/gx)

∗ and
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the moment map is given by

µ([g, v]) = Ad∗(g)(j (v)) .

Recall that we may split g = gx ⊕ m asGx-modules and j is induced by the above decompo-
sition (see [3]). It is well-known, shrinking the neighborhood of the zero section of Y if neces-
sary, that dimG[g, v] ≥ dimGx. HenceG[e, v] is Lagrangian if and only if µ([e, v]) ∈ z(g∗)
so that if and only if j (v) ∈ m∗ ∩ z(g∗), and hence if and only if j (v) ∈ z(g∗) ∩ s∗ by
(1). This proves that the dimension of the moduli space of the Lagrangian orbits containing
Gx is dim(z(g) ∩ s) ≤ dimN(Gx)/Gx . We also deduce that Gx is isolated if and only if
z(g) ∩ s = {0} so that if and only if the projection of g onto gx maps z(g) one-to-one to z(gx).
Finally, since in a G-invariant neighborhood of a Lagrangian orbit the moment map is given
by µ([g,m]) = Ad∗(g)(j (m)), the moment map locally separates G-orbits, concluding the
proof.

EXAMPLE 2.1. We considerG = T1 × SU(2) acting on C 2 ⊕ C 2 by

(t, A)(v,w) = (At−1v,Aw) .

This action is Hamiltonian with moment map

µ((z1, z2), (w1, w2)) = i

2

(‖w1‖2 − ‖w2‖2 z1z2 +w1w2

z2z1 +w2w1 ‖w2‖2 − ‖w1‖2

)
+ 1

2
‖(z1, z2)‖2 .

The orbit through ((1, 1), (1,−1)) is Lagrangian and the T1-orbit through ((1, 1), (1,−1))
induces a curve in the moduli space of the Lagrangian orbits.

PROOF OF THEOREM 1.2. In the sequel we denote by Gss the closed Lie semisimple
connected subgroup of G whose Lie algebra is [g, g].

Assume that there exists a closed semisimple Lie subgroupG′ ofG such thatGp = G′p
is Lagrangian. It is well-known (see [29]) that there exists a G-invariant neighborhood Y of
Gp such that dimGq ≥ dimGp for every q ∈ Y . SinceG′ ⊂ Gss we haveGssp = Gp. If we
denote by µ̄ the moment map corresponding to the Gss-action on M , we see that µ̄(q) = 0
if and only if µ(q) ∈ z(g∗), where µ is the moment map for the G-action on M , since
the moment map of the Gss-action is the projection on gss of µ. Therefore, shrinking Y if
necessary, given q ∈ Y we see that Gq is Lagrangian if and only if Gssq is also so, proving
that Gp is isolated, since Gss is semisimple.

Vice-versa, letGp be an isolated Lagrangian orbit. We may assume µ(p) = 0. SinceGp
is isolated, there exists a G-invariant neighborhood Y of Gp such that µ(Y ) ∩ z(g∗) = {0}.
Hence, given x ∈ Y we have µ̄(x) = 0 if and only if µ(x) ∈ z(g∗) so that if and only if
µ(x) = 0. This proves that Gp = µ−1(0) ∩ Y = µ̄−1(0) ∩ Y .

LetH be a principal isotropy for theGss-action onGp. It is well-known (see [3, 32]) that
the intersection of the stratum M(H) of orbit type (H) with the zero level set of the moment
map µ̄ is a submanifold of M of constant rank, and the orbit space

(Mo)
(H) = (µ̄−1(0) ∩M(H))/Gss
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has a natural symplectic structure (ωo)(H) whose pullback to µ̄−1(0) ∩M(H) coincides with
the restriction to µ̄−1(0) ∩ M(H) of the symplectic form on M . Since µ̄−1(0) ∩ Y is La-
grangian, we get (ωo)(H) = 0, which proves that (Mo)

(H) is discrete. This implies that Gss

acts transitively on Gp, concluding the proof.

PROOF OF THE THEOREM 1.3. Assume that G admits a Lagrangian orbit. We may
suppose that Gp is Lagrangian and µ(p) = 0, where µ is the corresponding moment map. It
is easy to check that GCp is open in M . Therefore, M is projective algebraic and there exists
a GC-equivariant embedding into some complex projective space ([20]). In particular, since
the GC-action onM is algebraic, GCp is Zariski open in M .

If x ∈ µ−1(0) lies in a different G-orbit, then there exist, due to a results of Kirwan (see
[21]), twoGC-invariant disjoint neighborhoodsUp and Ux of p and x, respectively. Since Up
contains Gp, the neighborhood Up must meet Ux , which is an absurd. This claims that there
exists at most one Lagrangian orbit at any level set µ−1(c).

Vice-versa, assume that µ−1(c) is Lagrangian. Let H be an isotropy subgroup for the
G-action on M . Since M(H) ∩ µ−1(c)/G has a natural symplectic structure (ω)H whose
pullback toM(H) ∩µ−1(c) coincides with the restriction toM(H)∩µ−1(c) of the symplectic
form on M , we obtain that M(H) ∩ µ−1(c)/G is discrete. This proves that given p ∈ µ−1(c)

we have µ−1(c) = Gp, since µ−1(c) is connected (see [22]), concluding the proof.

REMARK 2.2. In the sequel we always assume that G acts properly and coisotropi-
cally on M . This means that there exists an open dense subset U such that for every x ∈ U ,
Gx is a coisotropic submanifold ofM with respect to ω, i.e., (TxGx)⊥ω ⊂ TxGx. Coisotropic
actions are intensively studied in [17, 20], and in the articles [7, 8, 30] the complete classi-
fication of compact connected Lie groups acting isometrically, in a Hamiltonian fashion and
coisotropically on irreducible compact Hermitian symmetric spaces has been given. In a forth-
coming paper [9], we shall study coisotropic actions of Lie groups acting properly and in a
Hamiltonian fashion on a symplectic manifold M . An equivalent condition for a connected
Lie group G to act coisotropically on M is that for every α ∈ g∗ the set Gµ−1(α)/G is dis-
crete (see [9]). In particular, if the fibers of the moment map µ : M → g∗ are connected,
which is the case ifM andG are compact ([22]), thenG admits a Lagrangian orbit if and only
if µ−1(z) is a Lagrangian submanifold for some z ∈ z(g∗).

Now, assume that a principal orbit is Lagrangian. Then there exists an abelian closed
Lie group T which have the same orbits of the G-action on M . Indeed, let H be a principal
isotropy. Since µ(M(H)) ⊂ z(g∗), M is mapped by µ to z(g∗). Therefore, given x ∈ MH , it
follows from symplectic slice that the H -submodule m such that g = h ⊕ m is abelian. Let
T be the closure of the torus whose Lie algebra is m. Note that T x = Gx. Therefore, the set
of regular points of T is contained in the set of G-regular points, which implies that T andG
have the same orbits, since both the T -action and the G-action are proper actions.

3. Symplectic cut, symplectic reduction and homogeneous Lagrangian submani-
folds. In this section we shall investigate how the existence of homogeneous Lagrangian
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submanifolds on M implies the existence of homogeneous Lagrangian submanifolds on the
symplectic cut and on the symplectic reduction. For the sake of completeness we describe
briefly these constructions and refer the reader to see [10, 11, 24] for a good exposition of
these subjects.

LetM be a connected symplectic manifold andG a compact connected Lie group acting
in a Hamiltonian fashion on M . Let K be a semisimple compact connected Lie subgroup of
G and Tk a k-dimensional torus which centralizes K in G, i.e., Tk ⊂ CG(K). In the sequel
we denote by

φ : M → k ⊕ tk ,

where tk is the Lie algebra of Tk , the moment map of the Tk ·K-action onM . We also denote
by µ, respectively by ψ , the moment map of the K-action on M , and a moment map of the
Tk-action on M .

Let λ ∈ tk be such that Tk acts freely on ψ−1(λ). Then the symplectic reduction

Mλ = ψ−1(λ)/Tk

is a symplectic manifold on which K acts, since it commutes with Tk, in a Hamiltonian
fashion with moment map

µ̄ : Mλ → k, µ̄([x]) = µ(x) .

This proves that µ̄([x]) = 0 if and only if µ(x) = 0 so that if and only if φ(x) ∈ tk .
Let [p] ∈ Mλ. It is easy to see that k[p] = [p] if and only if there exists r(k) ∈ Tk

such that kp = r(k)p, which is unique, since Tk acts freely on ψ−1(λ). This means that the
following homomorphism of Lie groups,

K[p]
F−→ (Tk ·K)p, F (k) = kr(k)−1 ,

is a covering map, due to the fact that K is semisimple. Hence

dimK[p] = dim(Tk ·K)p − dim Tk .

Since dimM = dimMλ − 2 dim Tk, we have proved the following result.

PROPOSITION 3.1. Let M be a connected symplectic manifold on which a compact
connected Lie group G acts in a Hamiltonian fashion on M . Let K be a compact connected
semisimple Lie subgroup of G and Tk a k-dimensional torus which centralizes K in G. Let
λ ∈ tk be such that Tk acts freely on ψ−1(λ), where ψ is a moment map of the Tk-action on
M . Then (Tk ·K)p, p ∈ ψ−1(λ), is Lagrangian if and only if K[p] in Mλ is.

REMARK 3.2. It should be remarked that Proposition 3.1 holds even if we only assume
that λ ∈ tk is a regular value. In this case the symplectic reduction could be an orbifold (see
[11]), since Tk could act almost freely on the level set ψ−1(λ). Hence the following map,

F : K[p] → (Tk ·K)p/Tkp ,
is a covering map, which implies dimK[p] = dim(Tk ·K)p, since Tkp is finite.
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It is well-known that complex projective n-space is the Kähler reduction for the standard
S1-action on C n+1, (see [11]). Therefore, from Proposition 3.1, we deduce the following

COROLLARY 3.3. Let K be a compact semisimple connected Lie group acting in a
Hamiltonian fashion on CP n. Then K admits a Lagrangian orbit if and only if the S1 × K-
action on C n+1 admits a Lagrangian orbit.

REMARK 3.4. From the classification given in [4], one can deduce which compact
simple Lie groups K have the K × S1-actions with Lagrangian orbits on C n.

Now, we consider a one-dimensional torus T1 which centralizes a compact connected
Lie subgroup K in G. We may consider the symplectic cut (see [10, 24]), which is briefly
described as follows. In the sequel we regard the moment maps for the T1-actions as R-valued
maps.

We consider the symplectic manifoldM×C with symplectic form ω− idz∧dz̄. T1 acts
diagonally on M × C as t (m, z) = (tm, tz) with moment map ψ̄ = ψ+ ‖z‖2.

Let λ ∈ R =Lie(T1) be such that T1 acts freely on ψ−1(λ). Then T1 acts freely on
ψ̄−1(λ), so that we may consider the symplectic reduction,

Mλ = ψ̄−1(λ)/T1 ,

which is called the symplectic cut. Note that dimM = dimMλ. K acts on Mλ as k[m, z] =
[km, z] with moment map

µ̄([x, z]) = µ(x) ,

where µ is the moment map of the K-action on M . Since if z �= 0, K[m,z] = Km, we deduce
that Km is Lagrangian if and only if K[m, z] is.

PROPOSITION 3.5. Let (M,ω) be a symplectic manifold on which a compact con-
nected Lie group G acts in a Hamiltonian fashion. Assume that K is a compact connected
subgroup ofG whose centralizer inG contains a one-dimensional torus T1. ThenK admits a
Lagrangian orbit in the open subset {x ∈ M;ψ(x) < λ}, ψ being the corresponding moment
map of the T1-action on M , if and only if the K-action on the symplectic cut, obtained from
the T1-action onM , admits a Lagrangian orbit.

EXAMPLE 3.6. Let T1 act on CP n by

(t, [zo, . . . , zn]) → [t−1zo, z1, . . . , zn] .
This is a Hamiltonian action with moment map

φ([zo, . . . , zn]) = 1

2

‖zo‖2

‖zo‖2 + · · ·+ ‖zn‖2
.

One can prove that φ([1, . . . , 0]) is the global maximum of the moment map φ and
φ−1(1/2) = [1, . . . , 0]. Hence, as in [10, p. 5], if λ = 1/2 − ε, ε ≈ 0, then the Kähler
cut (CP n)λ is the blow-up of CP n at [1, . . . , 0], which we shall indicate by CP n

[1,...,0]. The
torus action Tn on CP n given by

(t1, . . . , tn)([zo, . . . , zn] = [zo, t−1
1 z1, . . . , t

−1
n zn] ,
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is Hamiltonian and the principal orbits are Lagrangian. Note that Tn acts in a Hamiltonian
fashion on CP n

[1,...,0] and for the above discussion we conclude that the Tn-action on CP[1,...,0]
admits a Lagrangian orbit. Moreover, it acts coisotropically and its principal orbits are La-
grangian.

Let T1 = Z(S(U(1)× U(4)) and K = T1 × U(2) act on CP 4 by

(t, A)(Z) = (t, A)[zo, z1, z2, w1, w2] = (t, A)[zo, z,w] = [tzo, At−4z,At−4w] .
This action is Hamiltonian with moment map

µ(Z) = i

2 ‖Z‖2

( ‖z‖2 + ‖w‖2 z1z2 +w1w2

z2z1 +w2w1 ‖z‖2 + ‖w‖2

)

+ 1

2 ‖Z‖2

(
− ‖zo‖2 +1

2
‖(z,w)‖2

)
.

Let p = [zo, 1, 1, 1,−1] ∈ CP 4. Note that µ(p) ∈ z(u(2)) ⊕ t1, and if zo �= 0, then
dimKp = 4, which implies that Kp is Lagrangian.

Since K commutes with the above T1-action, we obtain that the K-action on CP 4[1,...,0]
admits a Lagrangian orbit, which is K[p].

Next, we prove the Lagrangian slice theorem for G-action with a fixed point.

PROPOSITION 3.7. Let G be a compact connected Lie group acting in a Hamiltonian
fashion with a fixed point on a symplectic manifold M . If the slice representation at the fixed
point has a Lagrangian orbit, then the G-action on M admits a Lagrangian orbit.

PROOF. It follows immediately from symplectic slice. Indeed, if Gp = p, then µ(p) =
β ∈ z(g) and from symplectic slice follows that the moment map is locally given by

µ(gp,m) = β + Ad(g)(µTpM(m)) .

If Gm is a Lagrangian orbit of the G-action on the slice, then dimGm = dimM/2 and
µTpM(m) ∈ z(g). In particular, dimG[p,m] = dimM/2 and µ([p,m]) ∈ z(g), which
implies that G[p,m] is Lagrangian. �

PROOF OF THE PROPOSITION 1.5. Except for the first and the last cases, the proof
follows from the classification given in [4], Corollary 3.3, and finally from Proposition 3.7. In
the sequel we always refer to Table 1 in [4, p. 16], which is included at the end of Section 5,
for compact simple Lie groups acting with a Lagrangian orbit in CP n. We briefly explain our
method.

The semisimple part of G admits a Lagrangian orbit on the complex projective space of
the slice, by Table 1. Hence, by Corollary 3.1, G has a Lagrangian orbit on the slice, which
implies, from Proposition 3.7, that G admits a Lagrangian orbit on M . We consider only
Hermitian symmetric spaces of compact type, since the noncompact case is exactly the same.

(1) G = G2 acting on M = SO(8)/U(4). We use the same argument as in [8]. Since
G2 ∩ U(4) = SU(3), the orbit through [U(4)] is Lagrangian. Indeed, let

φ : M → g∗
2
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be the moment map of the G2-action on M . One may check that

dim G2[U(4)] = 1

2
dim SO(8)/U(4) ,

G2φ([U(4)]) = G2/P is a generalized flag manifold and SU(3) ⊆ P. Since SU(3) is a
maximal subgroup of G2 which does not centralize a torus, we deduce that P = G2, proving
that φ([U(4)]) = 0. Hence G2[U(4)] is Lagrangian.

(2) G = SO(2)×SO(n) acting onM = SO(n+2)/SO(2)×SO(n). The slice is C n on
which SO(n) acts withΛ1. Since SO(n) admits a Lagrangian orbit on CP n−1, from Corollary
3.3, G admits a Lagrangian orbit on the slice, which implies, from Proposition 3.7, that G
admits a Lagrangian orbit on M .

(3) G = Z(S(U(1) × U(n))) × SO(n) acting on M = CP n. Since SO(n) has a La-
grangian orbit on CP n−1, G admits a Lagrangian orbit on the slice, which implies that G has
a Lagrangian orbit on M .

(4) G = Z(S(U(2)× U(2n)))× Sp(n) acting onM = SU(2n+ 2)/S(U(2)× U(2n)).
The slice is given by C 2n ⊕ C 2n on which Sp(n) acts diagonally, while the one dimensional
torus acts as

t (v,w) = (t(1−n)/nv, t(1−n)/nw) .

Since Sp(n) admits a Lagrangian orbit on CP 4n−1, we see that so does G onM .
(5) G = U(2n) acting on M = SO(4n)/U(2n). The slice is given by Λ2(C2n) and

SU(2n) acts with a Lagrangian orbit on its complex projective space. Hence G admits a
Lagrangian orbit on M .

(6) G = U(2n+ 1) acting on M = SO(4n+ 4)/U(2n+ 2). The slice is given by

Λ2(C 2n+1)⊕ C ⊗ C 2n+1 .

Note that the center acts as t (X, v) = (t2X, tv). As in [4], one may prove that Gp is La-
grangian, where

p = (

(
0 0
0 Jn

)
, e1) and Jn =

(
0 −In
In 0

)
,

which implies that G admits a Lagrangian orbit on M;
(7) G = U(n) acting on Sp(n)/U(n). The slice is given by S2(C n) and SU(n) has a

Lagrangian orbit on the complex projective space of S2(C n). Then G admits a Lagrangian
orbit onM .

(8) G = T1 · E6 acting onM = E7/T1 · E6. The slice is given by C 27 on whichG acts
with the Λ1 representation. Since E6 admits a Lagrangian orbit on CP 26, so doesG on M .

(9) G = T1 · Spin(9) ⊆ T1 · Spin(10) acting on E6/T1 · Spin(10). The slice is given by
C 16 on which G acts with the spin-representation. Since Spin(9) has a Lagrangian orbit on
CP 15, G admits a Lagrangian orbit on M from Corollary 3.3 together with Proposition 3.7.

(10) This case is proved in [7, p. 1736]. �
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4. Homogeneous Lagrangian submanifolds on weighted projective spaces. In [4]
it was proved that the following actions

G ρ dimC P(V ) Gop

SU(n) Λ1 ⊕Λ∗
1 2n− 1 SO(n)

SU(2n+ 1) Λ2 ⊕Λ1 2n2 + 3n+ 1 Sp(n)

Sp(n) Λ1 ⊕Λ1 4n− 1 Sp(n− 1)

Spin(10) Λe ⊕Λe 31 SU(5)

admit a Lagrangian orbit. We briefly explain the notation, which follows that given in [4]. ρ
denotes the representation, while Gop denotes the connected component of the identity of the
isotropy of the Lagrangian orbit. Moreover, we identify the fundamental weightsΛi with the
corresponding irreducible representations.

We shall prove that if G appears in the above table, then it induces an action on some
weighted projective space with a Lagrangian orbit. Let T1 be a one-dimensional torus acting
on V = V1 ⊕ V2 as

t (v,w) = (t−kv, t−s ) ,
where k, s are distinct natural numbers. This actions is Hamiltonian with moment map

ψ((v,w)) = (1/2)(k ‖v‖2 +s‖w‖2) .

Let λ = 1/2. The reduced space Mλ is the weighted projective space, denoted by P(V )[k,s],
on which G acts in a Hamiltonian fashion, since it commutes with the T1-action. The map
µ : V → g∗, defined for every (v,w) ∈ V and for every X ∈ g by

µ((v,w)) = −i〈X(v,w), (v,w)〉 ,
is the moment map for the G-action on V , where 〈·, ·〉 denotes the natural hermitian scalar
product on V .

We claim that L = G× T1 admits a Lagrangian orbit which lies in ψ−1(1/2). Note that
the corresponding moment map for theL-action is ξ = µ+ψ . Our approach can be described
as follows.

Let p = (v,w) ∈ V be such thatG[p] is Lagrangian in P(V ), which has been calculated
in [4]. Then we may prove that Lp̄, where p̄ = p/

√
k ‖v‖2 +s‖w‖2, is Lagrangian. This

implies that G[p̄] is Lagrangian in P(V )[k,s].
(1) G = SU(n) and ρ = Λ1 ⊕ Λ∗

1. p = (e1, e
∗
1) and one may prove that the L-orbit

through p̄ has dimension 2n. Since ξ(p̄) = ψ(p̄), Lp̄ is Lagrangian.
(2) G = SU(2n+ 1) and ρ = Λ2 ⊕Λ1. p = (Jn, e1), where Jn is the same as in case

(6) of the proof of Proposition 3.7. Since dimLp̄ = 2n2 + 3n+ 2, Lp̄ is Lagrangian.
(3) Sp(n) and ρ = Λ1 ⊕ Λ1. p = (e1, e2) and it is easy to check that dimLp̄ = 4n,

which implies that Lp̄ is Lagrangian.
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(4) G = Spin(10) and ρ = Λe ⊕ Λe. p = (1 + e1234, e15 + e2345) (see [31] for the
notation). One may prove that dimLp̄ = 32, which means that L admits a Lagrangian orbit .

5. Homogeneous Lagrangian submanifolds on the blow-up at one point of the
complex projective spaces. Let K be compact Lie group acting linearly on V with two
sub-modules, i.e., V = V1 ⊕ V2 and K preserves Vi for i = 1, 2. Suppose that K admits a
Lagrangian orbit on the complex projective space P(V ). If we consider a one-dimensional
torus T1 acting on V1 or on V2 which commutes withK , we may induce a Hamiltonian action
of K on the Kähler cut P(V )λ and this action admits a Lagrangian orbit. In [4] it was proved
that the following actions

G ρ dimC P(V ) Gop

SU(n) Λ1 ⊕Λ∗
1 2n− 1 SO(n)

SU(2n+ 1) Λ2 ⊕Λ1 2n2 + 3n+ 1 Sp(n)

Sp(n) Λ1 ⊕Λ1 4n− 1 Sp(n− 1)

Spin(10) Λe ⊕Λe 31 SU(5)

admit a Lagrangian orbit.
We shall prove that these groups admit a Lagrangian orbit on the blow-up at one point of

P(V ). We analyze in detail only the first case; the other cases are similar.
Let T1 be a torus acting on P(C n ⊕ (C n)∗) as t ([(v,w)]) = [(t−1v,w)]. This action is

Hamiltonian with moment map

µ([(v,w)]) = 1

2

‖v‖2

‖[v,w]‖2 .

Hence p = [(1, . . . , 1), (0 . . . , 0)] is the global maximum and, as usual (see [10]), given
λ = 1/2 − ε, ε ≈ 0, the Kähler cut is the blow-up of the complex projective space P(V ) at p,
which we denote by P(C n ⊕ (C n)∗)[p]. Since the SU(n)-action on Λ1 ⊕Λ∗

1 commutes with
the T1-action, it follows from Proposition 3.5 that SU(n) admits a Lagrangian orbit on P(C n⊕
(C n)∗)[p]. Summing up, we have the following homogeneous Lagrangian submanifolds.

G P(V )[p] Gop

SU(n) P(C n ⊕ (C n)∗)[(1,...,1),(0,...,0)] SO(n)

SU(2n+ 1) P(Λ2(C 2n+1)⊕ C 2n+1)[(0,...,0),(1,...,1)] Sp(n)

Sp(n) P(C 2n ⊕ C 2n)[(1,...,1),(0,...,0)] Sp(n− 1)

Spin(10) P(C 16 ⊕ C 16)[(1,...,1),(0,...,0)] SU(5)
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TABLE. Lagrangian orbits of simple Lie groups in complex projective spaces.

G ρ dimC P(V ) cond.

SU(n) 2Λ1 n(n+ 1)/2 − 1

SU(n) Λ1 ⊕Λ∗
1 2n− 1

SU(n) Λ1 ⊕ · · · ⊕Λ1︸ ︷︷ ︸
n

n2 − 1

SU(2n) Λ2 n(2n− 1)− 1 n ≥ 3

SU(2n+ 1) Λ2 ⊕Λ1 2n2 + 3n+ 1 n ≥ 2

SU(2) 3Λ1 3

SU(6) Λ3 19

SU(7) Λ3 34

SU(8) Λ3 55

Sp(n) Λ1 ⊕Λ1 4n− 1

Sp(3) Λ3 13

SO(n) Λ1 n− 1 n ≥ 3

Spin(7) spin.rep. 7

Spin(9) spin.rep. 15

Spin(10) Λe ⊕Λe 31

Spin(11) spin.rep. 31

Spin(12) Λe 31

Spin(14) Λe 63

E6 Λ1 26

E7 Λ1 55

G2 Λ2 6
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