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HAMILTONIAN AND SYMPLECTIC SYMMETRIES:

AN INTRODUCTION

ÁLVARO PELAYO

In memory of Professor J.J. Duistermaat (1942–2010)

Abstract. Classical mechanical systems are modeled by a symplectic mani-
fold (M,ω), and their symmetries are encoded in the action of a Lie group G on
M by diffeomorphisms which preserve ω. These actions, which are called sym-
plectic, have been studied in the past forty years, following the works of Atiyah,
Delzant, Duistermaat, Guillemin, Heckman, Kostant, Souriau, and Sternberg
in the 1970s and 1980s on symplectic actions of compact Abelian Lie groups
that are, in addition, of Hamiltonian type, i.e., they also satisfy Hamilton’s
equations. Since then a number of connections with combinatorics, finite-
dimensional integrable Hamiltonian systems, more general symplectic actions,
and topology have flourished. In this paper we review classical and recent re-
sults on Hamiltonian and non-Hamiltonian symplectic group actions roughly
starting from the results of these authors. This paper also serves as a quick
introduction to the basics of symplectic geometry.

1. Introduction

Symplectic geometry is concerned with the study of a notion of signed area,
rather than length, distance, or volume. It can be, as we will see, less intuitive
than Euclidean or metric geometry and it is taking mathematicians many years to
understand its intricacies (which is work in progress).

The word “symplectic” goes back to the 1946 book [164] by Hermann Weyl
(1885–1955) on classical groups. It derives from a Greek word meaning “complex”.
Since the word complex already had a precise meaning in mathematics, and was
already used at the time of Weyl, he took the Latin root of complex (which means
“plaited together”) and replaced it by the Greek root “symplectic”.

The origins of symplectic geometry are in classical mechanics, where the phase
space of a mechanical system is modeled by a symplectic manifold (M,ω), that is,
a smooth manifold M endowed with a nondegenerate closed 2-form ω ∈ Ω2(M),
called a symplectic form. At each point x ∈ M , ωx : TxM × TxM → R is a skew-
symmetric bilinear map, and given u, v ∈ TxM the real number ωx(u, v) is called
the symplectic area spanned by u and v. Intuitively, ω gives a way to measure area
along two-dimensional sections of M . The most typical example of a symplectic
manifold is a cotangent bundle, which comes endowed with a canonical symplectic
form.
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Initially it was the study of mechanical systems which motivated many of the
developments in symplectic geometry. Joseph-Louis Lagrange (1736–1813) gave the
first example of a symplectic manifold in 1808 in his study of the motion of the
planets under the influence of their mutual gravitational interaction [102,103]. An
explicit description of Lagrange’s construction and his derivation of what are known
today as Hamilton’s equations is given by Weinstein in [160, Section 2]. The origins
of the current viewpoint in symplectic geometry may be traced back to Carl Gustav
Jacob Jacobi (1804–1851) and then William Rowan Hamilton’s (1805–1865) deep
formulation of Lagrangian mechanics around 1835. Hamilton was expanding on and
reformulating ideas of Galileo Galilei (1564–1642), Christiaan Huygens (1629–1695),
Leonhard Euler (1707–1883), Lagrange, and Isaac Newton (1642–1727) about the
structure and behavior of orbits of planetary systems.

At the time of Newton and Huygens the point of view in classical mechanics
was geometric. Later Lagrange, Jacobi, and Hamilton approached the subject from
an analytic viewpoint. Through their influence the more geometric viewpoint fell
out of fashion. Further historical details and references are given by Weinstein
in [160]. Several treatments of mechanical systems in the 1960s and 1970s, notably
including [1,2,7,9,151], had an influence in the development of symplectic geometry.

The modern viewpoint in symplectic geometry starts with the important contri-
butions of a number of authors in the early 1970s (some slightly before or slightly
after), including the works of Ralph Abraham, Vladimir Arnold, Johannes J. Duis-
termaat, Victor Guillemin, Bertram Kostant, Paulette Libermann, George Mackey,
Jerrold Marsden, Clark Robinson, Jean-Marie Souriau, Shlomo Sternberg, and Alan
Weinstein. Even at these early stages, many other authors contributed to aspects
of the subject so the list is extensive and we do not make an attempt to cover it.

Symplectic geometry went through a series of developments in the period from
1970 to 1985 where connections with other areas flourished, including: (i) microlocal
and semiclassical analysis, as in the works of Duistermaat and Hörmander [35,37],
where Duistermaat played a leading role in establishing relations between the mi-
crolocal and symplectic communities in particular through his article on oscilla-
tory integrals and Lagrange immersions [35]; (ii) completely integrable systems, of
which Duistermaat’s article on global action-angle coordinates [36] may be con-
sidered to mark the beginning of the global theory; (iii) Poisson geometry, as in
Weinstein’s foundational article [161]; (iv) Lie theory and Kostant and Souriau’s
geometric quantization [98, 149] (in the early 1960s the quantum viewpoint had
already reached significant relevance in mathematics, see Mackey’s mathematical
foundations of quantum mechanics [108]), on which the works by Segal [147] and
Kirillov [94] had an influence; and (v) symplectic and Hamiltonian group actions,
as pioneered by Atiyah [10], Duistermaat and Heckman [37], Guillemin and Stern-
berg [75], Kostant [97], and Souriau [150].

An influential precursor in the study of global aspects in symplectic geometry, the
study of which is often referred to as symplectic topology, is Arnold’s Conjecture [9,
Appendix 9] (a particular case appeared in [8]; see Zehnder’s article [167] for an
expository account). Arnold’s Conjecture is a higher-dimensional analogue of the
classical fixed point theorem of Henri Poincaré (1854–1912) and George Birkhoff
(1884–1944) which says that any area-preserving twist of a closed annulus has at
least two geometrically distinct fixed points. This fixed point result can be traced
to the work of Poincaré in celestial mechanics [141], where he showed that the
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study of the dynamics of certain cases of the restricted Three-Body Problem may
be reduced to investigating area-preserving maps. This work led Poincaré to the
theorem, which he stated in [142] in 1912, and proved in several cases. The complete
proof was given by Birkhoff [19] in 1913.

Arnold realized that the higher-dimensional version of the result of Poincaré and
Birkhoff should concern symplectic maps, that is, maps preserving a symplectic
form, rather than volume-preserving maps, and formulated his conjecture. Arnold’s
Conjecture has been responsible for many developments in symplectic geometry (as
well as in subjects such as Hamiltonian dynamics).

In 1985 Gromov [66] introduced pseudo-holomorphic curve techniques into sym-
plectic geometry and constructed the first so-called symplectic capacity, a notion
of monotonic symplectic invariant later pioneered by Ekeland and Hofer [44,80,81]
and developed by Hofer and his collaborators, as well as many others, from the
angle of dynamical systems and Hamiltonian dynamics.

There have been many major developments since the early 1980s and on many
different fronts of symplectic geometry and topology; covering them (even very
superficially) would be beyond the scope of this paper. In this article we study
only on the topic of symplectic and Hamiltonian group actions (item (v) above)
starting roughly with the work of Atiyah and of Guillemin and Sternberg.

The phase space of a mechanical system is modeled by a symplectic manifold, and
its symmetries are described by symplectic group actions. The study of these actions
fits into a large body of work by the name of equivariant symplectic geometry, which
includes tools of current interest also in algebraic geometry, such as equivariant
cohomology, on which we will briefly touch.

Mathematically speaking, equivariant symplectic geometry is concerned with
the study of smooth actions of Lie groups G on symplectic manifolds M by means
of diffeomorphisms ϕ : M → M that pullback the symplectic form ω to itself:
ϕ∗ω = ω. Amap ϕ satisfying this condition is called a symplectomorphism, following
Souriau, or a canonical transformation. Actions satisfying this natural condition are
called symplectic. As a first example, let S1 be the group of unit complex numbers,
let S2 be the unit sphere, and endow M = S2 × (S1)2 with the product form of
any area forms on S2 and (S1)2. Then the action of G = (S1)2 by multiplication
on the right factor is symplectic.

In this paper we treat primarily the case when G is a compact, connected,
Abelian Lie group; that is, a torus T ≃ (S1)k. Let t be the Lie algebra of T , and let
t∗ be its dual Lie algebra. We think of t as the tangent space at 1 ∈ T . Equivalently,
a T -action is symplectic if LXM

ω = 0 for every X ∈ t, where L is the Lie derivative
and XM is the vector field generated by the T -action from X by the exponential
map. In view of the homotopy formula for the Lie derivative, this says

d(ω(XM , ·)) = 0, ∀X ∈ t.(1.1)

A fundamental subclass of symplectic actions admits a so-called momentum map

μ : M → t∗, which is a t∗-valued smooth function on M which encodes information
about M itself, the symplectic form, and the T -action, and it is characterized by
the condition

(1.2) −d〈μ,X〉 = ω(XM , ·), ∀X ∈ t.

Such special symplectic actions are called Hamiltonian (the momentum map was
introduced for any Lie group action by Kostant [97] and Souriau [149]). An example
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is given by S2 and T = S1 acting by rotations about the z-axis. In this case t∗ ≃ R
and, in spherical coordinates, μ : (θ, h) �→ h.

The fundamental fact here is that the right-hand side of equation (1.2) is a closed
1-form by (1.1) and being Hamiltonian may be rephrased as the requirement that
this form be exact. This is an extremely stringent condition—for instance, by (1.2)
it forces the action to have fixed points on a compact manifold. The obstruction
for a symplectic action to be Hamiltonian lies in the cohomology group H1(M ;R),
so symplectic actions on simply connected manifolds are Hamiltonian.

The advantage of having the existence of a momentum map μ : M → t∗ for a
symplectic action has led to a rich general theory, part of which is described in
this article. One can often find out information about (M,ω) and the T -action
through the study of μ. For instance, if M is compact and connected, the T -action
is effective, and dimM = 2dimT , Delzant proved [33] that the image μ(M) ⊂ t∗

characterizes (M,ω) and the T -action up to symplectic and T -equivariant transfor-
mations.

Hamiltonian actions have been extensively studied since the 1970s following
the seminal works of Atiyah [10], Delzant [33], Duistermaat and Heckman [37],
Guillemin and Sternberg [75], Kostant [97], and Souriau [150], and they have mo-
tivated the study of more general symplectic actions. Many symplectic actions of
interest in complex algebraic geometry and Kähler geometry are symplectic but
not Hamiltonian; one such case is the action of the 2-torus on the Kodaira variety,
which appears in Kodaira’s description [96, Theorem 19] of the compact complex
analytic surfaces which have a holomorphic (2, 0)-form that is nowhere vanishing,
described later (Example 5.10).

Other symplectic actions which do not admit a momentum map include exam-
ples of interest in differential geometry (e.g., multiplicty free spaces), and topology
(e.g., nilmanifolds over nilpotent Lie groups). Recently in [154], Susan Tolman has
constructed an example of a symplectic non-Hamiltonian S1-action with some, but
only finitely many, fixed points on a compact manifold (Theorem 3.14).

This paper is not a survey (which would require, due to the volume of works, a
longer paper) but rather a brief introduction to symmetries in symplectic geometry.
Approximately the first half of the paper concerns the period from 1970 to 2002,
where the emphasis is on Hamiltonian actions, its applications, and its implications,
including the interactions with integrable systems. The second half of the paper
concerns symplectic actions which are not necessarily Hamiltonian, with a focus
on developments that took place in the approximate period from 2002 to 2015.
Of course this separation is somewhat artificial, because Hamiltonian actions play
a fundamental role in the study of general symplectic actions. We will cover a
few representative proofs; most proofs about general symplectic actions use in an
essential way the Hamiltonian theory but also include other ingredients. Since there
is no momentum map μ in general, Morse theory for μ and Duistermaat–Heckman
theory, often used in the Hamiltonian case, must be replaced by other techniques.

Outline of topics. Section 2 gives an introduction to symplectic geometry. Sec-
tions 3 and 4 introduce the basics of symplectic and Hamiltonian Lie group actions.
Section 5 contains examples of Hamiltonian and symplectic non-Hamiltonian torus
actions. Section 6 includes classification results on symplectic Hamiltonian Lie
group actions. In most cases, the Lie group is compact connected and Abelian, but
a certain case of noncompact groups, which is pertinent to completely integrable
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systems, is also included. The material in Sections 7 and 8 focuses on developments
on symplectic non-Hamiltonian actions in the past 15 years, with an emphasis on
classification results.

2. Symplectic manifolds

Symplectic geometry is concerned with the study a notion of signed area, and
it displays a degree of flexibility and rigidity at the same time which makes it a
rich subject, the study of which is of interest well beyond its original connection to
classical mechanics.

2.1. Basic properties. For the basics of symplectic geometry we recommend the
books [22,83,116]. This section gives an overview of the basic notions of the subject
and presents the background needed for the following sections. Unless otherwise
specified, manifolds are C∞-smooth and have no boundary.

Definition 2.1. A symplectic manifold is a pair (M,ω) consisting of a smooth
manifold M and a smooth 2-form ω on M which is closed (i.e., dω = 0) and
nondegenerate (i.e., for each x ∈ M it holds that if u ∈ TxM is such that ωx(u, v) =
0 for all v ∈ TxM at x, then necessarily u = 0).

The form ω is called a symplectic form. At each x ∈ M , ωx : TxM × TxM → R
is a skew-symmetric bilinear map. If M = W is a vector space and ω : W ×W → R
is a skew-symmetric bilinear map, the pair (W,ω) is a symplectic manifold (often
called a symplectic vector space).

Example 2.2. In dimension 2, a symplectic form is an area form. Accordingly, a
surface with an area form is a symplectic manifold. A typical noncompact example
is the Euclidean space R2n with coordinates (x1, y1, . . . , xn, yn) and symplectic form∑n

i=1 dxi∧dyi. Any open subset U of R2n endowed with the symplectic form given
by this same formula is also a symplectic manifold.

Proposition 2.3. Let X be a smooth n-dimensional manifold and let (V, x1, . . . , xn)
be a smooth chart for X. To this chart we can associate a cotangent bundle chart

(T∗V, x1, . . . , xn, ξ1, . . . , ξn) on which we can define, in coordinates, the smooth 2-
form

∑n
i=1 dxi∧dξi. Then the expression for the 2-form is coordinate-independent,

that is, it defines a canonical smooth 2-form ωT∗X on the cotangent bundle T∗X,

which is, moreover, symplectic and exact.

Proof. It follows from
∑n

i=1 dxi ∧ dξi = −dα where α :=
∑n

i=1 ξi dxi, since α
is intrinsically defined (by a simple calculation using the definition of cotangent
bundle chart). �

A way to construct symplectic manifolds is by taking products and endowing
them with the product form; so S2 × R2n, T∗X × T∗Y are symplectic manifolds,
where X and Y are any manifolds.

There is a geometric interpretation of the closedness of a symplectic form as
follows. If (M,ω) is a symplectic manifold and S ⊂ M is an oriented surface, with
or without boundary, we define the following:

symplectic area of S :=

∫

S

ω ∈ R.(2.1)
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Proposition 2.4. Every point in a symplectic manifold (M,ω) has an open neigh-

borhood U such that if the oriented surface S is contained in U , then the symplectic

area of S depends only on the boundary ∂S of S, in the sense that it does not

change when smoothly deforming S inside of U while keeping ∂S fixed under the

deformation. If ω is exact, then U = M .

Proof. If dω = 0, locally near any x ∈ M , ω = dσ for some σ ∈ Ω1(M). So by
Stokes’ theorem, ∫

S

ω =

∫

S

dσ =

∫

∂S

σ,

and the result follows. �

By Propositions 2.3 and 2.4, the symplectic area of any oriented surface S in a
cotangent bundle (T∗X,ωT∗X) depends only on ∂S, and if ∂S = ∅, it is zero. The
nondegeneracy of ω gives:

Proposition 2.5. If (M,ω) is a symplectic manifold, then the mapping

X �→ ω(X , ·)

is an isomorphism between the tangent and the cotangent bundles TM → T∗M .

In other words, the symplectic form gives a correspondence between one-forms
and vector fields.

One can ask some basic questions about symplectic manifolds. For instance, one
can wonder:

Question 2.6. Does the three-dimensional sphere S3 admit a symplectic form?

The answer is “no”, because symplectic manifolds are even-dimensional; for oth-
erwise the nondegeneracy condition is violated, which follows from linear algebra.
Similarly:

Question 2.7. Is there a nonorientable smooth manifold that admits a symplectic
form?

The answer is “no”, because the nondegeneracy of ω implies that

ωn = ω ∧ · · · (n times) · · · ∧ ω

is a volume form giving an orientation to M , where 2n = dimM . To summarize:

Proposition 2.8. Symplectic manifolds are even dimensional and orientable.

Question 2.9. Does the four-dimensional sphere S4 admit a symplectic form?

Proposition 2.10. If (M,ω) is a compact symplectic manifold of dimension 2n,
its even-dimensional cohomology groups H2k(M ;R) �= 0, 0 � k � n, are nontrivial.

Proof. By Stokes’ theorem, since dω = 0, [ωk] is nontrivial in H2k(M ;R), 1 � k �

n. �

Corollary 2.11. The 2-sphere S2 is the only sphere Sn, n � 1, which admits a

symplectic form.

The question of whether a manifold admits a symplectic form is difficult. For in-
stance, if N is a compact oriented 3-manifold, Friedl and Vidussi [59] and Kutluhan
and Taubes [101] have studied when a compact 4-manifold of the form S1 ×N ad-
mits a symplectic form, which turns out to imply that N must fiber over the circle
S1.
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2.2. Symplectomorphisms. The natural maps between symplectic manifolds are
the diffeomorphisms which preserve the symplectic structure, they are called canon-

ical transformations, symplectic diffeomorphisms, or, following Souriau [150], sym-

plectomorphisms.

Definition 2.12. A symplectomorphism ϕ : (M,ω) → (M ′, ω′) between symplectic
manifolds is a diffeomorphism ϕ : M → M ′ which is also symplectic, that is, it sat-
isfies ϕ∗ω′ = ω. In this case we say that (M,ω) and (M ′, ω′) are symplectomorphic.

Recall that ϕ∗ω′ = ω means ω′
ϕ(x)(dxϕ(u), dxϕ(v)) = ωx(u, v) for every x ∈ M

and u, v ∈ TxM .

Remark 2.13. Roughly speaking, one may view symplectomorphisms as diffeomor-
phisms preserving the area enclosed by loops or, rather, the sum of the areas en-
closed by their projections onto a collection of two-dimensional planes. For in-
stance, if (M,ω) = (R6, dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3), with coordinates
(x1, y1, x2, y2, x3, y3), then you would want to preserve the area (counted by ω with
sign depending on the orientation of the region inside) of the projection of any loop
in R6 onto the (x1, y1), (x2, y2), and (x3, y3) planes. We learned how to think about
symplectomorphisms in this way from Helmut Hofer. An equivalent description of
symplectomorphisms was given for (R2n,

∑n
i=1 dxi ∧ dyi) by Arnold [7, pages 238,

239, Section E on “Canonical Transformations”].

The symplectic volume, or Liouville volume, of a symplectic manifold of dimen-
sion 2n is

vol(M,ω) :=
1

n!

∫

M

ωn.(2.2)

Of course, since symplectomorphisms preserve ω, they preserve the symplectic vol-
ume, but the converse is in general false (we discuss this in Section 2.6).

Since the late nineteenth century it has been known that symplectic manifolds
have no local invariants except for dimension. This is a result due to Jean-Gaston
Darboux (1842–1917).

Theorem 2.14 (Darboux [32]). Let (M,ω) be a symplectic 2n-dimensional man-

ifold. Near each point x0 ∈ M , there are coordinates (x1, y1, . . . , xn, yn) in which

ω =
∑n

i=1 dxi ∧ dyi. That is, any two symplectic manifolds (M,ω) and (M ′, ω′) of
the same dimension are locally symplectomorphic near any choice of points x0 ∈ M
and x′

0 ∈ M ′.

Theorem 2.14 gives an essential difference between symplectic and Riemannian
geometry, where the curvature is a local invariant.

Remark 2.15. Despite Darboux’s theorem, there are local aspects in symplectic
geometry which have only been understood recently. In these cases one is not
concerned with the local properties of the symplectic form itself but instead with a
geometric object, such as a Lie group action, a vector field, etc. We will see many
examples of this later in the paper.

In 1981 Weinstein referred to symplectic geometry [160] as “the more flexible
geometry of canonical (in particular, area preserving) transformations instead of the
rigid geometry of Euclid; accordingly, the conclusions of the geometrical arguments
are often qualitative rather than quantitative.”
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Manifestations of rigidity in symplectic geometry were discovered in the early
days of modern symplectic geometry by Yakov Eliashberg, Mikhael Gromov, and
others.

Theorem 2.16 (Eliashberg and Gromov [45,46,67]). The group of symplectomor-

phisms of a compact symplectic manifold is C0-closed in the group of diffeomor-

phisms.

The group of symplectomorphisms of a manifold has a rich structure, and basic
questions about it remain open; see Leonid Polterovich’s book [143]. Interest in
the behavior of symplectic matrices may be found in the early days of symplectic
geometry in important work of Clark Robinson [144, 145]. See also Arnold [6] for
work in a related direction.

2.3. Fixed point theorems. Poincaré showed [141] that questions concerning the
dynamics of certain cases of the restricted Three-Body Problem may be reduced
to questions involving area-preserving maps. He concluded that there is no rea-
sonable way to solve the problem explicitly in the sense of finding formulae for the
trajectories. Instead of aiming at finding explicitly the trajectories, when studying
dynamical systems the goal becomes to understand the analytical and topological
behavior of the trajectories. Of a particular interest are the constant ones, that
is, the fixed points. The development of the modern field of dynamical systems
was influenced by Poincaré’s work in celestial mechanics, which led him to the
Poincaré–Birkhoff theorem [19,142] in 1912, a result which assures the existence of
fixed points of certain area-preserving maps on an annulus. This result has had a
major influence in symplectic geometry. It was proved in full by Birkhoff in 1925.

We will formulate the result equivalently for the strip S := R× [−1, 1] covering
the annulus. A diffeomorphism F = (Q,P ) of S is an area-preserving periodic twist

if the following conditions hold: F preserves area; F preserves R×{±1} (boundary
invariance); F is orientation preserving and ±Q(q,±1) > ±q for all q (boundary
twisting); and F (q+1, p) = (1, 0)+F (q, p) for all p, q (periodicity). Two fixed points
(q1, p1) and (q2, p2) of F are geometrically distinct if p1 �= p2 or q1 − q2 is not an
integer.

Theorem 2.17 (Poincaré and Birkhoff [19,142]). An area-preserving periodic twist

F : S → S has at least two geometrically distinct fixed points.

There are many generalizations of this result; see for instance [58, 132] and the
references therein.

Arnold formulated the higher-dimensional analogue, the Arnold Conjecture [9]
(see also [14, 82, 83, 167]), which we discuss next.

Let (M,ω) be a compact symplectic manifold, let H : R×M → R be a smooth
function, and set Ht(x) := H(t, x) for every t ∈ R. Using ω and Ht, we define a
vector field Xt, the time-dependent exact Hamiltonian vector field associated with

H, by ω(Xt, ·) = −dHt. Then dϕt/dt = Xt(ϕt), ϕ0 = Identity, defines a family
{ϕt}t∈R of symplectomorphisms of (M,ω).

A map ϕ on M is Hamiltonian if it belongs to the flow ϕt of any time-dependent
exact Hamiltonian vector field on M . The Arnold Conjecture states that a Hamil-
tonian map on a compact symplectic manifold has at least as many fixed points as
a function on it has critical points; see Zehnder [167].

Weinstein [162] observed that the conjecture holds on compact manifolds when
the Hamiltonian map belongs to the flow of a sufficiently small Hamiltonian vector
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field. The first breakthrough on the conjecture was by Conley and Zehnder [29],
who proved it for the 2n-torus (a proof using generating functions was later given
by Chaperon [25]). The second breakthrough was by Floer [53–56].

2.4. Stability properties. The term stability concerns the problem of when two
volume forms (or two symplectic forms) can be intertwined by a diffeomorphism.
Of particular interest is to understand when the diffeomorphism type of a smooth
family of volume forms (or symplectic forms) remains constant, or stable. We start
by discussing the simplest case: When are two volume forms on the same manifold
diffeomorphic? In 1965 Jürgen Moser proved the following.

Theorem 2.18 (Moser [118]). If ω and τ are volume forms on a compact connected

oriented smooth manifold with
∫

M

ω =

∫

M

τ,

then there exists a diffeomorphism ϕ : M → M such that ϕ∗τ = ω.

Remark 2.19. It follows that the total symplectic area of S2 given by (2.1) com-
pletely determines the symplectic form on S2 (and S2 is the only symplectic sphere
according to Corollary 2.11).

This result is extended to fiber bundles in [92]. If the manifold is noncompact
we have the following.

Theorem 2.20 (Greene and Shiohama [68]). Let M be a noncompact connected

oriented smooth manifold, and let ω and τ be volume forms on M such that
∫

M

ω =

∫

M

τ � ∞.

Suppose that for every end ǫ of M , ǫ has finite volume with respect to ω if and only

if ǫ has finite volume with respect to τ . Then there is a diffeomorphism ϕ : M → M
such that ϕ∗τ = ω.

Without the assumption on the ends, the conclusion may not hold [68, page 406].
This result has been extended to fiber bundles with noncompact fibers in [134].

The simplest version of this statement is for trivial bundles. In this case instead
of considering two volume forms, we consider two smooth families of volume forms
ωt, τt, indexed by a compact manifold B. For each t ∈ B, Theorem 2.20 produces a
volume-preserving diffeomorphism ϕt but gives no information on how ϕt changes
with t. In [134] it is shown that the ϕt may be chosen to vary smoothly with t.

Moser also proved in 1965 an important stability result for symplectic forms:

Theorem 2.21 (Moser [118]). If {ωt}t∈[0,1] is a smooth family of cohomologous

symplectic forms on a compact connected smooth manifold M , then there exists a

smooth family {ϕt}t∈[0,1] of diffeomorphisms of M such that ϕ∗
tωt = ω0, and ϕ0 is

the identity on M .

Moser introduced a method, known as Moser’s method (or Moser’s trick), to
prove this stability result; we discuss it next. Let LX be the Lie derivative with
respect to a vector field X on M , and let iXω be the inner product of ω with X ,
obtained by inserting X in the first slot of ω. Recall the homotopy identity

LX = iX ◦ d + d ◦ iX .(2.3)
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Moser’s far-reaching idea was to differentiate the equation ϕ∗
tωt = ω0 to get

(2.4) ϕ∗
t (

d

dt
ωt + LXt

ωt) = 0,

where Xt is the time-dependent vector field generating {ϕt}t∈[0,1]. By (2.3), LXt
ωt =

d(iXt
ωt). Since [ωt] is constant, by Hodge theory on compact manifolds

there is a smooth family of 1-forms {σt}t∈[0,1] such that d
dtωt = dσt. By (2.4),

ϕ∗
td(σt + iXt

ωt) = 0. Choosing Xt to be determined by

σt + iXt
ωt = 0,

by compactness we can integrate Xt and determine {ϕt}t∈[0,1]. An extension of

Moser’s result to certain noncompact symplectic manifolds, under certain con-
straints, appears in [30].

2.5. Lagrangian submanifolds. In the early 1970s, Weinstein proved two theo-
rems [158,159] about what Maslov [112] called Lagrangian submanifolds, and which
were influential in the development of symplectic geometry. We discuss them next.

If V is a subspace of a symplectic vector space (W,ω), its symplectic complement

V ω consists of the w ∈ W such that ω(w, v) = 0 for all v ∈ V ; V is isotropic if
V ⊆ V ω (i.e., ω|V ×V = 0) and Lagrangian if V = V ω. If V is isotropic, 2 dimV �

dimW . If V is Lagrangian, 2 dimV = dimW .

Definition 2.22. A submanifold L of a symplectic manifold (M,ω) is isotropic if
TxL is an isotropic subspace of (TxM,ωx) for every x ∈ L, and it is Lagrangian if
TxL is a Lagrangian subspace of (TxM,ωx) for every x ∈ L.

The submanifold L is Lagrangian if and only if it is isotropic and 2 dimL =
dimM . For instance, the set of (x1, y1, . . . , xn, yn) ∈ R2n such that xi = ci, ci ∈ R,
i = 1, . . . , n is a Lagrangian submanifold of (R2n,

∑n
i=1 dxi ∧ dyi). Cotangent

bundles are a source of Lagrangian submanifolds: if X is a smooth manifold, the
image of a section s : X → T∗X of T∗X is Lagrangian if and only if ds = 0.

Let (M,ω) be any symplectic manifold, and let L be a compact Lagrangian sub-
manifold of (M,ω). For any set A ⊂ M , we denote by iL,A : L →֒ A the inclusion
of L into A. Weinstein proved [158] that if ω′ is another symplectic form on M for
which L is Lagrangian, then there are neighborhoods U, V of L and a diffeomor-
phism ϕ : U → V such that iL,V = ϕ ◦ iL,U and ϕ∗ω′ = ω. This result is known as
the Lagrangian neighborhood theorem and, using it, Weinstein proved theWeinstein

tubular neighborhood theorem, which we state next. Recall that a cotangent bundle
comes equipped with a canonical symplectic form (Proposition 2.3).

Theorem 2.23 (Weinstein [158]). Let j : L → T∗L be the embedding given by

the zero section. Let ωT∗L be the canonical cotangent bundle symplectic form on

T∗L. Then there exist neighborhoods V0 of L in T∗L, and V of L in M , and a

diffeomorphism φ : V0 → V such that iL,M = φ ◦ j and φ∗ω = ωT∗L. That is, any

compact Lagrangian submanifold may be viewed as the zero section of its cotangent

bundle, and it has a neighborhood which is symplectomorphic to a neighborhood of

this zero section, with respect to the canonical cotangent bundle symplectic form.

As we will see, Lagrangian submanifolds play a central role in the theory of
symplectic group actions (and in other parts of symplectic geometry—for instance
the study of intersections of Lagrangian submanifolds is an important research area;
see Arnold [5], Chaperon [24], and Hofer [79]).
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2.6. Monotonic symplectic invariants. Let B2n(r) be the 2n-ball of radius
r > 0 in R2n and let

Z2n(r) := { (x1, y1, . . . , xn, yn) | (x1)
2 + (y1)

2 < r2 } ⊂ R2n

be the 2n-cylinder of radius r. They both inherit the symplectic form ωR2n =∑n
i=1 dxi ∧ dyi from R2n.
If U, V are open subsets of R2n, a symplectic embedding f : U →֒ V is a smooth

embedding such that f∗ωR2n = ωR2n . Similarly one defines symplectic embeddings
f : (M,ω) →֒ (M ′, ω′) between general symplectic manifolds.

If there is a symplectic embedding f : U →֒ V , then the volume of U is at most
equal to the volume of V , that is, the volume provides an elementary embedding
obstruction. Moreover:

Theorem 2.24 (Gromov [66]). There is no symplectic embedding of B2n(1) into

Z2n(r) for r < 1.

This important result exhibits a rigidity property of symplectic transformations.
It shows that in addition to the volume there are subtler obstructions that come
from the symplectic form. These obstructions can be formalized using the notion
of symplectic capacity, which we discuss next.

Denote by E the category of ellipsoids in R2n,
n∑

i=1

(xi)
2 + (yi)

2

r2i
� 1, ri > 0, i = 1, . . . , n,

with symplectic embeddings induced by global symplectomorphisms of R2n as mor-
phisms; by allowing some ri to be ∞, E contains products B2d(1) × R2(n−d),
1 � d � n. A symplectic category [27] is a subcategory C of the category of
symplectic manifolds of dimension 2n, with symplectic embeddings as morphisms,
containing E and such that (M,ω) ∈ C implies that (M,λω) ∈ C for all λ > 0.

Definition 2.25. Let d be an integer, 1 � d � n. A symplectic d-capacity on
a symplectic category C is a functor c : C → ([0,∞],�) satisfying that c(M,ω) �

c(M ′, ω′) if there is a morphism from (M,ω) to (M ′, ω′) (monotonicity, this a
reformulation of functoriality); c(M,λω) = λc(M,ω) for all λ > 0 (conformality);
and c(B2n(1)) > 0, c(B2d(1)× R2(n−d)) < ∞, and c(B2(d−1)(1)× R2(n−d+1)) = ∞
(nontriviality). If d = 1, a symplectic d-capacity is called a symplectic capacity.

Symplectic (d-)capacities were introduced in Ekeland and Hofer’s work [44, 80].
The first known symplectic capacity was theGromov radius, constructed by Gromov
in [66] on the category of 2n-dimensional symplectic manifolds: at a 2n-dimensional
symplectic manifold (M,ω) it is the radius of the largest 2n-dimensional ball that
can be symplectically embedded into (M,ω). The fact that this defines a symplectic
capacity is a deep result; it follows from Theorem 2.24.

Today many constructions of symplectic capacities are known; see [27]. Therein
one can find for instance two of the best-known symplectic capacities, the Hofer–
Zehnder capacities and the Ekeland–Hofer capacities, but there are many more.
There are also invariants of symplectic manifolds which do not fit Definition 2.25;
see for instance [116].

The symplectic volume (2.2) is a symplectic n-capacity, and the Gromov radius
is a symplectic 1-capacity. For many years it was unknown whether symplectic
d-capacities could exist for intermediate values of d, that is, whether there were
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intermediate monotonic invariants measuring d-dimensional information about a
symplectic manifold of dimension 2n (this was a question of Hofer [80]). In the
following, a symplectic d-capacity satisfies the exhaustion property if the value of
the capacity on any open set equals the supremum of the values on its compact
subsets.

Theorem 2.26 (Guth [78]). If n � 3, symplectic d-capacities satisfying the exhaus-
tion property do not exist on any symplectic category C of 2n-dimensional manifolds

for 2 � d � n− 1.

The assumption (exhaustion property) in Guth’s theorem was removed in [139];
so, other than volume, the monotonic invariants of symplectic geometry only mea-
sure two-dimensional information (which answers Hofer’s question). As explained
therein, one of the steps in [78, 139] generalizes an idea of Polterovich.

An equivariant theory of symplectic capacities has been given in [51]; we will
discuss it later.

3. Symplectic and Hamiltonian actions

Since Lie groups are simultaneously groups and smooth manifolds, they natu-
rally act on other smooth manifolds and describe their symmetries. In symplectic
geometry, the smooth manifold is also symplectic, and the Lie group actions of
interest preserve the symplectic structure (called symplectic actions); an important
subclass of these (called Hamiltonian) admit in addition a so-called momentum
map. The goal of this section is to introduce the basic theory of symplectic and
Hamiltonian actions. Lie groups and Lie group actions are named after Sophus Lie
(1842–1899), one of the most influential figures in differential geometry and back
to whom many modern notions may be traced (including particular cases of the
momentum map, which we will define shortly).

3.1. Lie group actions. Let M be a smooth manifold, and let G = (G, ⋆) be a
Lie group with identity e. A smooth G-action on M is a smooth map G×M → M,
denoted by (g, x) �→ g ·x, such that e ·x = x and g ·(h ·x) = (g⋆h) ·x, for all g, h ∈ G
and for all x ∈ M ; for simplicity sometimes we write gh instead of g⋆h (or g ·h). For
instance, we have the following smooth actions. Let S1 be the circle, which may be
viewed in two isomorphic ways—either as a quotient of R by its integral lattice Z,
or as a subset of the complex numbers (R/Z,+) ≃ (S1 := {z ∈ C | |z| = 1}, ·). The
map S1 × Cn → Cn on Cn, (θ, (z1, z2, . . . , zn)) �→ (θz1, z2, . . . , zn), is a smooth S1-
action on Cn. Also, any Lie group G acts on itself by left multiplication g �→ gh and
analogously right multiplication, and also by the adjoint action Ad(h) : g �→ hgh−1.

We say that the G-action is effective if every element in T moves at least one
point in M , or equivalently

⋂
x∈M Gx = {e}, where Gx := {t ∈ G | t ·x = x} is the

stabilizer subgroup of the G-action at x. The action is free if Gx = {e} for every
x ∈ M . The action is semifree if for every x ∈ M either Gx = G or Gx = {e}.
The action is proper if the map G × M → M × M given by (g, x) �→ (g · x, x) is
proper; if G is compact, any smooth G-action on a smooth manifold is proper. The
set G · x := {t · x | t ∈ G} is the G-orbit that goes through the point x.

Proposition 3.1. The stabilizer subgroup Gx of a smooth G-action is a Lie sub-

group of G.
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Proof. Let f be the composite G → G×M , g �→ (g, x), and the smooth action map
G×M → M . Then Gx = f−1({x}). A famous theorem of Cartan [23] says that a
closed subgroup of a Lie group is a Lie subgroup. Since f is continuous, the result
follows from Cartan’s theorem. �

For each closed subgroup H of a Lie group G which can occur as a stabilizer
subgroup, the orbit type MH is defined as the set of all x ∈ M such that Gx

is conjugate to H. Each connected component of MH is a smooth G-invariant
submanifold of M . The connected components of the orbit types in M form a
Whitney stratification, called the orbit type stratification. There is a unique open
orbit type, called the principal orbit type, denoted by Mreg, which is the orbit type
of a subgroup H which is contained in every Gx, x ∈ M . A point x ∈ Mreg is
regular. The principal orbits are the orbits in Mreg.

If the G-action is effective, Mreg consists of the points x at which the action is
free. It is a consequence of Duistermaat and Kolk [39, Theorem 2.8.5] that if a
smooth G-action on a smooth manifold M is proper, then Mreg is an open dense
subset of M .

Let · : G × M → and ·′ : G × M → M be smooth G-actions, and let ϕ : M →
M ′ be a smooth map. The map ϕ is a G-equivariant diffeomorphism if it is a
diffeomorphism and ϕ(g · x) = g ·′ ϕ(x) for all g ∈ G, x ∈ M . Similarly one defines
a G-equivariant embedding.

Proposition 3.2. The stabilizer subgroup Gx of a proper smooth G-action on a

manifold M is compact and g �→ g · x induces a smooth G-equivariant embedding

αx : G/Gx → M with image G · x.

In [166] Yau gives obstructions to the existence of smooth actions. For exam-
ple [166, Corollary, p. 242] implies that if a compact connected Lie group G acts
effectively on an n-dimensional manifold M and there are σ1, . . . , σn ∈ H1(M ;Q)
such that σ1 ∪ · · · ∪ σn �= 0, then G is Abelian.

3.2. The infinitesimal action. Let T be a a compact connected Abelian Lie
group of dimension n. In fact, one can show [39, Corollary 1.12.4] that T is a torus,
i.e., T is isomorphic to a product of n circles

T ≃ ((R/Z)n,+) ≃ ((S1)n := {z ∈ C | |z| = 1}n, (·, . . . , ·)).

Let 1 be the identity in T , and let t := T1T be the Lie algebra of T . Let X ∈ t.
There exists a unique homomorphism αX : R → T with αX(0) = 1, α′

X(0) = X.
Define the exponential mapping exp: t → T by

exp(X) := αX(1).(3.1)

The exponential mapping exp : t → T is a surjective homomorphism from the
additive Lie group (t,+) onto T . Furthermore, tZ := ker(exp) is a discrete subgroup
of (t, +), and exp induces an isomorphism from t/tZ onto T , which we also denote
by exp. The set tZ is called the integral lattice.

Because t/tZ is compact, tZ has a Z-basis which also an R-basis of t, and each
Z-basis of tZ is an R-basis of t. Using coordinates with respect to an ordered Z-basis
of tZ, we obtain a linear isomorphism from t onto Rn which maps tZ onto Zn and
induces an isomorphism from T → Rn/Zn.

Using (3.1), one can generate vector fields on a smooth manifold from a given
action.
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Definition 3.3. For each X ∈ t, the vector field infinitesimal action XM of X on
M is defined by

XM (x) := tangent vector to t �→

curve in T︷ ︸︸ ︷
exp(tX) ·x︸ ︷︷ ︸

curve in M through x

at t = 0,(3.2)

i.e., XM (x) = d/dt|t=0 exp(tX) · x.

3.3. Symplectic and Hamiltonian actions: definitions. The key notion of
this paper is the following, which is valid for any Lie group G. Let (M, ω) be a
2n-dimensional symplectic manifold.

Definition 3.4. Let φ : G × M → M be any smooth G-action. We say that the
G-action is symplectic if G acts by symplectomorphisms, i.e., for each t ∈ G the
diffeomorphism φt : M → M given by φt(x) := t · x is such that (φt)

∗ω = ω. The
triple (M,ω, φ) is a called a symplectic G-manifold.

Often we write (M,ω,G) instead of (M,ω, φ). Unless otherwise stated, from
now on G = T is compact, connected, and Abelian, i.e., a torus. By (2.3) applied
to X = XM , the fact that the T -action is symplectic says that

(3.3) d(iXM
ω) = LXM

ω = 0, ∀X ∈ t,

since dω = 0. The case when iXM
ω is, moreover, an exact form for each X ∈ t,

and has been thoroughly studied in the literature. Indeed, there is a special type
of symplectic action which appears often in classical mechanics and which enjoys a
number of interesting properties.

Definition 3.5. Let t∗ be the dual of t. A symplectic action T × M → M is
Hamiltonian if there is a smooth map μ : M → t∗ such that Hamilton’s equation

−d〈μ(·), X〉 = iXM
ω, ∀X ∈ t,(3.4)

holds, where the left-hand side of equation (3.4) is the differential of the function
〈μ(·), X〉 : M → R.

Hamiltonian actions are named after William Rowan Hamilton (1805–1865).
There is a natural notion of symplectic and Hamiltonian vector fields. Given

a smooth function f : M → R, let Xf be the vector field defined by Hamilton’s
equation

ω(Xf , ·) = −df.(3.5)

Definition 3.6. A smooth vector field Y on a symplectic manifold (M,ω) is sym-
plectic if its flow preserves ω, and Hamiltonian if there exists a smooth function
f : M → R such that Y = Xf .

A T -action on (M,ω) is symplectic if and only if all the vector fields that it
generates through (3.2) are symplectic, and it is Hamiltonian if and only if all of
these vector fields are Hamiltonian.

Proposition 3.7. Any symplectic T -action on a simply connected manifold (M,ω)
is Hamiltonian.

Proof. The obstruction to iXM
ω being exact lies in the first cohomology group of

the manifold H1(M ;R) = 0. If the manifold is simply connected, then π1(M) = 0,
and hence H1(M ;R) = 0. �
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Remark 3.8. For each X ∈ t, it follows from equation (3.4) that zeros of XM

correspond to critical points of 〈μ(·), X〉 : M → R, and 〈μ(·), X〉 always has critical
points if M is compact.

The natural transformations between symplectic manifolds (M,ω) and (M ′, ω′)
with symplectic T -actions are the T -equivariant diffeomorphisms which preserve
the symplectic form, called T -equivariant symplectomorphisms. In the same way
one defines T -equivariant symplectic embeddings.

In certain situations, for instance when working on equivariant symplectic pack-
ing problems [51, 52, 126, 127, 133], it is useful to work with equivariant symplectic
embeddings or symplectomorphisms up to reparametrizations of the acting group.
In this case the equivariant condition (see Proposition 3.2 and the paragraph before
it) states that ϕ(g · x) = f(g) ·′ ϕ(x) for some Lie group isomorphism f : G → G′.

Remark 3.9. Kostant [97] and Souriau [149] gave the general notion of a momentum
map (see Marsden and Ratiu [110, pp. 369, 370] for the history). The momentum
map may be defined for a Hamiltonian action of any Lie group. It was a key tool
in Kostant [98] and Souriau discussed it at length in [150]. We only deal with the
momentum map for a Hamiltonian torus action.

3.4. Conditions for a symplectic action to be Hamiltonian. A Hamiltonian
S1-action on a compact symplectic 2n-dimensional manifold (M,ω) has at least
n + 1 fixed points. This is due to the fact that, if the fixed point set is discrete,
the momentum map is a perfect Morse function whose critical set is the fixed point
set. Hence the number of fixed points is

∑2n
i=0 rankHi(M ;R), so at least n+1 since

[1], [ω],
[
ω2

]
, . . . ,

[
ωn

]
are nontrivial cohomology classes (Proposition 2.10).

We are not aware of general criteria to detect when a symplectic action is Hamil-
tonian, other than in a few specific situations. In fact, one striking question follows.

Question 3.10. Are there non-Hamiltonian symplectic S1-actions on compact
connected symplectic manifolds with nonempty discrete fixed point sets?

In recent years there has been a flurry of activity related to this question; see for
instance Godinho [62,63], Jang [85,86], Pelayo and Tolman [135], and Tolman and
Weitsman [155]. Tolman and Weitsman proved that the answer to the question is
“no” for semifree actions (they used equivariant cohomological methods, covered
here in Section 4.4); see Section 3.1 for the notion of semifree action.

Theorem 3.11 (Tolman and Weitsman [155]). Let (M,ω) be a compact connected

symplectic manifold, equipped with a semifree symplectic S1-action with isolated

fixed points. If there is at least one fixed point, the S1-action is Hamiltonian.

In the Kähler case the answer to the question is a classical result of Frankel,
which started much of the activity in the subject.

Theorem 3.12 (Frankel [57]). Let (M,ω) be a compact connected Kähler manifold

admitting an S1-action preserving the Kähler structure. If the S1-action has some

fixed point, it is Hamiltonian.

Ono [119] proved the analogue of Theorem 3.12 for compact Lefschetz manifolds,
and McDuff [115, Proposition 2] proved a symplectic version (later generalized by
Kim [93]).

Theorem 3.13 (McDuff [115]). A symplectic S1-action on a compact connected

symplectic 4-manifold (M,ω) with some fixed point is Hamiltonian.
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McDuff [115, Proposition 1] also constructed a compact connected symplectic
6-manifold with a non-Hamiltonian symplectic S1-action with fixed point set equal
to a union of tori.

Recently Tolman has answered Question 3.10 in the positive:

Theorem 3.14 (Tolman [154]). There exists a symplectic non-Hamiltonian

S1-action on a compact connected manifold with exactly 32 fixed points.

Less is known for higher-dimensional Lie groups; the following corresponds to
[60, Theorem 3.13].

Theorem 3.15 (Giacobbe [60]). An effective symplectic action of an n-dimensional

torus on a compact connected symplectic 2n-dimensional manifold with some fixed

point must be Hamiltonian.

Theorem 3.15 appears as [40, Corollary 3.9]. If n = 2, this is deduced from [128,
Theorem 8.2.1] (Theorem 8.15 later in this paper) in view of [42, Theorem 1.1].

There are results by Ginzburg describing the obstruction to the existence of a
momentum map for a symplectic action (see [61]) where he showed that a symplectic
action can be decomposed as a cohomologically free action and a Hamiltonian
action.

Later we will give recent classifications of certain classes of symplectic actions,
for which a complete answer to the following question may be given in terms of
certain invariants.

Question 3.16. When is a symplectic torus action on a compact connected sym-
plectic manifold Hamiltonian? Describe precisely the obstruction to being Hamil-
tonian.

3.5. Monotonic symplectic G-invariants. Let us now discuss an equivariant
analogue of symplectic capacities (Section 2.6). The notion of symplectic G-action
is valid in general for any Lie group, not necessarily a torus; see Definition 3.4.

Let MG be the set of 2n-dimensional symplectic G-manifolds; it is a category
with morphisms given by G-equivariant symplectic embeddings.

A subcategory C of MG a symplectic G-category if (M,ω) ∈ C implies (M,λω) ∈
C for any λ > 0.

Definition 3.17. A generalized symplectic G-capacity is a map c : C → [0,∞] such
that if there is a G-equivariant symplectic embedding from M to M ′, M,M ′ ∈ C,
then c(M) � c(M ′) (monotonicity), and if λ > 0,M ∈ C, then c(M,λω) = λc(M,ω)
(conformality).

The nontriviality condition (Definition 2.25) has to be modified to make sense
in the equivariant setting, as follows. We say that c is tamed by N ∈ MG if
there is t ∈ (0,∞) such that if M ∈ C and there exists a G-equivariant symplectic
embedding from M to N , then c(M) � t, and if P ∈ C and there exists a G-
equivariant symplectic embedding from N to P , then t � c(P ).

In [51] a generalization of the Gromov radius to the equivariant setting is given.
Let Tk = (R/Z)k. In order to do this, the authors introduce the notion of symplectic

(Tk × Rd−k)-capacity as a generalized symplectic (Tk × Rd−k)-capacity that is, in
addition, tamed by B2n(1) and Z2n(1) (where these are endowed with standard
symplectic forms and actions).
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For 1 � k � m � n, the (m, k)-equivariant Gromov radius, defined on MRk , is,
at (M,ω), the radius of the largest ball B2m(r) that can be symplectically and Rk-
equivariantly embedded into (M,ω). Using elementary techniques, one can show
that this defines a symplectic Rk-capacity [51].

An example of interest in equivariant symplectic geometry may be constructed
as follows, on the category of 2n-dimensional symplectic manifolds endowed with
Hamiltonian Tn-actions. First, a toric ball packing P of M is a disjoint collection of
symplectically and Tn-equivariantly embedded balls. Consider, for each (M,ω), the

supremum of the set of 2n
√
f(P ) where f(P ) = vol(P, ω)/vol(B2n(1), ωR2n). In [51]

it is shown that this defines a symplectic Tn-capacity.
In fact, symplecticG-capacities give a framework to study invariants of integrable

systems. So far few such invariants are known beyond this case (and the semitoric
case also discussed in [51]).

4. Properties of Hamiltonian actions

Hamiltonian actions have been studied extensively in the past 40 years, and there
exists a rich theory with a number of striking results. Next we briefly discuss some
highlights, focusing on Hamiltonian T -actions when T is a torus. Let t be the Lie
algebra of T , and let t∗ be its dual Lie algebra.

4.1. Marsden–Weinstein–Meyer symplectic reduction. Even though one
cannot in general take quotients of symplectic manifolds by group actions and
get again a symplectic manifold, for Hamiltonian actions there is a notion of a
symplectic quotient.

Theorem 4.1 (Marsden and Weinstein [111], Meyer [113]). Let (M,ω) be a sym-

plectic manifold and suppose that the torus T acts on it in a Hamiltonian fashion

with momentum map μ : M → t∗. Let i : μ−1(t) →֒ M be the inclusion map and

suppose that T acts freely on μ−1(t). Then the orbit space

Mred,t := μ−1(t)/T

is a smooth manifold, the projection π : μ−1(t) → Mred,t is a principal T -bundle,
and there is a symplectic form ωred,t on Mred,t such that π∗ωred,t = i∗ω.

See also [2, Section 4.3] for further discussion of this result. The result is also
valid for any compact Lie group G (not necessarily G = T being a torus).

The fact that T acts freely on μ−1(t) implies that t is a regular value of μ and
hence the fiber μ−1(t) is a closed (dimM − dimT )-dimensional submanifold of M .

Definition 4.2. The symplectic quotient (Mred,t, ωred,t) is called the Marsden–

Weinstein–Meyer symplectic reduction of (M,ω) for the T -action at t.

Symplectic reduction has numerous applications in mechanics and geometry; see
for instance [110]. We will give an application in the proof of the upcoming result
Theorem 6.4.

4.2. Atiyah–Guillemin–Sternberg convexity. The Atiyah–Guillemin–Stern-
berg convexity theorem (1982, [10,75]) says that the image of the momentum map
μ(M) is a convex polytope.
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Theorem 4.3 (Atiyah [10], Guillemin and Sternberg [75]). If the torus T acts on a

compact connected symplectic manifold (M,ω) in a Hamiltonian fashion, the image

μ(M) under the momentum map μ : M → t∗ is a convex polytope in t∗. Moreover,

μ(M) is the convex hull of the image under μ of the fixed point set of the T -action.

Definition 4.4. The polytope μ(M) is called the momentum polytope of M .

The set μ−1(t) is connected for any t ∈ μ(M); this is known as Atiyah’s connec-
tivity theorem.

Remark 4.5. If x ∈ M , μ is constant at O := T · x, so if x′ ∈ O, Tx′O ⊆
ker(dμx′ : Tx′M → t∗) = (Tx′O)ωx , hence O is isotropic.

One precedent of the convexity theorem appears in Kostant’s article [99]. Other
convexity theorems were proven later by Birtea, Ortega, and Ratiu [20], Kirwan [95]
(in the case of compact, non-Abelian group actions), Benoist [15], and Giacobbe
[60], to name a few.

Convexity for Poisson actions has been studied by Alekseev, Flaschka and Ratiu,
Ortega and Ratiu, and Weinstein [4, 49, 121, 163] among others.

4.3. Duistermaat–Heckman theorems. At about the time when Atiyah and
Guillemin and Sternberg proved the convexity result, Duistermaat and Heckman
did influential work, which we describe next.

Let (M,ω) be a 2n-dimensional symplectic manifold, and let T be an m-dimen-
sional torus. Suppose that T acts on (M,ω) in a Hamiltonian fashion with momen-
tum map μ : M → t∗. Assume that μ is proper, that is, for every compact K ⊆ t∗,
the preimage μ−1(K) is compact.

Definition 4.6. The Liouville measure of a Borel subset E of M is mω(E) :=
1
n!

∫
E
ωn. The Duistermaat–Heckman measure mDH on t∗ is the pushforward mea-

sure μ∗mω of mω by μ, i.e.,

mDH(U) =
1

n!

∫

μ−1(U)

ωn.

Let λ be the Lebesgue measure in t∗ ≃ Rm.

Theorem 4.7 (Duistermaat and Heckman [37,38]). There is a function f : t∗ → R
such that f is a polynomial of degree at most n−m on each component of regular

values of μ, and

mDH(U) =

∫

U

f dλ.

Definition 4.8. The function f is called the Duistermaat-Heckman polynomial.

In the upcoming Example 5.1 we will find f explicitly.
If T acts freely on μ−1(0), then it acts freely on fibers μ−1(t) for which t ∈ t∗

is close to 0. Consider the Marsden–Weinstein–Meyer reduced space Mred,t =
μ−1(t)/T (see Section 4.1 or [2, Section 4.3]) with the reduced symplectic form
ωred,t.

Theorem 4.9 (Duistermaat and Heckman [37, 38]). The cohomology class [ωred,t]
varies linearly in t.

Theorem 4.9 does not hold for nonproper momentum maps; see [131, Remark
4.5].
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4.4. Atiyah–Bott–Berline–Vergne localization. A useful tool to study sym-
plectic S1-actions is equivariant cohomology because it encodes well-fixed point-set
information. It can, in particular, help to detect when a symplectic action is Hamil-
tonian; for instance, it was used by Tolman and Weitsman to study when a semifree
symplectic S1-action is Hamiltonian (Theorem 3.11).

Within symplectic geometry, equivariant cohomology is an active area. We only
give the basic definition, a foundational result, and an application. Although equi-
variant cohomology may be defined generally, we focus on S1-equivariant cohomol-
ogy. Let S1 act on a smooth manifold M .

Definition 4.10. The equivariant cohomology of M is H∗
S1(M) := H∗(M×S1 S∞).

For example, if x is a point, then H∗
S1(x;Z) = H∗(CP∞;Z) = Z[t].

If V is an equivariant vector bundle over M , the equivariant Euler class of V is
the Euler class of the vector bundle V ×S1 S∞ over M ×S1 S∞. The equivariant
Chern classes of equivariant complex vector bundles are defined analogously.

If M is oriented and compact, then the projection π : M×S1S∞ → CP∞ induces
a natural pushforward map, denoted by

∫
M
, π∗ : H

i
S1(M ;Z) → Hi−dimM (CP∞;Z).

In particular π∗(α) = 0 for all α ∈ Hi
S1(M ;Z) when i < dimM .

Let MS1

denote the fixed point set of the S1-action. For a component F of MS1

we denote by eS1(NF ) the equivariant Euler class of the normal bundle to F .

Theorem 4.11 (Atiyah and Bott [11], Berline and Vergne [18]). Fix α∈H∗
S1(M ;Q).

As elements of Q(t), ∫

M

α =
∑

F⊂MS1

∫

F

α|F
eS1(NF )

,

where the sum is over all fixed components F .

Next we give an application of this theorem to counting fixed points of symplectic
S1-actions. Let ω be a symplectic form on M , let S1 act symplectically on (M,ω),
and let J : TM → TM be a compatible almost complex structure. Let x be an
isolated fixed point of the S1-action.

Suppose dimM = 2n. There is an identification of TxM with Cn, where S1 acts
on Cn is by λ · (z1, . . . , zn) = (λξ1z1, . . . , λ

ξnzn); the nonzero integers ξ1, . . . , ξn are
determined up to permutation by the S1-action and symplectic form; they are the
weights in the isotropy representation TxM . Let c1(M)(x) and Λx be the sum of
the weights and the product of the weights at x, respectively.

Let σi be the ith elementary symmetric polynomial, and let t be the genera-
tor of H2

S1(x;Z). The restriction of the ith-equivariant Chern class is ci(M)|x =
σi(ξ1, . . . , ξn)t

i. For instance, c1(M)|x =
∑n

i=1 ξit and

eS1(Nx) = cn(M)|x =

⎛
⎝

n∏

j=1

ξj

⎞
⎠ tn.

Hence, ∫

x

ci(M)|x
eS1(Nx)

=
σi(ξ1, . . . , ξn)∏n

j=1 ξj
ti−n.

We identify c1(M)|x with c1(M)(x).
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Definition 4.12. The map c1(M) : MS1

→ Z, x �→ c1(M)(x) ∈ Z, is the Chern

class map of M .

Proposition 4.13 ([135]). If S1 acts symplectically on the compact symplectic

2n-dimensional manifold (M,ω) with isolated fixed points, and the range of

c1(M) : MS1

→ Z contains at most n elements, then
∑

x∈(c1(M))−1(k)
(Λx)

−1 = 0

for every k ∈ Z.

Proof. Let {c1(M)(x) |x ∈ MS1

}={k1, . . . , kℓ} and Ai :=
∑

x∈(c1(M))−1(ki)
(Λx)

−1

for 1 � i � ℓ. Consider the ℓ × ℓ matrix B given by Bij := (ki)
j−1, where

1 � i, j � ℓ. Since ℓ � n by assumption,
∫
M

c1(M)j = 0 for all j < ℓ. Applying

Theorem 4.11 to the elements 1, c1(M), . . . , c1(M)ℓ−1 gives a homogenous system
of linear equations B ·(A1, . . . , Aℓ) = (0, . . . , 0). Since B is a Vandermonde matrix,
det(B(ℓ)) �= 0. Thus A1 = · · · = Aℓ = 0. �

A map f : X → Y is somewhere injective if there is y ∈ Y such that f−1({y}) is
the singleton.

Theorem 4.14 ([135]). Let S1 act symplectically on a compact symplectic 2n-
manifold (M,ω) with isolated fixed points. If c1(M) is somewhere injective, the

S1-action has at least n+ 1 fixed points.

Proof. Since c1(M) is somewhere injective, there is k ∈ Z such that

∑

x∈(c1(M))−1(k)

(Λx)
−1 = 0.

By Proposition 4.13, this implies that the range c1(M) contains at least n + 1
elements. �

Using equivariant cohomology, other results are shown in [135]; for instance, if
S1 acts symplectically on a compact symplectic manifold with exactly two fixed
points, then M is a 2-sphere, or dimM = 6 and the weights at the fixed points are
a, b,−a− b or a+ b,−a− b ([135, Theorem 3]).

Another application of equivariant cohomology appeared in [64], where the au-
thors give a lower bound for the number of fixed points of any symplectic S1-action,
under a mild assumption.

4.5. Further topics. There exists an extensive theory of Hamiltonian actions
and related topics; see for instance the books by Guillemin [70], Guillemin and
Sjamaar [74], and Ortega and Ratiu [121]. There are several influential works
which we do not describe here for two reasons—brevity is the main one, but also
because they are more advanced and more suitable for a survey than a succinct
invitation to the subject. These works include Sjamaar and Lerman’s work [148]
on stratifications, Kirwan’s convexity theorem [95] (which generalizes the Atiyah–
Guillemin–Sternberg convexity theorem to the non-Abelian case), and Lerman’s
symplectic cutting [106] (a procedure to “cut” symplectic manifolds with applica-
tions in equivariant symplectic geometry and integrable systems).
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θ

(0,0,− 1)

(0,0,0)

(0,0,1)

(α,h) θ · (α,h)
= (θ + α,h)

h

1

− 1

μ(θ,h) = h

Figure 1. The unit sphere S2 endowed with the standard area
form ω = dθ ∧ dh and rotational action of S1 about the vertical
axis, as explained in the first part of Example 5.1. This action
has precisely two fixed points, the north and south poles of S2.
The momentum map is given by μ(θ, h) = θ for any θ ∈ S1 and
−1 � h � 1. The S1-orbits that are not fixed points are horizontal
circles, and ω vanishes on them, so they are isotropic (in fact,
Lagrangian), as in Remark 4.5.

5. Examples of Hamiltonian and symplectic actions

5.1. Symplectic Hamiltonian actions. The following are examples of Hamil-
tonian actions.

Example 5.1. Let ω = dθ ∧ dh be the standard area form in spherical coordi-
nates on S2. Endow (S2, ω = dθ ∧ dh) with the rotational S1-action about the
z-axis (Figure 1). Identifying the dual Lie algebra of S1 with R by choosing a
basis, the momentum map μ : S2 → R is μ(θ, h) = h, and the momentum polytope
(Definition 4.4) is Δ = [−1, 1]. The Duistermaat–Heckman polynomial (Defini-
tion 4.8) is f = 2πχ[−1,1] where χ[−1,1] is the characteristic function of [−1, 1] so
mDH([a, b]) = 2π(b− a) for any [a, b] ⊆ [−1, 1].

Example 5.2. Consider the n-dimensional complex projective space equipped with
a λ-multiple, λ > 0, of the Fubini–Study form (CPn, λ ·ωFS) and the rotational Tn-
action induced from the rotational Tn-action on the (2n+ 1)-dimensional complex
plane. This is a Hamiltonian action with momentum map

[z0 : z1 : . . . , zn] �→ (λ|z1|
2/

n∑

i=0

|zi|
2, . . . , λ|zn|

2/

n∑

i=0

|zi|
2).

If e1 = (1, 0, . . . , 0) ∈ Rn, . . . , en = (0, . . . , 0, 1) ∈ Rn, the momentum polytope is

Δ = convex hull {0, λe1, . . . , λen}.(5.1)

The category of Hamiltonian actions, while large, does not include some simple
examples of symplectic actions, for instance free symplectic actions on compact
manifolds, because Hamiltonian actions on compact manifolds always have fixed
points (this is implied, for instance, by Theorem 4.3).
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5.2. Symplectic non-Hamiltonian actions. Theorem 3.14 concerns a non-Ham-
iltonian symplectic action with isolated fixed points; next we give examples with
nonisolated fixed points.

5.2.1. Examples with symplectic orbits. In the following examples there is no mo-
mentum map; they are examples of what we later call maximal symplectic actions

(discussed in Section 7); each orbit of such an action is a symplectic submanifold

in the following sense. If V is a subspace of a symplectic vector space (W,ω), it is
symplectic if V ω ∩ V = {0} (i.e., ω|V×V is nondegenerate).

Definition 5.3. A submanifold C of a symplectic manifold (M,ω) is symplectic if
TxC is a symplectic subspace of (TxM,ωx) for every x ∈ C.

If i : C →֒ M is the inclusion, then (C, i∗ω) is a symplectic manifold. In the
same spirit of the results of Section 2.5, a theorem of Weinstein [158] states that a
neighborhood of C is determined by the restriction of the symplectic form to the
submanifold, together with the isomorphism class of its normal bundle (a symplectic
vector bundle); see [116, pp. 100, 101] for details.

Remark 5.4. It can be shown that the fixed point set in the Atiyah–Guillemin–
Sternberg convexity theorem (Theorem 4.3) is a finite union of connected symplectic
submanifolds of M .

The T -orbits of a Hamiltonian action are isotropic (Remark 4.5), and hence if
a symplectic T -action has symplectic orbits, it is not Hamiltonian; this is the case
for the following examples.

Example 5.5. Let (M,ω) :=((R/Z)2n,
∑n

i=1 dxi∧dyi) with coordinates (x1, y1, . . . ,
xn, yn), and let the 2-torus T := (R/Z)2 act by translation on the first two com-
ponents (x1, y1). This action is free, symplectic, and the orbits are symplectic and
diffeomorphic to T .

Example 5.6. Let (M,ω) := ((R/Z)2 × S2, dx ∧ dy + dθ ∧ dh) and T := (R/Z)2

act by translations on the T -factor (Figure 2). This action is free, symplectic, and
the orbits are symplectic, diffeomorphic to T .

Example 5.7. Let P := S2 × (R/Z)2 equipped with the product area form of the
standard symplectic form dθ ∧ dh on S2 and the standard area dx ∧ dy form on
the torus (R/Z)2. The 2-torus T := (R/Z)2 acts freely by translations on the right
factor of P . Let the finite group Z/2Z act on S2 by rotating each point horizontally
by 180 degrees, and let Z/2Z act on (R/Z)2 by the antipodal action on the first
circle R/Z. The diagonal action of Z/2Z on P is free. Therefore, the quotient space
S2×Z/2 Z (R/Z)

2 is a smooth manifold. Let M := S2×Z/2 Z (R/Z)
2 be endowed with

the symplectic form ω and the T -action inherited from the ones on P . The action of
T on M is symplectic but not free, and the T -orbits are symplectic two-dimensional
tori. The orbit space M/T = S2/(Z/2Z) is a smooth orbifold with two singular
points of order 2, the south and north poles of S2 (this orbifold plays a role in the
classification of maximal symplectic actions, which we will see in Section 8.1).

5.2.2. Examples with Lagrangian or coisotropic orbits. The following are examples
of what we later call coisotropic actions (discussed in Section 7); in particular, each
orbit of such an action is a coisotropic submanifold, meaning the following. If V is
a subspace of a symplectic vector space (W, ω), it is coisotropic if V ω ⊆ V . If V is
coisotropic, then 2 dimV � dimW .
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Definition 5.8. A submanifold C of a symplectic manifold (M,ω) is coisotropic if
TxC is a coisotropic subspace of (TxM,ωx) for every x ∈ C.

A submanifold C of the symplectic manifold (M,ω) is Lagrangian if and only if
it is both isotropic and coisotropic.

Example 5.9. The action of T := (R/Z)2n−1 on M := ((R/Z)2n,
∑n

i=1 dxi ∧ dyi)
with coordinates (x1, y1, . . . , xn, yn) by translation on the first 2n− 1 components
(x1, y1, . . . , xn−1, yn−1, xn) is symplectic, free, and hence not Hamiltonian (for in-
stance by Theorem 4.3 a Hamiltonian action on a compact manifold has fixed
points). Its orbits are coisotropic submanifolds diffeomorphic to T . The action
of T ′ := (R/Z)n on M by translations on (x1, . . . , xn) is free, symplectic, and its
orbits are Lagrangian (hence also coisotropic) submanifolds diffeomorphic to T ′.

Example 5.10 (Kodaira [96] and Thurston [152]). An important example of a non-
Hamiltonian symplectic torus action with Lagrangian orbits is the Kodaira variety
[96] (also known as the Kodaira–Thurston manifold [152]), which is a torus bundle
over a torus constructed as follows. Consider the product symplectic manifold
(R2 × (R/Z)2, dx1 ∧ dy1 + dx2 ∧ dy2), where (x1, y1) ∈ R2 and (x2, y2) ∈ (R/Z)2.
Consider the action of (j1, j2) ∈ Z2 on (R/Z)2 by the matrix group of

(
1 j2
0 1

)
,

where j2 ∈ Z (notice that j1 does not appear intentionally in the matrix). The
quotient of this symplectic manifold by the diagonal action of Z2 gives rise to a
compact connected symplectic 4-manifold, the Kodaira variety,

(KT, ω) := (R2 ×Z2 (R/Z)2, dx1 ∧ dy1 + dx2 ∧ dy2),(5.2)

on which T := R/Z × R/Z acts symplectically and freely, where the first circle
acts on the x1-component, and the second circle acts on the y2-component (one
can check that this action is well defined). This is a free symplectic action with
Lagrangian orbits.

Example 5.11. Consider (M,ω) := ((R/Z)2 × S2, dx ∧ dy + dθ ∧ dh). There is
an action of T := R/Z × R/Z on (M,ω), where the first circle of T acts on the

Figure 2. A symplectic 2-torus action on the product (R/Z)2×S2

of a 2-torus and a 2-sphere. The first circle of the acting 2-torus
translates the first component of the first factor of the product.
The second circle acts on the 2-sphere by rotations about the z-
axis (as described in Example 5.1 and Figure 1). This is a simple
example of a symplectic action which is not Hamiltonian; see Ex-
ample 5.11.
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first circle of the left factor of M , and the right circle acts on S2 by rotations
about the z-axis; see Figure 2. This T -action is symplectic. However, it is not a
Hamiltonian action because it does not have fixed points (the existence of which is
implied, for Hamiltonian actions, for instance by Theorem 4.3). It is also not free,
because the stabilizer subgroup of (p, q), where q is the north or south pole of S2,
is a circle. The principal orbits (Section 3.1) are products of the circle orbits of the
left factor (R/Z)2, and the circle orbits of the right factor (all orbits of the right
factor are circles but the north and south poles, which are fixed points). Because
the principal orbits are obtained by keeping the y-coordinate on the left factor
constant and the height on the right factor constant, we have that dy = dh = 0, so
they are Lagrangian.

6. Classifications of Hamiltonian actions

In a few cases there exist classifications of Hamiltonian G-actions on compact
symplectic manifolds, in terms of symplectic invariants. In this section we discuss
several classifications, beginning with the case in which G is an n-dimensional torus
acting on a 2n-dimensional manifold.

6.1. Classification of symplectic-toric manifolds. Let T be an n-dimensional
torus with Lie algebra t and dual Lie algebra t∗.

6.1.1. Delzant polytopes. Let Δ be an n-dimensional convex polytope in t∗. Let F
be the set of codimension 1 faces of Δ. Let V be the set of vertices of Δ. If v ∈ V ,
let Fv := {f ∈ F | v ∈ f}. Following Guillemin [70, p. 8], we define a special type
of polytope.

Definition 6.1. We say that Δ is a Delzant polytope if the following two conditions
hold. First, for each f ∈ F there are Xf ∈ tZ and λf ∈ R such that the hyperplane
which contains f has defining equation 〈Xf , ξ〉+λf = 0, ξ ∈ t∗, and Δ is contained
in the set of ξ∈ t∗ such that 〈Xf , ξ〉+λf � 0. Second, for every v∈V , {Xf | f ∈Fv}
is a Z-basis of tZ.

See Figure 3 for examples of Delzant polytopes. The definition implies that for
each f ∈ F there exists Xf ∈ tZ and λf ∈ R such that

Δ = {ξ ∈ t∗ | 〈Xf , ξ〉+ λf � 0, ∀f ∈ F}.

It follows that for every v ∈ V , the cardinality of Fv is n.
If z ∈ CF and f ∈ F , we write z(f) := zf , which we view as the coordinate of z

with index f . Let π : RF → t be the linear map π(t) :=
∑

f∈F tf Xf . Because, for
any vertex v of the Delzant polytope Δ, the Xf with f ∈ Fv form a Z-basis of tZ
which is also an R-basis of t, we have π(ZF ) = tZ and π(RF ) = t. Hence π induces
a surjective Lie group homomorphism π′ : RF /ZF = (R/Z)F → t/tZ, and hence a
surjective homomorphism exp ◦ π′ : RF /ZF → T. Write n := kerπ and

N := ker(exp ◦ π′),(6.1)

which is a compact Abelian subgroup of RF /ZF . Actually, N is connected (see [41,
Lemma 3.1]) and isomorphic to n/nZ, where nZ := n ∩ ZF is the integral lattice in
n of the torus N .
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Figure 3. Examples of two-dimensional Delzant polytopes, i.e.,
Delzant polygons, as in Definition 6.1. Each of these polygons
arises as the image under the momentum map of a compact con-
nected symplectic 4-manifold with an effective Hamiltonian 2-torus
action (the fact that these polygons uniquely determine the man-
ifold is due to Theorem 6.4). In fact, the triangle corresponds to
the standard CP 2 (described in Example 5.2), the trapezoid to a
Hirzebruch surface, and the square to CP 1 × CP 1.

6.1.2. Symplectic-toric manifolds. The following notion has been a source of inspi-
ration to many authors working on symplectic and Hamiltonian group actions and
integrable Hamiltonian systems.

Definition 6.2. A symplectic-toric manifold is a compact connected symplectic
manifold (M,ω) of dimension 2n endowed with an effective Hamiltonian action of
a torus T of dimension n.

Remark 6.3. The Duistermaat–Heckman polynomial f (Definition 4.8) associated
to the momentum map of a symplectic-toric manifold will be constant according to
Theorem 4.7 (in fact, equal to the characteristic function of the image μ(M) of the
momentum map).

Often, one denotes the symplectic-toric manifold by (M,ω, T ); this is a particular
example of a symplectic T -manifold (Definition 3.4).

The S1-action on S2 by rotations about the z-axis (Figure 1 and Example 5.1) is
effective and Hamiltonian, and (S2, dθ∧dh, S1) is a symplectic-toric manifold with
momentum polytope [−1, 1]. According to a striking result of Thomas Delzant,
[−1, 1] completely characterizes (S2, ω, S1).

Theorem 6.4 (Delzant [33]). For every Delzant polytope Δ ⊂ t∗ there exists a

symplectic-toric manifold (M∆, ω∆, T ) with momentum map μ∆ : M∆ → t∗ such

that μ∆(M∆) = Δ. If (M,ω, T ) is a symplectic-toric manifold with momentum

map μ : M → t∗, then μ(M) is a Delzant polytope; moreover, (M,ω, T ) is T -
equivariantly symplectomorphic to the symplectic-toric manifold (M∆, ω∆, T ) if,

and only if, up to translations, μ(M) coincides with Δ.

Proof. We will prove the existence part [33, pp. 328, 329] following [41], i.e., that
for any Delzant polytope Δ there exists a symplectic-toric manifold M∆ such that
μ∆(M∆) = Δ, and which is obtained as the reduced phase space for a linear
Hamiltonian action of the torus N in (6.1) on a symplectic vector space E, at a
value λN of the momentum mapping of the Hamiltonian N -action, where E, N ,
and λN are determined by Δ.

On the complex vector space CF of all complex-valued functions on F , we have
the action of RF /ZF , where t ∈ RF /ZF maps z ∈ CF to the element t · z ∈ CF
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defined for f ∈ F by (t · z)f = e2πi tf zf . The infinitesimal action of Y ∈ RF =
Lie(RF /ZF ) is given by (Y · z)f = 2πiYf zf , which is a Hamiltonian vector field
defined by the function

z �→ 〈Y, μ(z)〉 =
∑

f∈F

Yf
|zf |

2

2
=

∑

f∈F

Yf
xf

2 + yf
2

2
,(6.2)

with respect to ωC
F

:= i
4π

∑
f∈F dzf ∧dzf = 1

2π

∑
f∈F dxf ∧dyf , if zf = xf +iyf ,

with xf , yf ∈ R.
Since (6.2) depends linearly on Y , we view μ(z) as an element of (RF )∗ ≃ RF

with coordinates

(6.3) μ(z)f = |zf |
2/2 = (xf

2 + yf
2)/2, f ∈ F.

In other words, the action of RF /ZF on CF is Hamiltonian with respect to ωC
F

and
with momentum map μ : CF → (Lie(RF /ZF ))∗ given by (6.3). It follows that the
action of N on CF is Hamiltonian with momentum map μN := ι∗n ◦ μ : CF → n∗,
where ιn : n → RF denotes the identity and ι∗n : (RF )∗ → n∗ its transpose, which
assigns to a linear form on RF its restriction to n.

Let λ denote the element of (RF )∗ ≃ RF with the coordinates λf , f ∈ F .
Write λN = ι∗n(λ). It follows from Guillemin [70, Theorems 1.6 and 1.4] that λN

is a regular value of μN . Hence, Z := μN
−1({λN}) is a smooth submanifold of

CF , and the action of the torus N on Z is free. By Theorem 4.1 the N -orbit
space M∆ := Z/N is a smooth 2n-dimensional manifold such that the projection
p : Z → M∆ exhibits Z as a principal N -bundle over M∆. Moreover, there is

a unique symplectic form ω∆ on M∆ such that p∗ω∆ = ιZ
∗ωC

F

, where ιZ is the
identity viewed as a smooth mapping from Z to CF (M∆ is the Marsden–Weinstein–

Meyer reduction of (CF , ωC
F

)).
On the N -orbit space M∆, we still have the action of the torus (RF /ZF )/N ≃ T ,

with momentum mapping μ∆ : M → t∗ determined by π∗ ◦μ∆ ◦p = (μ−λ)|Z . The
torus T acts effectively on M and μ∆(M) = Δ (see Guillemin [70, Theorem 1.7]),
and therefore we have constructed a symplectic-toric manifold (M∆, ω∆) with T -
action and momentum map μ∆ : M∆ → t∗ such that μ∆(M) = Δ. �

The fiber over t ∈ Δ of the momentum map is diffeomorphic to a torus of
dimension equal to the dimension of the lowest-dimensional face F of Δ such that
t ∈ F .

There have been generalizations of Theorem 6.4, for instance to multiplicity-free
group actions by Woodward [165], and to symplectic-toric orbifolds by Lerman and
Tolman [107]. An extension to noncompact symplectic manifolds has been recently
given by Karshon and Lerman [90].

Because any symplectic-toric manifold is obtained by symplectic reduction of CF ,
it admits a compatible T -invariant Kähler metric. Delzant [33, Section 5] observed
that Δ gives rise to a fan, and that the symplectic-toric manifold with Delzant
polytope Δ is T -equivariantly diffeomorphic to the toric variety M toric defined by
the fan. Here M toric is a complex n-dimensional complex analytic manifold, and
the action of T on M toric has an extension to a complex analytic action on M toric

of the complexification TC of T .
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A detailed study of the relation between the symplectic-toric manifold andM toric

appears in [41]. The following proof illustrates the interplay between the symplectic
and algebraic viewpoints.

Proposition 6.5. Every symplectic-toric manifold is simply connected.

Proof. A symplectic-toric manifold may be provided with the structure of a toric
variety defined by a complete fan (Delzant [33, Section 5], Guillemin [70, Appendix
1]). Danilov [31, Theorem 9.1] observed that such a toric variety is simply con-
nected: indeed, it has an open cell which is isomorphic to the complex space Cn,
whose complement is a complex subvariety of complex codimension 1, so all loops
may be deformed into the cell and contracted within the cell to a point. �

Remark 6.6. The manifold KT in (5.2) fits in the third case in Kodaira [96, The-
orem 19]. Thurston rediscovered it in [152] and observed that there is no Kähler
structure on KT compatible with the symplectic form (by noticing that the first
Betti number b1(KT) is 3). It follows from Proposition 6.5 that no other symplectic
2-torus action on KT is Hamiltonian.

6.2. Classification of log symplectic-toric manifolds. Recently there has been
a generalization of symplectic-toric geometry to a class of Poisson manifolds, called
log-symplectic manifolds.

Log-symplectic manifolds are generically symplectic, and they degenerate along a
normal crossing configuration of smooth hypersurfaces. Guillemin, Miranda, Pires,
and Scott initiated their study in [71]. They proved the analogue of Delzant’s
theorem (Theorem 6.4) in the case where the degeneracy locus of the associated
Poisson structure is a smooth hypersurface.

Most often degeneracy loci for Poisson structures are singular. In [69] the authors
considered the mildest possible singularities, normal crossing hypersurfaces, and
gave an analogue of Theorem 6.4. Next we informally state this result to give a
flavor of the ingredients involved (being precise would be beyond the scope of this
paper). The notion of isomorphism below generalizes the classical notion taking
into account the log-symplectic structure.

Theorem 6.7 ([69]). There is a one-to-one correspondence between isomorphism

classes of oriented compact connected log symplectic-toric 2n-manifolds and equiv-

alence classes of pairs (Δ,M), where Δ is a compact convex log affine polytope of

dimension n satisfying the Delzant condition and M → Δ is a principal n-torus
bundle over Δ with a vanishing toric log obstruction class.

Log-symplectic geometry and its toric version are an active area of research
related to tropical geometry and the extended tropicalizations of toric varieties of
Kajiwara [87] and Payne [125].

Convexity properties of Hamiltonian torus actions on log-symplectic manifolds
were studied in [72], where the authors prove a generalization of Theorem 4.3.

6.3. Classification of Hamiltonian S1-spaces. In addition to Delzant’s classifi-
cation (Theorem 6.4) there have been other classifications of Hamiltonian G-actions
on compact symplectic 2n-manifolds. In this section we outline the classification
when G = S1 and n = 2, due to Karshon.

Definition 6.8. A Hamiltonian S1-space is a compact connected symplectic 4-
manifold (M,ω) equipped with an effective Hamiltonian S1-action.
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This definition is valid for manifolds of any dimension 2n � 2, but since only
the two- and four-dimensional cases are completely understood (and the two-dimen-
sional case is included in Delzant’s theorem), the terminology Hamiltonian S1-space

is traditionally reserved for 2n = 4.
Let (M,ω, S1) be a Hamiltonian S1-space. We assign to it a labeled graph

as follows. Let μ : M → R be the momentum map of the S1-action. For each
component Σ of the set of fixed points of the S1-action there is one vertex in the
graph, labeled by μ(Σ) ∈ R.

If Σ is a surface, the corresponding vertex has two additional labels—one is the
symplectic area of Σ and the other one is the genus of Σ.

Let Fk be a subgroup of k elements of S1. For every connected component
C of the set of points fixed by Fk, there is an edge in the graph, labeled by the
integer k > 1. The component C is a 2-sphere, which we call a Fk-sphere. The
quotient circle S1/Fk rotates it while fixing two points, and the two vertices in the
graph corresponding to the two fixed points are connected in the graph by the edge
corresponding to C.

Theorem 6.9 (Ahara and Hattori [3], and Audin [12, 13]). Every Hamiltonian

S1-space is S1-equivariantly diffeomorphic to a complex surface with a holomorphic

S1-action which is obtained from CP 2, a Hirzebruch surface, or a CP 1-bundle over

a Riemann surface with appropriate circle actions by a sequence of blowups at the

fixed points.

Let A and B be connected components of the set of fixed points. The S1-action
extends to a holomorphic action of the group C× of nonzero complex numbers.
Consider the time flow given by the action of the subgroup {exp(t) | t ∈ R}.

Definition 6.10. The component A is greater than the component B if there is
an orbit of the C×-action which at time t = ∞ approaches a point in A, and at
time t = −∞, a point in B.

Take any of the complex surfaces with S1-actions considered by Ahara and Hat-
tori, and Audin, and assign a real parameter to every connected component of the
fixed point set such that these parameters are monotonic with respect to the partial
ordering we have just described. If the manifold contains two fixed surfaces, one
assigns a positive real number to each of them so that the difference between the
numbers is given by a formula involving the previously chosen parameters.

Karshon proved that for every such a choice of parameters there exists an invari-
ant symplectic form and a momentum map on the complex surface such that the
values of the momentum map at the fixed points and the symplectic areas of the
fixed surfaces are equal to the chosen parameters. Moreover, every two symplectic
forms with this property differ by an S1-equivariant diffeomorphism.

Theorem 6.11 (Karshon [89]). If two Hamiltonian S1-spaces have the same graph,

then they are S1-equivariantly symplectomorphic. Moreover, every compact four-

dimensional Hamiltonian S1-space is S1-equivariantly symplectomorphic to one of

the spaces listed in the paragraph above.

A generalization of this classification result to higher dimensions has been re-
cently obtained by Karhson and Tolman [91]. The authors construct all possible
Hamiltonian torus actions for which all the nonempty reduced spaces are two di-
mensional (and not single points), the manifold is connected, and the momentum
map is proper as a map to a convex set.
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The study of symplectic and Hamiltonian circle actions is an active topic of re-
search; see for instance McDuff and Tolman [117] where they show many interesting
properties. For instance, they prove that if the weights of a Hamiltonian S1-action
on a compact symplectic symplectic manifold (M,ω) at the points at which the
momentum map is a maximum are sufficiently small, then the circle represents a
nonzero element of π1(Ham(M,ω)), where Ham(M,ω) is the group of Hamiltonian
symplectomorphisms of (M,ω). See also Sections 3.4 and 4.4, where we discuss
properties of symplectic S1-actions that are not necessarily Hamiltonian. In this
direction, see also [62, 63].

In [65] Godinho and Sabatini construct an algorithm to obtain linear relations
among the weights at the fixed points which under certain conditions determine a
family of vector spaces which contain the admissible lattices of weights.

6.4. Classification of symplectic-semitoric manifolds. Semitoric systems, or
symplectic-semitoric manifolds, are a rich class of integrable systems which, in
the case of compact manifolds, takes place on Karshon’s Hamiltonian S1-spaces.
Let (M,ω) be a symplectic four-dimensional manifold. The Poisson brackets of
f, g ∈ C∞(M) are defined by {f, g} := ω(Xf ,Xg), where Xf is as in (3.5).

Definition 6.12. An integrable on (M,ω) is a smooth map F = (f1, f2) : M → R2

such that {f1, f2} = 0, and Xf1 ,Xf2 are linearly independent almost everywhere.

A general theorem of Eliasson characterizes the so-called nondegenerate singu-
larities (the term “nondegenerate” here is a natural generalization of “Morse non-
degenerate” which is more involved to define [138]). The following is a particular
instance of this general theorem and is of interest to us.

Theorem 6.13 (Eliasson [47,48]). Let F := (f1, f2) : (M,ω) → R2 be an integrable

system, all of the singularities of which are nondegenerate, and with no hyperbolic

blocks. Then there exist local symplectic coordinates (x1, x2, ξ1, ξ2) about every non-

degenerate critical point m, in which m = (0, 0, 0, 0), and

(F − F (m)) ◦ ϕ = g ◦ (q1, q2),

where ϕ = (x1, x2, ξ1, ξ2)
−1 and g is a diffeomorphism from a small neighborhood of

the origin in R4 into another such neighborhood, such that g(0, 0, 0, 0) = (0, 0, 0, 0)
and (q1, q2) is, depending on the rank of the critical point, as follows. If m is a

critical point of F of rank 0, (q1, q2) is given by q1 = (x2
1+ξ21)/2 and q2 = (x2

2+ξ22)/2,
or

q1 = x1ξ2 − x2ξ1 and q2 = x1ξ1 + x2ξ2.(6.4)

If m is a critical point of F of rank 1, then q1 = (x2
1 + ξ21)/2 and q2 = ξ2.

The assumption of not having hyperbolic blocks is simply to reduce the com-
plexity of the statement of the theorem, but it is not really needed to understand
the discussion which follows.

Remark 6.14. The analytic case of Theorem 6.13 is due to Rüssmann [146] for two
degrees of freedom systems, and to Vey [156] in any dimension.

Definition 6.15. A semitoric system F := (f1, f2) : M → R2 on a connected
symplectic 4-manifold (M,ω) is an integrable system such that f1 is the momentum
map of an effective Hamiltonian S1-action, f1 is a proper map, and the singularities
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of F are nondegenerate, without hyperbolic blocks, and hence they are of the form
given in Theorem 6.13.

Remark 6.16. Above, f1 gives rise to a Hamiltonian S1-action on M , and f2 gives
rise to a Hamiltonian R-action on M . Their flows, one after another, define a
Hamiltonian (S1 × R)-action. The precise relation between (S1 × R)-actions and
semitoric systems appears in [51, Section 3].

Definition 6.17. Let F := (f1, f2) : (M,ω) and F ′ := (f ′
1, f

′
2) : (M

′, ω′) → R2

be semitoric systems. They are isomorphic if there exists a symplectomorphism
ϕ : (M,ω) → (M ′, ω′) and a smooth map φ : F (M) → R with ∂2φ > 0, such that
ϕ∗f ′

1 = f1 and ϕ∗f ′
2 = φ(f1, f2).

Semitoric systems are classified if each singular fiber contains at most one singu-
lar point of type (6.4); these are called focus-focus (or nodal, in algebraic geometry).
The singular fiber containing a focus-focus point is a 2-torus pinched at the focus-
focus point (i.e., topologically a 2-sphere with the north and south poles identified);
systems satisfying this condition are called simple.

Theorem 6.18 ([136, 137]). Simple semitoric systems F := (f1, f2) : (M,ω) →
R2 are determined, up to isomorphisms, by a convex polygon Δ endowed with

a finite collection of interior points, each of which is labeled by a tuple (k ∈
Z,

∑∞

i,j=1 aijX
iY j). Here Δ is obtained from F (M) by appropriately unfolding the

singular affine structure induced by F , the interior points in Δ are the images

of the focus-focus values under the map F (M) → Δ which unfolds the singular

affine structure, k encodes how twisted the singular Lagrangian fibration F is at

the focus-focus point, and the Taylor series
∑∞

i,j=1 aijX
iY j encodes the singular

dynamics of the vector fields Xf1 ,Xf2 at the particular focus-focus point. Con-

versely, given a convex polygon1 with interior points p1, . . . , pn, and for each pℓ a

label (k ∈ Z,
∑∞

i,j=1 aijX
iY j), one can construct (M,ω) and a semitoric system

F : (M,ω) → R2 having this data as invariants.

In [123] Palmer defined the moduli space of semitoric systems, which is an in-
complete metric space, and constructed its completion. In [88] the connectivity
properties of this space were studied.

Four-dimensional symplectic-toric manifolds (treated in Section 6.1.2) are a par-
ticular case of compact semitoric systems (the only invariant is the convex polygon).
Every semitoric system takes place on a Hamiltonian S1-space, and the relation has
been made explicit recently. We call a Karshon graph the labeled directed graph
in Theorem 6.11.

Theorem 6.19 (Hohloch, Sabatini, and Sepe [84]). Let F := (f1, f2) : (M,ω) → R2

be a simple semitoric system on a compact manifold with n focus-focus critical points

and an underlying Hamiltonian S1-space (M,ω, S1) with momentum map f1. Then
the convex polygon Δ in Theorem 6.18 and n determine the Karshon graph, thus

classifying (M,ω, S1) up to S1-equivariant symplectomorphisms.

There has been recent work generalizing the convex polygon in Theorem 6.18
to higher-dimensional semitoric systems by Wacheux [157]. The Fomenko school

1This is really not just any polygon, but a polygon of so-called semitoric type, which generalizes
the notion of a Delzant polygon (which was applicable to symplectic-toric manifolds) to this more
general context.
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has powerful and far-reaching methods to study the topology of singularities of
integrable systems [21]. In [140, Section 7] there is an outline of how to carry
out the theory of symplectic-toric manifolds and integrable systems we have just
described in the case when R is replaced by the p-adic numbers (in the context of
the univalent formalization of the p-adic numbers).

Remark 6.20. In general, symplectic G-capacities (Section 3.5) provide a general
setting to define monotonic invariants of integrable systems.

7. Properties of symplectic actions

This section summarizes basic properties of general symplectic actions, including,
under certain restrictions (of what types of orbits are allowed), a precise description
of their stabilizer subgroups and symplectic normal forms in a neighborhood of an
orbit. These are required ingredients for the construction of symplectic invariants
in the upcoming section but they are also of independent interest.

7.1. Fundamental form of a symplectic action. Let T be a torus with Lie
algebra t. Suppose that T acts symplectically on a connected symplectic manifold
(M,ω).

Proposition 7.1. There is a unique antisymmetric bilinear form ωt on t such that

ωt(X,Y ) = ωx(XM (x), YM (x))(7.1)

for every X, Y ∈ t and every x ∈ M . It is called the fundamental form.

Proof. Let X and Y be smooth vector fields onM satisfying LXω = 0 and LYω = 0.
Then, since LXω = 0, by the homotopy identity (2.3) and the closedness of ω,

(7.2) i[X ,Y]ω = LX (iYω) = iX (d(iY ω)) + d(iX (iYω)) = −d(ω(X , Y)).

Take X = XM , Y = YM , X, Y ∈ t. The Lie brackets of two vector fields
vanish when the flows of the vector fields commute, so [XM , YM ] = 0. Then,
by (7.2), d(ω(XM , YM )) = 0, and the connectedness of M implies that x �→
ωx(XM (x), YM (x)) is constant. �

The fundamental form ωt is an essential ingredient in the study of symplectic
actions. In the case of Hamiltonian actions, it takes a simple form: if (M,ω) is a
compact connected symplectic 2n-manifold endowed with an effective symplectic
action of an n-torus T , the T -action is Hamiltonian if and only if ωt = 0 and
H1(M/T ; R) = 0 (compare with Theorem 3.15).

7.2. Benoist–Ortega–Ratiu symplectic normal form. We state the main re-
sult of this section for a general proper Lie group action (see Section 3.1 for the
notion of proper action).

Let (M,ω) be a symplectic manifold with a proper symplectic action of a Lie
group G. Let x ∈ M , H := Gx. Let l be the kernel of ωt, gM (x) := Tx(G · x), and
let αx be as in Proposition 3.2.

Let ωG/H be the G-invariant closed 2-form (αx)
∗ω on G/H, and let ωW be the

symplectic form on W := gM (x)ωx/(gM (x)ωx ∩ gM (x)) defined as the restriction to
gM (x)ωx of ωx.

The map X+h �→ XM (x) is a linear isomorphism from l/h to gM (x)ωx ∩ gM (x).
The linearized action of H on TxM is symplectic and leaves gM (x) ≃ g/h invariant,
acting on it via the adjoint representation. It also leaves gM (x)ωx invariant and
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induces an action of H on (W, ωW ) by symplectic linear transformations. Let
E := (l/h)∗×W, on which h ∈ H acts by sending (λ, w) to (((Ad(h))∗)−1(λ), h ·w).
Choose AdH-invariant linear complements k and c of h and l in g, respectively. Let
X �→ Xl : g → l and X �→ Xh : g → h denote the linear projection from g onto l and
h with kernel equal to c and k, respectively. These projections are AdH-equivariant.

Define the 1-form η# on G× E by

η#(g, (λ,w))((d1Lg)(X), (δλ, δw)) := λ(Xl) +
1

2
ωW (w, δw +Xh · w)

for all g ∈ G, λ ∈ (l/h)∗, w ∈ W , and all respective vectors X ∈ g, δλ ∈ (l/h)∗,
δw ∈ W .

Let G×H E denote the orbit space of G×E for the proper and free action of H
on G× E, where h ∈ H acts on G× E by sending (g, e) to (g h−1, h · e).

The action of G on G×H E is induced by the translational action of G on G×E.
Let π : G ×H E → G/H be induced by (g, e) �→ g : G × E → G. Because H

acts on E by means of linear transformations, this projection exhibits G×H E as a
G-homogeneous vector bundle over the homogeneous space G/H, with fiber E and
structure group H.

If πH : G × E → G ×H E denotes H-orbit mapping, then there is a unique
smooth 1-form η on G×H E, such that η# = πH

∗ η.
Endow G×H E with the 2-form π∗ωG/H + dη. This 2-form is symplectic.
The following is the local normal form of Benoist [15, Proposition 1.9] and Ortega

and Ratiu [120] for a general proper symplectic Lie group action.

Theorem 7.2 (Benoist [15], Ortega and Ratiu [120]). There is an open H-invariant

neighborhood E0 of the origin in E, an open G-invariant neighborhood U of x in

M , and a G-equivariant symplectomorphism Φ: (G×H E, π∗ωG/H + dη) → (U, ω)
such that Φ(H · (1, 0)) = x.

For Hamiltonian actions this result had been obtained before by Marle [109] and
Guillemin and Sternberg [76, Section 41].

7.3. Symplectic, Lagrangian, or coisotropic orbits. Later in the paper we
will give classifications of classes of symplectic actions, depending on what type of
orbits they have—symplectic, Lagrangian, or coisotropic.

7.3.1. Symplectic orbits. The first general type of symplectic actions we are inter-
ested in is the following.

Definition 7.3. Suppose that a torus T acts effectively and symplectically on a
compact connected symplectic manifold. If there is a symplectic T -orbit of the
largest dimension, that is, a dimT -dimensional symplectic orbit, we say that the
T -action is a maximal symplectic action.

Examples satisfying this definition were given in Section 5.2.1.

Remark 7.4. Since symplectic manifolds are even dimensional (Proposition 2.8),
dimT is even.

Since the orbits of a Hamiltonian action are isotropic, we have the following:

Proposition 7.5. A maximal symplectic action is not Hamiltonian.
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7.3.2. Coisotropic orbits. Symplectic torus actions with some Lagrangian orbit fall
in the category of coisotropic actions.

Definition 7.6. Suppose that a torus T acts effectively and symplectically on a
compact connected symplectic manifold. If there is a coisotropic T -orbit, we call
the T -action coisotropic.

The simplest coisotropic actions are given in Examples 5.1 and 5.2 (Figure 1); in
these examples the coisotropic action is also Hamiltonian (in contrast with Proposi-
tion 7.5). In fact, the principal orbits of a symplectic-toric manifold are Lagrangian,
and hence coisotropic, so every manifold in Delzant’s classification (Theorem 6.4)
gives an example of a coisotropic action. We gave other examples in Section 5.2.2.

The following is a consequence of Theorem 7.2.

Corollary 7.7. Let (M,ω) be a compact connected symplectic manifold, and let T
be a torus which acts effectively and symplectically on (M,ω). If x ∈ M and the

orbit T · x is coisotropic, then T · x is a principal orbit. Furthermore, dimM =
dimT + dim l.

Proof. We use Theorem 7.2 with G = T . Since T is Abelian, the adjoint action
of H = Tx on t is trivial, which implies that the coadjoint action of H on the
component (l/h)∗ is trivial. Let T ·x be a coisotropic orbit. Then W is trivial. This
implies that the action of H on E = (l/h)∗ is trivial, and T ×H E = T ×H (l/h)∗ is
T -equivariantly isomorphic to (T/H) × (l/h)∗, where T acts by left multiplication
on the first factor. It follows that in the model all stabilizer subgroups are equal to
H, and therefore Ty = H for all y in the T -invariant open neighborhood U of x in
M . Since Mreg is dense in M , there are y ∈ U such that Ty = {1}, and therefore
Tx = H = {1}, so the orbit T ·x is principal. The statement dimM = dimT +dim l

also follows. �

A similar argument to that in the proof of Corollary 7.7 using Theorem 7.2
shows:

Proposition 7.8. Let (M,ω) be a compact connected symplectic manifold, and let

T be a torus which acts effectively and symplectically on (M,ω). If there exists a

coisotropic principal T -orbit, then all principal T -orbits are coisotropic.

In a similar vein, one can show that every principal T -orbit is Lagrangian if and
only if some principal T -orbit is Lagrangian, if and only if dimM = 2dimT and
ωt = 0.

In Guillemin and Sternberg [77] we find the following notion.

Definition 7.9. A symplectic manifold with a Hamiltonian action of a compact
Lie group is called a multiplicity-free space if the Poisson brackets of any pair of
invariant smooth functions vanish.

Proposition 7.10. For a torus T acting on a compact connected symplectic mani-

fold (M,ω), the principal orbits are coisotropic if and only if (M,ω) is a multiplicity-

free space.

Proof. Let x ∈ Mreg, and let tM (x) := Tx(T · x). Since Mreg is fibered by the
T -orbits, tM (x) is the common kernel of the df(x), with f any T -invariant smooth
function. Because −df = iXf

ω, we have that tM (x)ωx is the set of all Xf (x), with
f any T -invariant smooth function. So if the principal T -orbits are coisotropic,
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Xf (x), Xg(x) ∈ tM (x)ωx ∩ tM (x) for any T -invariant functions f, g. It follows that
{f, g}(x) = ωx(Xf (x),Xg(x)) = 0. Since Mreg is dense in M , {f, g} ≡ 0. The
converse is similar. �

7.4. Stabilizer subgroups. Let T be a torus, and let (M,ω) be a compact con-
nected symplectic manifold endowed with an effective symplectic action of T . If
x ∈ M , when is the stabilizer subgroup Tx of x connected? We know from Propo-
sition 3.1 that Tx is a Lie subgroup of T and by Proposition 3.2 that the quotient
T/Tx is diffeomorphic to T · x, so understanding Tx helps us to understand T · x.
Moreover, Tx is essential in the symplectic normal form (Section 7.2), which we use
later.

Let tx be the Lie algebra of Tx, which consists of the X ∈ t such that XM (x) = 0.
That is, tx is the kernel of the map αx : X �→ XM (x) from t to TxM .

Lemma 7.11 ([128]). Let (M,ω) be a compact connected symplectic manifold with

a symplectic T -action. If the T -action is maximal symplectic, then Tx is a finite

Abelian group for every x ∈ M .

Proof. Since the fundamental form ωt is point-independent, it is nondegenerate and
kerωt = 0. Since tx ⊂ kerωt, tx is trivial. �

Corollary 7.12. Let (M,ω) be a symplectic manifold endowed with an effective

symplectic T -action. If there is a symplectic dimT -orbit, then every T -orbit is

symplectic and dimT -dimensional.

Proof. By Lemma 7.11, dimTx = 0. The result follows from the existence of the
diffeomorphism T/Tx → T · x in Proposition 3.2. �

Since every Tx is finite, it follows from the tube theorem of Koszul (see [100] or
[39, Theorem 2.4.1]) and the compactness of M that there exists only finitely many
different stabilizer subgroups.

The following is statement (1) (a) in [15, Lemma 6.7]:

Lemma 7.13 (Benoist [15]). Let (M,ω) be a compact connected symplectic mani-

fold with a symplectic T -action. If the T -action is coisotropic, then Tx is a subtorus

of T .

Proof. We use Theorem 7.2 with G := T , with H := Tx acting trivially on (l/h)∗

in E = (l/h)∗ × W . Recall that t ∈ T acts on T ×H E by sending H · (t′, e) to
H · (t t′, e). When t = h ∈ H, H · (h t′, e) = H · (h t′ h−1, h · e) = H · (t′, h · e)
since T is Abelian, and the action of H on T ×H E is represented by the linear
symplectic action of H on W .

Since dimM = (dimT + dim(l/h) + dimW ) − dimH and because the assump-
tion that the principal orbits are coisotropic implies dimM = dimT + dim l (see
Corollary 7.7), dimW = 2dimH.

Write m = dimH. The action of H by means of symplectic linear trans-
formations on (W, ωW ) leads to a direct sum decomposition of W into pairwise
ωW -orthogonal two-dimensional H-invariant linear subspaces Ej , 1 � j � m. For
h ∈ H and 1 � j � m, let ιj(h) be the restriction to Ej ⊂ W ≃ {0} × W ⊂
(l/h)∗×W of the action of h on E. Note that detιj(h) = 1, because ιj(h) preserves
the restriction to Ej × Ej of ωW , which is an area form on Ej .

Averaging any inner product in each Ej over H, we obtain an H-invariant inner
product βj on Ej , and ιj is a Lie group homomorphism from H to SO(Ej , βj), the
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group of linear transformations of Ej which preserve βj and orientation. If h ∈
H,w ∈ Wreg, then h · w =

∑m
j=1 ιj(h)wj where w =

∑m
j=1 wj , wj ∈ Ej . Therefore

ιj(h)wj = wj for all 1 � j � m implies h = 1. Hence ι : H →
∏m

j=1 SO(Ej , βj),

i(h) = (ι1(h), . . . , ιm(h)), is a Lie group isomorphism, so H is connected. Hence
H is a subtorus of T . �

8. Classifications of symplectic actions

The properties we have studied in Section 7 are going to allow us to construct
symplectic invariants of general symplectic actions. The current constructions rely
on the use of symplectic normal forms in the neighborhood of an orbit, and then
use these normal forms to build a global model of the manifold, the action, and the
symplectic form. In a few cases, there are enough constraints that it is possible to
give complete classifications in the spirit of Delzant’s pioneering work (Theorem 6.4)
for symplectic Hamiltonian actions.

8.1. Classification of maximal symplectic actions. In this section we describe
the invariants of a compact connected symplectic manifold (M,ω) endowed with
a maximal symplectic T -action of a torus T (as in Definition 7.3) and we use
them to construct a model of (M,ω) and the T -action, up to T -equivariant sym-
plectomorphisms. By Remark 7.4, dimM − dimT is even, say 2k. Finally, we
state a classification result, also up to T -equivariant symplectomorphisms, when
dimT = dimM − 2 (the “large” acting torus forces enough symmetries to be able
to classify).

8.1.1. Orbit space. Let π : M → M/T be π(x) := T · x. The orbit space M/T is
endowed with the maximal topology for which π is continuous, which is a Hausdorff
topology. Since M is compact and connected, M/T is compact and connected. By
Lemma 7.11, Tx is a finite Abelian group for every x ∈ M . By the tube theorem
([39, Theorem 2.4.1]) there is a T -invariant open neighborhood Ux of T ·x, a disk Dx

disk-centered at 0 ∈ Ck, and a T -equivariant diffeomorphism Φx : Ux → T ×Tx
Dx,

where the quotient on the right-hand side is obtained by the action of h ∈ Tx on
T ×Dx which sends (g, x) to (gh−1, h ·x), Tx acts by linear transformations on Dx,
and the T -action on T ×Tx

Dx is induced by the translational action of T on the
left factor of T ×Dx. Then Φx induces a homeomorphism Dx/Tx → π(Ux), which,
when composed with the projection Dx → Dx/Tx, gives a map φx : Dx → π(Ux).
It is easy to check that the collection {(π(Ux), Dx, φx, Tx)}x∈M is an orbifold atlas
for M/T . In the particular case that the symplectic T -action on M is free (i.e., Tx

is trivial for every x ∈ M), M/T is a smooth manifold, and this atlas is a smooth
manifold atlas for M/T .

8.1.2. Flat connection. Consider the symplectic form ωC
k

:= 1
2i

∑k
j=1 dz

j ∧ dzj on

Ck. The translational action of T on T × Ck descends to an action on T ×Tx
Ck.

The fundamental form ωt is nondegenerate, so it determines a unique symplectic
form on T . The product symplectic form on T ×Ck is defined at (t, z) and a pair of

vectors ((X, u), (X ′, u′)) by ωt(X,X ′)+ωC
k

(u, u′), and it descends to a symplectic

form on T ×Tx
Ex, which we denote by ωt ⊕ ωC

k

. Theorem 7.2 implies that for
each x ∈ M there exists an open Tk-invariant neighborhood E of 0 in Ck, an open
T -invariant neighborhood Vx of x in M , and a T -equivariant symplectomorphism
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Fx : (T ×Tx
E,ωt ⊕ ωC

k

) → (Vx, ω) such that Fx([1, 0]Tx
) = x. It follows from this

symplectic normal form that:

Proposition 8.1. The collection Ω := {Ωx}x∈M , where Ωx := (Tx(T · x))ωx , is a

smooth distribution on M and π : M → M/T is a smooth principal T -bundle for

which Ω is a T -invariant flat connection.

Let ψ : M̃/T → M/T be the universal cover of M/T based at p0 = π(x0),
x0 ∈ M . Let Ix be the maximal integral manifold of Ω containing x ∈ M . The
inclusion ix : Ix → M is an injective immersion, and π ◦ ix : Ix → M/T is an

orbifold covering. Since M̃/T covers any covering of M/T , it covers Ix, which is a

manifold. Because a covering of a smooth manifold is a smooth manifold, M̃/T is
a smooth manifold. Readers unfamiliar with orbifolds may consult [128, Section 9].

8.1.3. Monodromy. Let πorb
1 (M/T ) be the orbifold fundamental group of M/T

based at p0. Then πorb
1 (M/T )× M̃/T → M̃/T , ([γ], [ρ]) �→ [ργ], is a smooth action

of πorb
1 (M/T ) on M̃/T , which is transitive on each fiber M̃/T p of ψ : M̃/T → M/T .

If ρ : [0, 1] → M/T is a path with ρ(0) = p0, let λρ : [0, 1] → M be the horizontal
lift with respect to Ω such that λρ(0) = x0, where horizontal means dλρ(t)/dt ∈
Ωλρ(t)

for every t ∈ [0, 1]. Since the orbifold connection Ω is flat, λρ(1) = λδ(1) if ρ

is homotopy equivalent to δ in the space of orbifold paths in M/T which start at p0
and end at a given point p. Therefore, there exists a unique group homomorphism
μ : πorb

1 (M/T ) → T such that

λγ(1) = μ([γ]) · x0.(8.1)

The homomorphism μ is the monodromy homomorphism of Ω, and it does not
depend on x0 ∈ M .

8.1.4. Model. Let πorb
1 (M/T ) act on M̃/T × T by [γ]([ρ], t) = ([ργ−1], μ([γ]) · t).

One can show that this action is free, and hence M̃/T ×πorb
1 (M/T ) T is a compact

connected smooth manifold. The T -action on M̃/T ×πorb
1 (M/T ) T is inherited from

the translational T -action on the right factor of M̃/T × T . There is a unique sym-
plectic form ν on M/T such that π∗ν|Ωx

= ω|Ωx
for every x ∈ M . The symplectic

form on M̃/T is the pullback by M̃/T → M/T of ν, and the symplectic form on T is
the unique T -invariant symplectic form determined by ωt. The symplectic form on

M̃/T ×T is the product symplectic form, and it is inherited by M̃/T ×πorb
1 (M/T ) T .

Theorem 8.2 ([128]). Let (M,ω) be a compact connected symplectic manifold en-

dowed with a maximal symplectic T -action. Then M is T -equivariantly symplecto-

morphic to M̃/T ×πorb
1 (M/T ) T .

Proof. For any [ρ] ∈ M̃/T and t ∈ T , define Φ([ρ], t) := t · λρ(1) ∈ M. The assign-

ment ([ρ], t) �→ Φ([ρ], t) is a smooth covering Φ: M̃/T×T → M . By the definitions
of the symplectic form and T -action, Φ induces a T -equivariant symplectomorphism

from M̃/T ×πorb
1 (M/T, p0) T onto M . �
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8.1.5. Classification when dimT = dimM−2. ThenM/T is two-dimensional. This
is the only case in which we can give a classification, thanks to the following (for a
proof see [128, Section 9.5]).

Lemma 8.3 (Thurston). Given a positive integer g and an m-tuple (ok)
m
k=1,

oi � oi+1 of positive integers, there is a compact connected boundaryless orientable

smooth orbisurface O with underlying topological space a compact connected sur-

face of genus g and with m cone points of respective orders o1, . . . , om. Secondly,

let O, O′ be compact connected boundaryless orientable smooth orbisurfaces. Then

O is diffeomorphic to O′ if and only if the genera of their underlying surfaces are

the same, and their associated increasingly ordered m-tuples of orders of cone points

are equal.

Remark 8.4. In [153, Theorem13.3.6] Thurston gives a geometric classification of
orbisurfaces which considers hyperbolic, elliptic, and parabolic structures.

The tuple (g;�o) is the Fuchsian signature of O. If (O, ω) is a symplectic or-
bisurface,

∫
O
ω is the symplectic area of (O, ω). It follows from Lemma 8.3 and

the orbifold Moser theorem [114, Theorem 3.3] (for the manifold case, see Theo-
rem 2.18) that if dimT = dimM − 2, the Fuchsian signature and symplectic area
of M/T determine it up to symplectomorphisms.

Let (g; �o) ∈ Z1+m be the Fuchsian signature of M/T . Let {γk}
m
k=1 be a ba-

sis of small loops around the singular orbifold points p1, . . . , pm of M/T . Let
{α1, β1, . . . , αg, βg} be a symplectic basis of a free subgroup F of

Horb
1 (M/T ; Z)=〈{αi, βi}

g
i=1, {γk}

m
k=1 |

m∑

k=1

γk = 0, ok γk = 0, 1 � k � m〉

whose direct sum with the torsion subgroup of Horb
1 (M/T ;Z) is Horb

1 (M/T ;Z).
Let μh : H

orb
1 (M/T ;Z) → T be the homomorphism induced on homology by

μ in (8.1). Let Sp(2g, Z) be the group of 2g-dimensional symplectic matrices

with integer entries, and let MS�om be the group of m-dimensional matrices D ∈
GL(m;Z), such thatD(�o) = �o. The monodromy invariant is the equivalence class of
((μh(αi), μh(βi))

g
i=1, (μh(γk))

m
k=1) by the relation: two tuples are related when they

are taken to each other by a matrix of the form

(8.2)

(
A 0
C D

)
∈ GL(2g +m;Z)

withA ∈ Sp(2g, Z) andD ∈ MS�om. Even though the monodromy invariant depends
on choices, one can show that it is well defined; essentially Sp(2g, Z) accounts for
the freedom of choice of symplectic basis, and MS�om for the fact that the orders of
the orbifold points may be permuted.

Theorem 8.5 ([128]). Compact connected symplectic manifolds (M,ω) with a

maximal symplectic T -action such that dimT = dimM − 2 are classified up to

T -equivariant symplectomorphisms by the following symplectic invariants: the fun-

damental form ωt, the Fuchsian signature (g;�o) of M/T , the symplectic area λ of

M/T , and the monodromy invariant. Moreover, for any such list L of four invari-

ants there exists a compact connected symplectic manifold (ML, ωL) with a maximal

symplectic T -action of a (dimML−2)-torus T with (dimML−2)-dimensional sym-

plectic T -orbits whose list of invariants is L.
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Theorem 8.5 is an extension of Theorem 6.4 to a class of non-Hamiltonian sym-
plectic actions. The first part of Theorem 8.5 is uniqueness. The second part is
existence, for which we have not provided details for simplicity; this would amount
to saying which form ωt, etc., can appear. We shall say, however, that any anti-
symmetric bilinear form can appear, essentially all tuples (g; �o) appear (with few
exceptions, to account for the fact that M/T be a good orbifold), and any λ > 0
can appear. Similarly for the monodromy invariant. Readers may consult [128] for
the precise list.

From this theorem one can derive topological consequences; for instance in [43]
it is shown that the first Betti number of M/T is equal to the first Betti number
of M minus the dimension of T .

8.2. Classification of coisotropic actions. This section gives symplectic invari-
ants of coisotropic actions, as in Definition 7.6. Using these invariants, we construct
a model of (M,ω) and the T -action, and we give a classification in terms of these
invariants up to T -equivariant symplectomorphisms (which includes, as a particular
case, the classification of symplectic-toric manifolds in Theorem 6.4). Let (M,ω)
be a compact connected symplectic manifold with a coisotropic T -action of a torus
T .

8.2.1. Hamiltonian action. A coisotropic T -action on (M,ω) is in general not
Hamiltonian (see for instance Examples 5.9, 5.10, and 5.11). In this section we
determine the maximal subtorus of T which acts in a Hamiltonian manner on
(M,ω), which may or may not be trivial. Let x ∈ M . By Lemma 7.13, Tx is a
subtorus of T . Let m = dimTx. Let K be a complementary subtorus of Tx in T .
For t ∈ T , let tx and tK be the unique elements in Tx and K, respectively, such
that t = tx tK .

The inner product βj on Ej , in the proof of Lemma 7.13, is unique if one requires
that the symplectic inner product of any orthonormal basis with respect to ωW is
±1. This leads to the existence of a unique complex structure on Ej such that,
for any unit vector ej in (Ej , βj), we have that ej , iej is an orthonormal basis in
(Ej , βj) and ωW (ej , iej) = 1. This leads to an identification of Ej with C, and
hence of W with Cm, with symplectic form ωC

m

= 1
2i

∑m
j=1 dz

j ∧ dzj . The element

c ∈ Tm = (S1)m acts on Cm componentwise by (c · z)j = cj zj . There is a unique
Lie group isomorphism ι : Tx → Tm such that h ∈ Tx acts on W = Cm by sending
z ∈ Cm to ι(h) · z.

Recall that l = ker(ωt), where ωt is the fundamental form (Proposition 7.1)
and Xl is the projection of X ∈ t onto l. Let T act on K × (l/tx)

∗ × Cm by
t · (k, λ, z) = (tKk, λ, ι(tx) · z). Endow this product with the symplectic form given
at a point (k, λ, z), and vectors ((X, δλ, δz), (X ′, δ′λ, δ′z)), by the formula:

ωt(X,X ′) + δλ(X ′
l)− δ′λ(Xl) + ωC

m

(δz, δ′z).

Theorem 7.2 implies a symplectic normal form theorem for coisotropic actions:

Lemma 8.6 (Benoist). Let x ∈ M . Then there exists an open Tm-invariant neigh-

borhood V of (0, 0) in (l/tx)
∗×Cm, an open T -invariant neighborhood Ux of x in M ,

and a T -equivariant symplectomorphism Φ: K × V → Ux such that Φ(1, 0, 0) = x.

Using Benoist’s result, one can detect the maximal subtorus that acts on (M,ω)
in a Hamiltonian manner.
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Proposition 8.7. Let (M,ω) be a compact connected symplectic manifold endowed

with a coisotropic action of a torus T . Then the product of all stabilizer subgroups

Tx, x ∈ M , of the T -action, is a subtorus of T , denoted by Th. Moreover, the

restriction of the T -action to Th is a Hamiltonian action on (M,ω). Furthermore,

the restriction of the T -action to any complementary subtorus Tf to Th in T is a

free symplectic action on (M,ω).

Proof. By Lemma 8.6 the stabilizer subgroup of the T -action on K × (l/tx)
∗ ×Cm

at (k, λ, z) consists of the tx ∈ Tx for which ι(tx)
j = 1 for all j such that zj �= 0, and

there are 2m different stabilizer subgroups Ty, y ∈ Ux. Since M is compact, there
are only finitely many different stabilizer subgroups of T . The product of all the
different stabilizer subgroups is a subtorus of T because Tx is a subtorus for every x
(Lemma 7.13), and the product of finitely many subtori is a compact and connected
subgroup. See [40, Corollary 3.11] for the second claim. The torus Tf acts freely
on M , because if x ∈ M , then Tx ⊂ Th, hence Tx ∩ Tf ⊂ Th ∩ Tf = {1}. �

Koszul’s tube theorem [100] ([39, Theorem 2.4.1]) also implies that there are
finitely many stabilizer subgroups in the proof of Proposition 8.7. The torus Th

is the unique maximal stabilizer subgroup of T . Indeed, the Th-action has fixed
points (for instance, by Theorem 4.3). By Proposition 8.7 there is x0 ∈ M with
Th ⊂ Tx0

, so Th = Tx0
because Tx ⊂ Th for every x ∈ M .

8.2.2. Orbit space. Because the symplectic T -action on M may not be free in gen-
eral (Example 5.11), M/T is a singular space. Next we discuss more precisely the
nature of its singularities. First, the regular part Mreg/T of M/T is a smooth
manifold of dimension dimM − dimT , and π|Mreg

: Mreg → Mreg/T is a principal
T -bundle. If x ∈ M reg, tx = {0}, and l ≃ (Tx(T · x))ωx ⊂ Tx(T · x) ≃ t. Therefore
dim(Mreg/T ) = dim l.

If X ∈ l, ω̂(X) := iXM
ω is a closed basic 1-form on M and ω̂x : X �→ ω̂(X)x

is an l∗-valued linear form on TxM , then ω̂ : x �→ ω̂x is a basic closed l∗-valued
1-form on M . In the normal form Lemma 8.6 with x ∈ Mreg, tx = {0}, m = 0, ω̂
is (δt, δλ) �→ δλ : t× l∗ → l∗ at each point. Hence, if p ∈ Mreg/T , the induced form
ω̂p : Tp(Mreg/T ) → l∗ is a linear isomorphism. In this way, ξ ∈ l∗ may be viewed
as a constant vector field. It follows from the closedness of ω̂ that Mreg/T may be
provided with an atlas in l∗ with tangent map ω̂, and two local charts differ by a
translation in l∗.

Moreover, using Lemma 8.6, one can show that the entire M/T has the structure
of an l∗-parallel space, which intuitively is a space modeled on l∗. The detailed
structure of what is called a V -parallel space (in our case V = l∗) is beyond the
scope of this paper. We refer to [40, Section 11] where it is proved that any such
space, for any vector space V , is homeomorphic, by means of a homeomorphism
that preserves the l∗-structure, to the product of a closed convex set and a torus.

Let th be the Lie algebra of Th. By Proposition 8.7 the Th-action on (M,ω) is
Hamiltonian, so it has a momentum map

μ : M → (th)
∗,(8.3)

and its image μ(M) is, by the Atiyah–Guillemin–Sternberg convexity theorem (The-
orem 4.3), a convex polytope Δ ⊂ th

∗. Next we explain how, in the case of the
l∗-parallel space M/T , the aforementioned closed convex set is precisely Δ in (8.3).
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If p ∈ M/T is not regular, there is an integral basis {Xj}j∈J , of the integral
lattice of Tx in tx such that near p, the chart of M/T is identified with a corner⋂

j∈J{ξ ∈ l∗ | ξ(Xj) � 0}. If ζ is an element of the additive group

N := (l/th)
∗,(8.4)

a linear form on l which is zero on th; i.e., on every tx, the straight line solution
curves of the constant vector field ζ on M/T do not meet the nonregular points of
M/T so that there is a global action, denoted by (ζ, p) �→ p + ζ, of N on M/T ,
by traveling for time 1 along the solution curve. The period group P ⊂ N of this
action is a cocompact discrete subgroup of N , and N/P is a torus of dimension
dimN . A detailed analysis allows one to verify that Φp(η, ζ) := p + (η + ζ) is an
isomorphism between the l∗-parallel spaces Δ× (N/P ) and M/T . In particular:

Proposition 8.8. Let (M,ω) be a compact connected symplectic manifold endowed

with a coisotropic action of a torus T . Let l be the kernel of the fundamental form

ωt, and let Th be the largest subtorus of T which acts on (M,ω) in a Hamiltonian

fashion. Then the orbit space M/T is homeomorphic to the product of a Delzant

polytope Δ of dimension dimTh and a torus S of dimension dim l− dimTh.

The compositeM → th
∗ of π : M → M/T , followed by Φ−1

p : M/T → Δ×(N/P ),
the projection Δ × (N/P ) → Δ, and the inclusion Δ →֒ (th)

∗, is a momentum
mapping for the Hamiltonian Th-action on M in Proposition 8.7 and is equal to μ
in (8.3) up to an additive constant.

The orbit map π : M → M/T followed by Φ−1
p : M/T → Δ × (N/P ) and the

projection Δ×(N/P ) → N/P is a torus-valued generalization of the S1-momentum
map of McDuff [115].

8.2.3. A singular connection. A smooth vector field Lζ on Mreg is a lift of ζ if
dxπ(Lζ(x)) = ζ for all x ∈ Mreg. The word “lift” is in the sense that ζ ∈ l∗

is a constant vector field on (M/T )reg of which Lζ is a lift. Assignments of lifts
ζ ∈ l∗ �→ Lζ , which depend linearly on ζ, and connections for Mreg → Mreg/T are
equivalent objects. If tf is the Lie algebra of Tf in Proposition 8.7, then t = th ⊕ tf .
A step for the construction of the model of (M,ω) with T -action is the existence
of the following connection, where C is such that C ⊕ N = l∗, i.e., it is a linear
complement of N in l∗.

Lemma 8.9. There exists an antisymmetric bilinear map c : N×N → l, satisfying

ζ(c(ζ ′, ζ ′′)) + ζ ′(c(ζ ′′, ζ)) + ζ ′′(c(ζ, ζ ′)) = 0 if ζ, ζ ′, ζ ′′ ∈ N , and a T -invariant
connection

ζ ∈ l∗ �→ Lζ ,(8.5)

of smooth vector fields Lζ on Mreg, whose Lie brackets satisfy

[Lζ , Lη] = c(ζ, η)M , ζ, η ∈ N,(8.6)

[Lη, Lη′ ] = 0 if η, η′ ∈ C, and [Lη, Lζ ] = 0 if η ∈ C, ζ ∈ N . Moreover, if ch(ζ, η) is
the th-component of c(ζ, η) in l = th ⊕ (l ∩ tf), then the symplectic form ω satisfies

ωx(Lζ(x), Lη(x)) = − μ(x)︸︷︷︸
∈(th)∗

(ch(ζ, η)︸ ︷︷ ︸
∈th

), ζ, η ∈ N, x ∈ M

as well as ω(Lη, Lη′) = 0 if η, η′ ∈ C and ω(Lη, Lζ) = 0 if η ∈ C, ζ ∈ N .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HAMILTONIAN AND SYMPLECTIC SYMMETRIES: AN INTRODUCTION 423

Figure 4. Let Tk := (Rk/Zk). The figure shows a typical
coisotropic T -action (Definition 7.6) of a five-dimensional torus
T = T5 on a compact connected symplectic ten-dimensional
manifold (M,ω). The principal T -orbits are Lagrangian five-
dimensional submanifolds of (M,ω). The figure depicts the fibra-
tion in Theorem 8.11: the fiber is the six-dimensional symplectic-
toric manifold (Mh, ωh, Th) = CP3 with the Fubini–Study form
(Example 5.2) and the standard Hamiltonian action of the stan-
dard 3-torus Th = T3; the base G ×H Mh of the fibration is the
2-torus bundle X = G/H = R2 ×Z2 T2 over T2. According to
Delzant (Theorem 6.4), (Mh, ωh, Th) is determined up to equivari-
ant symplectomorphisms by its image under the momentum map,
which by formula (5.1) is the standard three-dimensional simplex,
and hence why we have represented the six-dimensional fibers in
the figure by three-dimensional simplices. The 2-torus Tf = T2,
which is complementary to the Hamiltonian torus Th = T3, acts
freely on (M,ω) by permuting the fibers. The picture illustrates
the fact that a coisotropic T -action exhibits both Hamiltonian fea-
tures (encoded by the fibers Mh) and non-Hamiltonian features
(encoded by the base X = G/H) of the fibration). When the base
is trivial the T -action on M is Hamiltonian; when the fibers are
trivial the T -action on M is free and non-Hamiltonian (see Re-
mark 8.12).
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The connection (8.5) blows up at M \Mreg. If ζ ∈ N , Lζ has a smooth extension
to M .

The map c in Lemma 8.9 has a geometric interpretation, which we discuss next.
There is an isomorphism M/Treg ≃ Interior(Δ)×(N/P ), induced by Φ−1

p . Any con-
nection for the principal T -bundle Mreg → Mreg/T has a curvature form, a smooth
t-valued 2-form on Mreg/T . Its cohomology class is an element of H2(Mreg/T ; t),
independent of the choice of the connection. The N -action on M/T leaves Mreg

invariant, with orbits isomorphic to N/P . The pullback to the N -orbits defines an
isomorphism from H2(Mreg/T ; t) to H2(N/P ; t), which is identified with (Λ2N∗)⊗ t

(this goes back to É. Cartan). It follows from the construction of (8.5) that
c : N×N → l, viewed as c ∈ (Λ2N∗)⊗l ⊂ (Λ2N∗)⊗t, is the negative of the pullback
to an N -orbit of the cohomology class of the curvature form. Hence c : N ×N → l

in (8.6) is independent of Tf . The Chern class C of π : Mreg → Mreg/T is an
element of H2(Mreg/T ;TZ). The image of C under the coefficient homomorphism
H2(Mreg/T ;TZ) → H2(Mreg/T ; t) is the negative of the cohomology class of the cur-
vature form of any connection in the principal T -bundle, and hence c : N ×N → l

represents C.

8.2.4. Foliation by symplectic-toric manifolds. See Section 6.1 to review symplectic-
toric manifolds. Let Lη be as in Lemma 8.9.

Proposition 8.10. There exists a unique smooth T -invariant distribution D :=
{Dx}x∈M on M such that for each x ∈ Mreg,

Dx = span{Lη(x), YM (x) |Y ∈ th, η ∈ C }.

The integral manifolds of D are smooth (2 dimTh)-dimensional manifolds. We pick

an integral manifold and call it Mh. Then ω restricts to a symplectic form, say ωh,

on Mh, and Th acts in a Hamiltonian manner on Mh, that is, (Mh, ωh, Th) is a

symplectic-toric manifold. All integral manifolds of D, with the restriction of ω,
are Th-equivariantly symplectomorphic to (Mh, ωh, Th).

The integral manifolds of D are depicted in Figure 4 as polytopes (the fibers of
the fibration therein) because of the correspondence established by Delzant (The-
orem 6.4) between symplectic-toric manifolds and Delzant polytopes.

8.2.5. Group extensions and the holonomy invariant. Denote the flow after time
t ∈ R of a vector field X on M by etX . The extension of N by T is the Lie group

G := T ×N

with operation

(t, ζ) (t′, η) = (tt′e−c(ζ, η)/2, ζ + η).(8.7)

The Lie group G acts smoothly on M by (t, ζ) �→ tM ◦ eLζ , where we are using
the identification G ≃ (t/TZ) × N . The projection π : M → M/T intertwines the
action of G on M with the action of N on M/T , and there is an exact sequence
1 → T → G → N → 1, where G → N corresponds to passing from the action
of G on M to the action of N on M/T , on which the action of T is trivial. One
can show that the Lie algebra of G with (8.7) is the two-step nilpotent Lie algebra
g = t ×N with [(X, ζ), (X ′, η)] = −(c(ζ, η), 0). The product t ×N endowed with
(X, ζ)(X ′, η) = (X +X ′ − c(ζ, η)/2, ζ + η) is a two-step nilpotent Lie group with
Lie algebra g, and the identity as the exponential map.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HAMILTONIAN AND SYMPLECTIC SYMMETRIES: AN INTRODUCTION 425

For ζ ∈ P and p ∈ M/T consider the loop γζ(t) := p + tζ. If p = π(x),
δ(t) = etLζ (x), t ∈ [0, 1], is the horizontal lift of γζ which starts at x because
δ(0) = x and δ′(t) = Lζ(δ(t)) is a tangent vector mapped by dδ(t)π to ζ. Hence
π(δ(t)) = γζ(t) if t ∈ [0, 1]. The element of T which maps δ(0) = x to δ(1) is the
holonomy τζ(x) of the loop γζ at x with respect to the connection (8.5). Because
δ(1) = eLζ (x), we have τζ(x) · x = eLζ (x). The element τζ(x) depends on x ∈ M ,
the period ζ ∈ P , and the choice of connection (8.5). Let

H := {(t, ζ) ∈ G | ζ ∈ P, t τζ ∈ Th}.

The elements τζ ∈ T , ζ ∈ P , encode the holonomy of (8.5). The holonomy is an
element of the set Homc(P, T ) of maps τ : P → T , denoted by ζ �→ τζ , such that

τζτη = τζ+ηe
c(η, ζ)/2. There is a Lie subgroup B � Homc(P, T ) which eliminates

the dependence on the choice of connection and basepoint, so the true holonomy

invariant of (M,ω) is an element of Homc(P, T )/B. The precise definition of B is
technical, and it appeared in [40].

The map

(8.8) ((t, ζ), x) �→ (t τζ) · x : H ×Mh → Mh

is a smooth action of H on the symplectic toric manifold Mh.

8.2.6. The relation with nilmanifolds. The quotient G/H is taken with respect to
the nonstandard group structure in expression (8.7). On G/H we still have the
free action of the torus T/Th, which exhibits G/H as a principal T/Th-bundle over
the torus (G/H)/T ≃ N/P . Palais and Stewart [124] showed that every principal
torus bundle over a torus is diffeomorphic to a nilmanifold for a two-step nilpotent
Lie group. When the nilpotent Lie group is not Abelian, the manifold M does not
admit a Kähler structure; see Benson and Gordon [17]. In fact, the G-space G/H
is isomorphic to the quotient of the simply connected two-step nilpotent Lie group
(t/th)×N by the discrete subgroup of elements (Z, ζ) such that eZτζ ∈ Th. Indeed,
the identity component Ho = Th × {0} of H is a closed normal Lie subgroup of
G and H. The map (G/Ho)/(H/Ho) → G/H, (g Ho) (H/Ho) �→ g H, is a G-
equivariant diffeomorphism. The structure of G/Ho = (T/Th)×N is (t, ζ)(t′, η) =

(tt′e−cl/th (ζ,η)/2, ζ + η), t, t′ ∈ T/Th, ζ, η ∈ N, where cl/th : N × N → l/th is the
composite of c : N × N → l and the projection l → l/th. Hence G/Ho is a two-
step nilpotent Lie group with universal covering (t/th) × N and covering group
(T/Th)Z ≃ TZ/(Th)Z. Also, P → H/Ho given by ι : ζ �→ (τζ

−1, ζ)Ho is an
isomorphism.

8.2.7. Model. Let h ∈ H act on G × Mh by h(g, x) = (gh−1, h · x), and consider
the quotient G ×H Mh, where we recall that h · x is given in (8.8). The T -action
by translations on the left factor of G passes to an action on G ×H Mh. Each of
the fibers of G×H Mh is identified with the symplectic-toric manifold (Mh, ωh, Th).
Any complementary subtorus Tf permutes the fibers of G×H Mh → G/H.

Next we construct a symplectic form on G ×H Mh. This construction uses
Lemma 8.6 but for simplicity we skip the details as the general formula may be
given directly. Let δa = ((δt, δζ), δx) and δ′a = ((δ′t, δ′ζ), δ′x) be tangent vectors
to G × Mh at the point a = ((t, ζ), x), where we identify each tangent space of
T with t. Write X = δt + c(δζ, ζ)/2 and X ′ = δ′t + c(δ′ζ, ζ)/2. Let Xh be the
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th-component of X ∈ t in th ⊕ tf , and similarly for Xl, and define

Ωa(δa, δ
′a) = ωt(δt, δ′t) + δζ(X ′

l)− δ′ζ(Xl)− μ(x)(ch(δζ, δ
′ζ))

+ (ωh)x(δx, (X
′
h)Mh

(x))− (ωh)x(δ
′x, (Xh)Mh

(x)) + (ωh)x(δx, δ
′x).

If πM is the projection G ×Mh → G ×H Mh, the T -invariant symplectic form on
G×H Mh is the unique 2-form τ on G×H Mh such that Ω = πM

∗τ.
A typical example of a ten-dimensional manifold in the following statement is

given in Figure 4.

Theorem 8.11 ([40]). A compact connected symplectic manifold (M,ω) with a

coisotropic T -action is T -equivariantly symplectomorphic to the total space G×HMh

of the fibration

(Mh, ωh, Th) →֒ (G×H Mh, τ, T ) → G/H

with base G/H being a torus bundle over a torus, and symplectic-toric manifolds

(Mh, ωh, Th) as fibers. The T -action on G×H Mh is the symplectic action by trans-

lations on the T -factor of G.

Using Lemmas 8.6 and 8.9 and Proposition 8.10, one can verify that F : G ×H

Mh �→ M , F ((t, ξ), x) = t ·eLξ(x), is a T -equivariant diffeomorphism and F ∗ω = τ .
However, careful checking is fairly technical and is not necessarily illuminating on
a first reading; we refer to [40] for a proof.

Remark 8.12. A extreme case of Theorem 8.11 occurs if the symplectic T -action is
free. Then Th is trivial and M is the torus bundle G/H over a torus (this is the
base X = G/H of the fibration in Figure 4). The Kodaira variety (Example 5.10)
is one of these spaces. Since M is a principal torus bundle over a torus, it is a
nilmanifold for a two-step nilpotent Lie group by [124] (if the nilpotent Lie group
is not Abelian, M does not admit Kähler structures by [17]). If dimM = 4, this
corresponds to the third case in Kodaira’s description [96, Theorem 19] of the
compact complex analytic surfaces which have a holomorphic (2, 0)-form that is
nowhere vanishing. As mentioned earlier, these were rediscovered by Thurston [152]
as the first examples of compact symplectic manifolds without Kähler structure.

The other extreme case occurs if the symplectic T -action is Hamiltonian. Then
Th = T , and M = Mh is a symplectic-toric manifold (Definition 6.2) and hence has
the structure of a toric variety (see [33,41,70] for the relations between symplectic-
toric manifolds and toric varieties).

8.2.8. Classification. The following is the classification of coisotropic actions.

Theorem 8.13 ([40]). Compact connected symplectic manifolds (M,ω) with a

coisotropic T -action are classified up to T -equivariant symplectomorphisms by the

symplectic invariants: the fundamental form ωt, the Hamiltonian torus Th and

its associated polytope Δ, the period lattice P of N = (l/th)
∗, the Chern class

c : N × N → l of Mreg → Mreg/T , and the holonomy invariant [τ : P → T ]B ∈
Homc(P, T )/B. Moreover, for any such list L of five invariants there exists a com-

pact connected symplectic manifold (ML, ωL) with a coisotropic T -action with list

of invariants L.

The first part of Theorem 8.13 is a uniqueness result; the second part, an ex-
istence result (we have not provided details to preserve simplicity). Nonetheless
we shall say that any antisymmetric bilinear form, any subtorus S ⊂ T , and any
Delzant polytope may appear; details are in [40].
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Example 8.14. For the Kodaira variety M = R2 ×Z2 (R/Z)2 in Example 5.10,
T = (R/Z)2, t ≃ R2 and its invariants are as follows: ωt = 0; Hamiltonian torus
Th = {[0, 0]}; Delzant polytope Δ = {(0, 0)}; period lattice P = Z2; Chern class
c : R2 × R2 → R2, c(e1, e2) = e1. The holonomy invariant is the class of τ given by
τe1 = τe2 = [0, 0]. In this case G = (R/Z)2×R2, Mh is a point, and H = {[0, 0]}×
Z2. The model of (M,ω) in Theorem 8.11 is G×H Mh ≃ G/H ≃ R2 ×Z2 (R/Z)2.

The moduli space of coisotropic actions includes Hamiltonian actions of maximal
dimension (see [129] for the description of this space in dimension 4), classified in
Theorem 6.4.

8.3. Classification of symplectic 2-torus actions on 4-manifolds. Consider
on (R/Z)2 × S2 a product symplectic form, and the action of the 2-torus where
one circle acts on the first circle of (R/Z)2 by translation, while the other circle
acts on S2 by rotation about the vertical axis (this is Example 5.6, also depicted
in Figure 2).

If T is a two-dimensional torus, consider the product T × t∗ with the standard
cotangent bundle form and the standard T -action on left factor of T × t∗.

The following is a simplified version of the main result of [128, Theorem 8.2.1].

Theorem 8.15 ([128]). Let (M,ω) be a compact connected symplectic 4-manifold

equipped with an effective symplectic action of a 2-torus T . If the symplectic T -
action is Hamiltonian, then:

(1) (M, ω) is a symplectic-toric 4-manifold, so classified up to T -equivariant
symplectomorphisms by the image Δ of the momentum map μ : M → t∗ of

the T -action (Theorem 6.4).

If the symplectic T -action is not Hamiltonian, then one and only one of the following

cases occurs:

(2) (M, ω) is equivariantly symplectomorphic to (R/Z)2 × S2.

(3) (M, ω) is equivariantly symplectomorphic to (T × t∗)/Q with the induced

form and T -action, where Q � T × t∗ is a discrete cocompact subgroup for

the group structure (8.7) on T × t∗.

(4) (M, ω) is equivariantly symplectomorphic to a symplectic orbifold bundle

Σ̃ ×πorb
1 (Σ, p0) T over a good orbisurface Σ, with symplectic form and T -

action induced by the product ones. Here, in order to form the quotient

Σ̃×πorb
1 (Σ) T , the orbifold fundamental group πorb

1 (Σ) acts on Σ̃× T diago-

nally, and on T by means of a homomorphism μ : πorb
1 (Σ) → T .

Idea of proof. By linear algebra either the T -orbits are symplectic 2-tori, so ωt is
nondegenerate and l is trivial (this is case (4)), or alternatively the two-dimensional
T -orbits are Lagrangian 2-tori and l = t (these are cases (1), (2), and (3)). Cases
(2) and (3) are derived from Theorem 8.13. Case (4) is derived from Theorem 8.5.
Case (1) is classified by Δ in view of Theorem 6.4. �

Case (3) appears in Kodaira [96, Theorem 19]; see Remark 8.12. Theorem 8.15
implies that the only compact connected symplectic 4-manifold with a nonlocally
free and non-Hamiltonian effective symplectic action of a 2-torus is, up to equivari-
ant symplectomorphisms, (R/Z)2 × S2.
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Example 8.16. The invariants of M = S2 ×Z/2Z (R/Z)2 in Example 5.11 are as

follows: fundamental form
(

0 1
−1 0

)
; Fuchsian signature (0; 2, 2) of M/(R/Z)2; sym-

plectic area 1 of S2/(Z/2Z); monodromy invariant, the class of (μh(γ1), μh(γ2)) =
{( 1 0

0 1 ) , (
0 1
1 0 )}·([1/2, 0], [1/2, 0]) under (8.2). Here γ1, γ2 are loops around the poles

of S2. Then

M/T = S2/(Z/2Z), πorb
1 (M/T, p0) = 〈γ1 | γ

2
1 = 1〉 ≃ Z/2Z,

and μ : 〈γ1 | γ
2
1 = 1〉 → T = (R/Z)2 is μ(γ1) = [1/2, 0]. We have a T -equivariant

symplectomorphism

M̃/T ×πorb
1 (M/T, p0) T = ˜S2/(Z/2Z)×πorb

1 (S2/(Z/2Z), p0) (R/Z)
2 ≃ M.

Remark 8.17. In [42] the authors prove that a compact connected symplectic 4-
manifold with a symplectic 2-torus action admits an invariant complex structure,
and they characterize those which admit a Kähler structure.

9. Final remarks

In this paper we have discussed symplectic Hamiltonian actions as in the works
of Ahara, Atiyah, Audin, Delzant, Duistermaat, Hattori, Heckman, Guillemin,
Karshon, Kostant, Souriau, and Sternberg [3,10,12,13,33,37,75,89,99,150] among
others, and more general symplectic actions as in the works of Benoist, Duistermaat,
Frankel, McDuff, Ortega, Ratiu, Tolman, and the author [15,16,40,57,120,128,154]
among others. We have described classifications on compact connected manifolds
in the following cases.

(1) “Maximal Hamiltonian case”: Hamiltonian T -action, dimM = 2dimT .
(2) “S1-Hamiltonian case”: Hamiltonian T -action, dimM = 4, dimT = 1.
(3) “Four-dimensional case”: dimM = 4 and dimT = 2.
(4) “Maximal symplectic case”: there is a dimT -orbit symplectic orbit.
(5) “Coisotropic case”: there is a coisotropic T -orbit.

We have outlined connections of these works with algebraic geometry, in particular
Kodaira’s classification of complex analytic surfaces [96], toric varieties [41], and
log symplectic toric-geometry [69]; geometric topology, in particular the work of
Palais and Stewart [124] and Benson and Gordon [17] on torus bundles over tori
and nilpotent Lie groups; and integrable systems, in particular the classification of
semitoric systems [136, 137].

Some techniques for studying Hamiltonian actions (see for instance the books
by Guillemin [70], Guillemin and Sjamaar [74], and Ortega and Ratiu [121]) are
useful in the study of general symplectic actions, since many such actions exhibit
subgroups which act in a Hamiltonian manner. In the study of Hamiltonian actions
one tool that is often used is Morse theory for the components of the momentum
map. Any symplectic circle action admits a Morse circle-valued momentum map
(see [115,130]), and there is a well-developed circle-valued Morse theory (see Pajit-
nov [122] and Farber [50]). Nonetheless, circle-valued Morse theory appears more
difficult to apply to general symplectic actions (see [130, Remark 6]). The cur-
rent understanding of general symplectic actions is quite limited, so we propose the
following:

Problem 9.1. Let G be an m-dimensional compact connected Lie group. Con-
struct symplectic invariants and classify, up to equivariant symplectomorphisms,
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effective symplectic G-actions on compact connected symplectic 2n-dimensional
manifolds (M,ω) in terms of these invariants.

We have presented solutions to this problem when G is Abelian and either the
G-action is Hamiltonian or the orbits are of a certain type (symplectic, Lagrangian,
coisotropic); Theorem 8.15 solves it if G is Abelian and m = n = 2. Solving more
cases would be of interest not only in symplectic geometry but also in integrable
systems and classical mechanics where the symmetries described by group actions
are relevant. Beyond these areas, there have been recent applications to quantum
integrable systems [26, 105] which make use of Delzant’s theorem (Theorem 6.4)
and of the classification of semitoric systems (Theorem 6.18). One may expect
other possible applications to spectral geometry if more cases of Problem 9.1 are
solved. For instance, the quantization and spectral properties of such actions are
interesting problems (a preliminary case is treated in [104]); shedding light on these
spectral problems requires understanding the symplectic geometry of their classical
counterparts.

Dedication. This paper is dedicated to Professor J. J. Duistermaat (1942–2010).

The article [73], edited by V. Guillemin, Á. Pelayo, S. Vũ Ngo.c, and A. Weinstein,
outlines some of Duistermaat’s contributions (see also [138, Section 2.4]). Here is
a brief part of the article:

We are honored to pay tribute to Johannes (Hans) J. Duistermaat
(1942–2010), a world leading figure in geometric analysis and one of
the foremost Dutch mathematicians of the XX century, by present-
ing a collection of contributions by some of Hans’ colleagues, collab-
orators and students. Duistermaat’s first striking contribution was
his article ‘Fourier integral operators II’ with Hörmander (published
in Acta Mathematica), a work which he did after his doctoral disser-
tation. Several influential results in analysis and geometry have the
name Duistermaat attached to them, for instance the Duistermaat–
Guillemin trace formula (1975), Duistermaat’s global action-angle
theorem (1980), the Duistermaat–Heckman Theorem (1982), and
the Duistermaat–Grunbaum bi-spectral theorem (1986). Duister-
maat’s papers offer an unusual display of originality and technical
mastery.
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Álvaro Pelayo is associate professor of mathematics at University of California–
San Diego. He has been a recipient of the Royal Spanish Mathematical Society
Rubio de Francia Prize, the NSF Career Award, and the Senior Lebesgue Chair
(Lebesgue Institute). His research spans about 50 publications in symplectic geom-
etry, spectral geometry, and homotopy type theory.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 6, 787–809. MR1422991
[50] M. Farber, Topology of closed one-forms, Mathematical Surveys and Monographs, vol. 108,

American Mathematical Society, Providence, RI, 2004. MR2034601
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