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In view of a grave importance of the problem of initial singularity in theoretical cosmo­

logy, the dynamical behavior of expanding homogeneous universes (without rotation) in the 

Brans-Dicke cosmology is studied by means of extending suitably the canonical formalism 

due to Arnowitt, Deser and Misner. It is shown that, even if the inertial (scalar) mode 

characteristic in their theory of gravitation is omitted, our Hamiltonian is somewhat different 

from Ryan's Hamiltonian in relativistic cosmology. This is due to the difference in the 

manipulation of the source (consisting of matter and radiation assumed as a perfect fluid 

whose total density and pressure are represented by p and p, respectively) Lagrangian, and 

it seems that our manipulation is superior to Ryan's. In spite of this, so far as O<.p<p/3, 

there exists an extremely early stage at which the source term in our Hamiltonian becomes 

negligible in such a way that it is reduced to a generalized version of Misner's Hamiltonian 

derivable from Ryan's under the same approximation. If pf3<psp, however, such a stage 

cannot exist because of some peculiar role of the inertial mode interacting with matter and 

radiation. Accordingly, the dynamical behavior of gravitational and inertial modes at the 

extremely early stage of both the Bianchi-type IX universe with p=p/3 and the Bianchi-type 

I universe with p=p is analyzed in detail. The dynamical behavior is described as the three­

dimensional motion of a world point in the presence of either the tri-angular potential walls 

(found by Misner) with gravitational origin or another potential field with inertial origin. It 

is shown in the former case that the inertial mode plays a significant role to modify Misner's 

bounce law for the collision of the world point with the potential walls, but is incompetent to 

eliminate the initial singularity of infinite density. On the other hand, in the latter case, the 

initial singularity may be formally removed under some condition which, however, contradicts 

with the requirement due to Brans-Dicke that the coupling constant w must be larger than 

about 6. 

§ I. Introduction 

In previous papers, 
1
> after examining the present status on the problem of 

initial singularity in any general relativistic model-universe compatible with the 

cosmological interpretation of the 3°K black-body radiation, we have proposed a 

a new approach on the basis of an extended version of the renormalized theory 

of gravitation due to Utiyama and De Witt.
2

> As a result, we have shown that 

there exists a homogeneous and isotropic model-universe which may bounce with 

a finite density and tends asymptotically to the usual Friedmann universe, provided 

*> The content of this paper was reported in the meeting on relativistic astrophysics and 

cosmology held at our Institute in December, 1971. 
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Hamiltonian Approach to the Dynamics 1825 

that the temperature of cosmic matter and radiation at the instant of bounce is 

not lower than about 1012 °K and that temporal behavior of the model before and 

after the bounce is of a finite asymmetry. The motive of that approach was 

the recognition that the renormalized theory of gravitation may stand opposite 

in another manner to Misner's3
l conclusion that quantum effects do not significantly 

modify the nature of initial singularity in relativistic cosmology which has been 

studied in detail by Lifshitz and co-workers4
l on a classical level. 

It is to be noticed, however, that Hoyle-Narlikar's5
l C-field cosmology may 

admit a bouncing model with homogeneity and isotropy,6
l if the C-field introduced 

originally for describing the creation of matter becomes a massless scalar field 

with negative energy-momentum but without clear physical meaning. On the 

other hand, there appears another type of a massless scalar field in Jordan's7
) 

and Brans-Dicke's8
l theories of gravitation for describing the variability of gravi­

tation constant. As regards the latter theory, its possible significance on the 

problems of stellar collapse and galaxy formation has been studied by the author.9
l 

In view of the present status on the problem of initial singularity in theo­

retical cosmology, it will be worthwhile to study what situation occurs at an 

early stage of expanding homogeneous universes in the Brans-Dicke cosmology. 

Of the two alternative approaches to the dynamics of homogeneous universes 

in relativistic cosmology, i.e., Lifshitz-Khalatnikov's approach4
l and Misner's 

Hamiltonian approach, 3
l the latter seems to be more suitable to visualize the 

dynamical behavior of gravitational modes with two degrees of freedom, while 

the relation between them has recently beei!l clarified by Belinski, Khalatnikov 

and Ryan.10
) Accordingly we shall seek for the dynamical behavior of gravita­

tional and inertial (scalar) modes at an early stage of Bianchi-type (I"-' IX) 

universes11
l in terms of a generalized version of ADM's canonical formalism. 12

) 

In order to do so, we must rely on Dicke's13
) field equations, which are derivable 

from Brans-Dicke's original ones8
l by means of the conformal regraduation (like 

ours14l) ?) p,v~g p,v = (G¢)?) p,v and me~tne = (G¢)- 112me assuring the invariance of both 

the Planck constant and the light velocity. Here ?) p,v and me are the original 

metric tensor and electron mass, respectively, and ¢ is the inertial scalar field 

whose physical dimension is the same as that of G-1 (G is Newtonian gravita­

tion constant) . 

In § 2, the action integral from which Dicke's regraduated field equations 

are derivable is cast into the (3 + 1) -dimensional form by means of ADM's 

procedure. 12
) In § 3 the rewritten action integral is applied to a general Bianchi­

type expanding universe whose constituent matter and radiation is assumed for 

simplicity to be a perfect fluid without vorticity. After elimination of four 

constraint equations (three of which become trivial in the case of no vorticity), 

the action integral is reduced to the desired form from which canonical equations 

of motion for the gravitational and inertial modes are derivable. Even if the 

inertial mode is omitted, our Hamiltonian is somewhat different from Ryan's15
) 
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1826 H.·Nariai 

Hamiltonian because of the difference in the manipulation of the matter Lag­

rangian. In spite of this, if the ratio pj p (p and p are the total pressure and 

density, respectively) is in the range o<pj p<1j3, our Hamiltonian without inertial 

mode is reduced to Misner's Hamiltonian3
) in the case of homogeneous empty 

universes at an extremely early stage such that the matter part is negligible 

compared with the gravitational part. In §§ 4"'-'5 the extremely early stage of 

Bianchi-type I and IX universes are dealt with in order to see how the inertial 

mode has influence upon Misner's result~) concerning the bounce phenomena with 

the potential walls with gravitational origin. If, for instance, p = p as envisaged 

by Zel'dovich,16
) the matter part of our Hamiltonian can survive even at an 

extremely early stage, in addition to its explicit dependence on the inertial mode. 

Accordingly the Bianchi-type I (for simplicity) universe consisting of matter 

with p = p is dealt with in § 6. The Appendix is devoted to the illustration of 

various potential walls. 

§ 2. The (3 + I) -dimensional form of Dicke's regraduated field equations 

After the conformal regraduation mentioned in § 1, the total Lagrangian 

density .L in the scalar-tensor theory of gravitation is represented by 

(2·1) 

where 

(co is the coupling constant) (2·2) 

and Lm stands for the matter (plus radiation) Lagrangian. If the assemblage of 

matter and radiation consists of a perfect fluid, we may put**) 

(2·3) 

where p, p and ufo= 4g ""u" stand for the total density, the total pressure and the 

fluidal 4-velocity, respectively, which are connected with their counterparts 

({5, p, ufo) before the regraduation by the following expressions :14
) 

(2·4) 

An application of the variational principle (due to o 4g"" and ocjJ) to the action 

integral I= (1/16n) f .Ld4
x leads to13

) 

(2·5) 

and 

(2·6) 

*) This notation (such as 4R=4gf.lv 4Rilv for the scalar curvature) is due to ADM's procedure.12) 

**) We have used this form of the matter Lagrangian in the canonical treatment of the gra­

vitational modes appearing in the Friedmann universe.17) 
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Hamiltonian Approach to the Dynamics 1827 

where 4T"'v is the energy-momentum tensor of the perfect fluid, I.e., 

(2·7) 

In the above derivation, it is to be noticed that (p, p, u"') are varied by the 

variation ocjJ via Eq. (2 · 4), while they are independent of o 4g"'v. Since 4G pv is 

divergence-free, it follows from Eqs. (2 · 5) and (2 · 6) that 

(2·8) 

which does not contradict with the conservation of the total energy-momentum. 

Following ADM's procedure/2
) let us introduce the following quantities: 

(2·9) 

where giJ is the symmetric 3 X 3 matrix reciprocal to gih i.e., giJgik=oJk, Ni=giiNJ 

and g=det(giJ) = ( -
4g)IN2 (>0). On inserting Eq. (2·9) into Eq. (2·1), we 

obtain 

where 

and 

.L = - giihrriJ + P/itcf; + 2" (p + P) g112Wuo + NC0 + NiCi 

-2 {g112N 1i + NJ (nij- tnk kgiJ)} li , 

{ 

co=gll2[sR- (w+3l2)giicjJicjJJ+2"{p- (p+p)W2} J 

+ g-112 [t (nkky -nij'lriJ- tP/ I (3 + 2w)], 

Ci . 2niJIJ- pcf;giJcjJJ- 2"glf2 (p + p) Wui 

(2·10) 

(2 ·11) 

(2·12) 

Here " is an abbreviation of 8nG, and the vertical bar indicates covariant differen­

tiation in the 3-space whose metric tensor and· scalar curvature are given by giJ 

and 3R=giJsRih respectively. On inserting Eq. (2·10) into the expression I= 

(1l16n) f .Ld4
x and discarding divergence-terms, we arrive at the required (3 + 1)­

dimensional form of the action integral 

Varying I with respect to N and Ni, we obtain 

C 0 =0 and Ci=O, 

(2·13) 

(2·14) 

which, together with Eq. (2 ·11), are shown to be equivalent to four constraint 

equations in the 4-dimensional form, i.e., 4Gnn-eq. and 4 G~-eqs., where 4Gnn 

=n"'nv 4G "'v' 4G;=n"' 4G "'i and n"' = ( -1, Ni) IN being the unit normal to a space­

like. hyper-surface x 0 = t = const. Varying I with respect to niJ and giJ' we obtain 
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1828 H. Nariai 

8tgi1 = 2Ng-112 (rciJ- tgij7Ck k) + NiiJ + NJii, 

8t7CiJ = - Ngl/2 [aRiJ- iaRgiJ- (cu + 3/2) (cj/cj/- tgiJ ¢m¢m) 

-JC { (p + p) uiuJ + pgiJ}] _ 2Ng-tl2 (rcikrcJ k _ irciJrck k) 

+ !Ng-112 {7Cmn7Cmn- i (rck ky + iP// (3 + 2cu)} gil 

(2·15) 

+ gl/2 (NiiJ- gil Nlmlm) + (Nmrcij)lm- (Nilm7Cjm + Nilm7Cim)' (2 ·16) 

which are equivalent to 4Gweqs. Similarly, it follows from the variations of I 

with respect to P<P and ¢, respectively, that 

8tcf; = Ng- 112P.p/ (3 + 2cu) + Nicj;i , 

8tP"' = (Nip"')
1
i + (3 + 2cu) g112 (Ncf;i)

1
i + JC (p- 3p) Ng112, 

(2 ·17) 

(2·18) 

which are equivalent to Eq. (2 · 6). We have regarded u0 as a non-varied quantity 

in the derivation of Eqs. (2 ·15) r--./ (2 ·17), but Eq. (2 ·18) relies on the follow­

ing relation: 

w (ouo/ a¢- Nioud a¢) = N (1/2 +wow 1 a¢), 

which is the (3 + 1) -dimensional form of 4g""o (u"u") /ocf; = -1 derivable from 

Eq. (2 · 4). Moreover, we can reduce Eq. (2 · 8) to 

f)tp + (p + p) f)t{J.n (g 112
l WI)} - (1/W) { (Nui + wNi) f)ip + (p + p) (Nui + 'UJNi),i} 

= - tN (p- 3p) {g- 112P
1
/ (3 + 2cu) - (1/W) uicj;i}. (2 ·19) 

A substitution of Eq. (2 ·14) in Eq. (2 ·13) gives 

I= (1/16rc) J {rci18tgiJ + p.p8tcf; + 2JC (p + p) g112Wu0} d 4
x, (2· 20) 

111 which all of giJ and rciJ can no longer be independent of each other because 

of the existence of the constraint equations (2 ·14) with C" given by Eq. (2 ·11). 

Our task lies in reducing Eq. (2 · 20) to the following canonical form: 

I= (1/16rc) S {rciJTT()tgi/T + p.p8tcf;- !}{ (gi/T, rei iTT' cj;, p"', p, p)} d 4x, (2 · 21) 

by imposing a suitable set of coordinate conditions (in terms of which N and 

Ni are fixed without destroying the validity of Eqs. (2 ·15) /"._/ (2 ·18)) and solving 

Eq. (2·14) with respect to L(longitudinal)- and T(transverse)-parts of giJ and 

7CiJ as functions of their TT (transverse-traceless) -parts, the inertial mode (cj;, p.p) 

and the fluidal quantities (p, p). 

§ 3. Hamiltonian treatment of a general Bianchi-type expanding universe 

Following Belinski, Khalatnikov and Ryan/0
> let us denote a general Bianchi­

type expanding universe by the metric 

(3·1) 
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Hamiltonian Approach to the Dynamics 1829 

where x 0 = Q is Misner's3
) time variable, and ef = ef (xk) stand for three (a= 1, 2, 3) 

covariant 3-vectors such that the exterior derivative of Cia obeys the relation 

d(Ja=cabcCJb/\(Jc in which cabc(= -cacb) are the structure constants of the group 

of motions specifying homogeneity of the 3-space Q = const, I.e., 

(3· 2) 

where e~ 1s the reciprocal of ef such that 

e~ej=o}. (3· 3) 

Then we can introduce the following quantities including gao m Eq. (3 ·1): 

gab (Q) =e~etgij (Q, xk), 

ab - a ij en k) TC !b=ei TC !j ~,, X , 

Na (Q) =e~Ni (Q, xk), Na!a=e~elNilj (Q, xk), 

(3 ·4) 

which are scalars or scalar densities with respect to a transformation of coordi­

nates xi~x·i = fi (xj), but affine tensors or vectors with respect to a rotation 

of e~ and ef preserving relation (3 · 3). In the universe under consideration, we 

must have 

(3·5) 

m addition to the situation that p"', p and p are functions of Q alone. 

Taking account of Eqs. (3 · 4) and (3 · 5), we can reduce Eq. (2 · 20) with 

t = Q and d 4x = dQ/\ 6 11\ (52 1\ (J3 to 

I= S {rcabdgab + P.pdcjJ + 2JC (p + p) g1!2UJu 0dQ}, (3·6) 

on the prescription that 

(3·7) 

which is simply a normalization condition for the Bianchi-type IX universe with 

closed 3-space, but becomes a periodicity condition for an open universe (e.g., 

Bianchi-type I and V) .3
) By using again Eqs. (3 · 4) and (3 · 5), we can trans­

form Eq. (2·14) with CP given by Eq. (2·11) into 

C 0
=g

1
/
2 

[
8R + 2JC {p- (p + p) iJJ2

} J + g-l/
2 H- (rc~)

2
- TC~TC~- tP/ I (3 + 2w)} = 0' 

(3·8) 

where 

Uo=NUJ= -N(gabuaub+ 1)112
• 

Similarly, it follows from Eqs. (2 ·15) and (2 ·17) that 

(3·9) 

(3 ·10) 
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1830 H. Nariai 

dg11
"' I dQ= - tNn~, 

d<f;/d!J=Ng- 112p"'/ (3+ 2w). 

By the use of Eq. (3 ·12), we can reduce Eq. (2 ·19) to 

dpjd!J+ (p+ p)d{ln(g1
1

2 jWj)} jdQ= -t(p-3p)d<J;jdQ. 

Let us introduce here an auxiliary 3-space with the metric 

dl2 = r ab (Q) (rrJb, 

where 

1 
r ab = (e213)ab=R-

2
g ab , (f3aa = 0) 

R=R0e-SJ, (R0 =const=1/V67C, say) 

(3 ·11) 

(3·12) 

(3·13) 

(3·14) 

(3·15) 

the last one showing that Q is measured from future to past. If we denotes the 

scalar curvature of the auxiliary space by K = R 2 (Q) 3R, we can derive the follow­

ing relation: 

3R =! (1 - V) R-2 (Q), (3·16) 

with 

V 1-2K/3 = 1- l [{nab (e213)abP- 2nabnpq (e213 )ap (e213)bq] + 4aaab (e- 213)ab, 

(3 ·17) 

where nab ( = nba) and aa are an affine tensor and vector, respectively, with 

constant values such that (cf. the second paper in Ref.4)) 

(3·18) 

and eabd is Levi-Civita's anti-symmetric tensor. Moreover, it follows from Eqs. 

(3 ·11) and (3 ·15) that 

Until now we have considered a general Bianchi-type universe, but let us 

assume in what follows that the metric tensor r ab = (e213 )ab is diagonal and the 

rJa_frame is comoving with the fluid matter. In this case, we may put3
) 

{ 

/3ab = diag (/3+ + /3- v'3, /3+- /3- v'3, - 2/3+), (f3aa = 0) 

p~=2rc (rc~- o~rc~/3) = i- diag (P+ + P- v'3, P+-P- v'3, - 2p+), 

Ua=O. (so that 'OJ= -1, u0 = -N) · 

(p~=O) 

(3. 20) 

Moreover, let us put 

(3·21) 

A substitution of Eqs. (3 ·15), (3 · 20) and (3 · 21) in Eq. (3 ·13) gives 
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Hamiltonian Approach to the Dynamics 1831 

p' -3(p+p) =· -tl(p-3p){3o', (3· 22) 

which, together with an equation of state p = p (p), leads to a definite relation 

among p, {30 and !2, where a dash denotes differentiation with respect to Q in 

what follows. On inserting Eqs. (3 ·15), (3 ·16), (3 · 20) and (3 · 21) into Eq. 

(3 · 8) with IC=8nG and solving the latter with respect to 7!~, we obtain 

(3· 23) 

The remaining constraints (3 · 9) are automatically satisfied in the case under 

consideration. Now it is an easy matter to transform the action integral (3 · 6) 

into the desired form 

(3·24) 

where 

H (2mr~) - (8G /9) (p + p) e-69 I (2nn~), (3. 25) 

which, together with Eqs. (3 · 22) and (3 · 23), denotes the Hamiltonian of the 

system consisting of the gravitational modes ({3±, P±) and the inertial one ({30, Po). 

Even if. the inertial mode is omitted, our Hamiltonian is different from Ryan's 

Hamiltonian H = 27!7!~. 15
) This is due to the situation that Ryan has discarded 

the last term on the right-hand side of Eq. (3 · 6) in his reduction. In spite of 

this, if there exists an extremely early stage such that the contribution of gravi­

tational and inertial modes to H overwhelms that of matter, our Hamiltonian is 

approximated by 

(3· 26) 

which is an extended version of Misner's Hamiltonian3
) (derivable from Ryan's 

under the same approximation). Because of a nonvanishing nature of the right­

hand side (unless p = p/3) in Eq. (3 · 22), however, the existence of such a stage 

will be confined to the case where o<p<pj3. Accordingly we shall derive 

the exact expressions for H in the typical two cases p = p/3 (suitable for the 

radiation dominant stage of a big-bang universe) and p = p (envisaged by 

Zel'dovich16
)), for comparison. 

The case p=p/3: 

In this case, it follows from Eq. (3 · 22) that 

3p = P = (P)oe49
, (3. 27) 

where (p)0 is the value of p at !2=0. On inserting Eq. (3·27) into Eq. (3·25) 

with 27!7!~ given by Eq. (3 · 23), we have 

H = {P+2 + P-2 + Po2 + e-
4
n (V -1) + (tL/3) e-

2n} I {P+ 2 + P-2 

(3· 28) 
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1832 H. Nariai 

where ,U=16G (p)0l9. The above expression IS reduced to Eq. (3 · 26) at an 

extremely early stage such that es.~>{,ui(P/+P- 2 +p 0
2
)PI

2
• 

The case p=p: 

In this case, Eq. (3 · 22) can be integrated as 

P=P = P* exp ().f3o+ 6Q), (3· 29) 

where p* is an integration constant. Then it follows from Eqs. (3 · 23) and 

(3 · 25) that 

H = {P+ 2 + P- 2 + Po2 + e- 4
!.1 (V -1)} I {p/ + P- 2 + Po2 + ,u*e>-13

o +e-
4 s.~ (V -1) }112

, 

(3. 30) 

§ 4. Gravitational and inertial modes at an extremely early stage 

of the Bianchi-type I universe with p =pI 3 

Let us consider an extremely early stage of a big-bang homogeneous universe 

filled with matter and radiation obeying the relation p = pl3, so that the Hamiltonian 

for gravitational and inertial modes is represented by Eq. (3 · 26). The only model­

dependent term in this expression for H is the potential term e- 4 s.~ (V -1), which 

vanishes only in the case of the Bianchi-type I universe specified by nao = aa = 0 

(cf. Eq. (3 ·17)). This means that the Bianchi-type I universe serves as a 

kinematical background to analyze the dynamical behavior of gravitational and 

inertial modes in other Bianchi-type universes. Our subject of this section is to 

see what situation occurs by the presence of the inertial mode. 

In this universe, we have 

(4·1) 

Equations (3 · 24) and ( 4 ·1) lead to the following canonical equations of motion: 

so that we obtain 

where n= +, 
grated as 

f3n'=8HI8Pn=PniH, (4·2) 

Pn' = - 8HI8f3n = 0 or Pn = const, (4·3) 

H'=8HI8SJ=O or H=const, (4·4) 

0. By virtue of Eqs. ( 4 · 3) and ( 4 · 4), Eq. ( 4 · 2) can be inte-

f3o = (/3o)o + (Pol H) Q, (4·5) 

where we have assumed without loss of generality that {3± = 0 at Q= 0. Moreover, 

we have 

(4·6) 
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Hamiltonian Approach to the Dynamics 1833 

which, together with Eq. ( 4 · 5), shows that a world point in the /3-space moves 

with unit !2-velocity along some straight line. 

To make clearer the role of the inertial mode in the universe under 

consideration, let us transform here from the (.Q, <r) -frame to the usual (t, xi)­

frame by means of the relations dt = - Nd.Q and dxi = e~rJa. Taking account of 

Eqs. (3·15), (3·19) and (4·4) with H=2rtrc~ (at the extremely early stage), 

and e~ = o~ (for the Bianchi-type I universe), we obtain 

!J= -tIn r, (4·7) 

where r=t/t0 and t 0= (2/3H) R 0• By making use of Eqs. (3 ·15), (3 · 20), (3 · 21), 

( 4 · 5) and ( 4 · 7), we can reduce Eqs. (3 ·1) and (2 · 2) to 

(4·8) 

and. 

(4·9) 

where (¢)o=G-1exp {A (/3o)o}, and 

[

Pl= ~ {1- (P++;-v'
3
) }, P2= ~ {1- (P+-;-v'

3
) }, Ps= ~ (1+ 2 ~), 

q= (J-/3) (Po/ H). (4·10) 

It is easily seen that the above model-universe specified by Eqs. ( 4 · 8) rv 

( 4 ·10) is reduced to the Kasner universe3
l'

4
l in relativistic cosmology, if we 

discard the inertial mode, i.e., if we put /30 =Po= q = 0 (so that we have H = (p/ 

+ P-2Y12
). For the Kasner universe, the counterparts of (ph P2, Pa) given by 

Eq. ( 4 ·10) satisfy the relations 

( 4 ·11) 

and it has been shown by Lifshitz and Khalatnikov4
l that they are parametrized 

as follows: 

(4·12) 

which satisfy the inequalities p1<p2<Pa for u>1, and show further that the 

isotropic case P1 = P2 = Ps is prohibited. 

On the contrary, the Brans-Dicke cosmology leads to a special isotropic 

model-universe such that 

(4·13) 

If P±=/=0, however, the model must inevitably be anisotropic and the three constants 

(ph P2, Ps) must satisfy the relations 

(4·14) 
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1834 H. Nariai 

the second one of which is permissible only when JqJ <J.! .Jo. Then the counter­

part of Eq. ( 4 ·12) is given by 

(4·15) 

where 

(cf. Eq. (3 · 21)) (4·16) 

In order that P2 and Ps given by Eq. ( 4 ·15) may be real, we must have 

(1-()u2 -(u-(1+()>o. (4·17) 

If 0<(<1, (which is necessary for the inclusion of the Kasner universe to be 

specified by ( = 0), it follows from Eq. ( 4 ·17) that 

(4·18) 

whose right-hand side is a monotonously increasing function of ( such that u*(O) = 1 

and u* (1) = oo. Moreover, we have 

( 4 ·19) 

like (p1 , p 2, Ps) given by Eq. ( 4 ·12). Because of the ab?ve two relations ( 4 ·18) 

and (4·19), we see that P1<P2<Pa for u>u*, while P1<Ps<P2 for u<u*. In 

addition, we have 

P1 ( oo) = 0 , P2 ( oo) = i-{1- v'1- ( 2
), Ps ( oo) = t (1 + v'1- ( 2

), 

p1(1/u*)= -i(v'4-3(2 -1), p2(1/u*) =Pa(1/u*) =i(2+ v'4-3(2
). 

(4· 20) 

§ 5. Dynamical behavior of the gravitational and inertial modes 

in the Bianchi-type IX universe with p = p /3 

Among the remaining Bianchi-type (II"-' IX) universes (for which respective 

forms of the potential V = V(/3+, /3-) in Eq. (3 · 26) will be given in the Appendix), 

let us pick up the Bianchi-type IX universe which is a generalized version of the 

Friedmann universe with closed 3-space, for comparison with its general rela­

tivistic treatment due to Misner. 3
) 

The structure constants of this universe are given by C~b = eabc (or nab= oab 

and aa = 0 in Eq. (3 ·18)), so that Eq. (3 ·17) is reduced to 

V=1+ie4,s+{ch(4.J3f1_) -1} -fe- 2
fi+ ch(2.J3f1_) +te-s,s+, (5·1) 

which has originally been derived by Misner. 3
) A substitution of the above 

potential function in Eq. (3 · 26) gives the Hamiltonian for the system of gravitational 
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Hamiltonian Approach to the Dynamics 1835 

and inertial modes, which is available at an extremely early stage of the universe 

under consideration. Then, by the variation of the action integral I given by 

Eq. (3 · 24), the following canonical equations of motion arise: 

/3±' =8Hj8p± =P±/H, 

P±' = - 8H/8{3± = - (e_ 4
!J /2H) 8 V/8{3 ± , 

and 

{3o' = 8H/8Po =Pol H, 

Po'= - 8H/8f3o = 0 or Po= const, 

(5·2·1) 

(5·2·2) 

(5·3·1) 

(5. 3. 2) 

the last one of which is the only constant of motion, while we have four constants 

of motion ( cf. Eqs. ( 4 · 3) and ( 4 · 4)) in the Bianchi-type I universe. On insert­

ing Eqs. (5 · 2 ·1) and (5 · 3 ·1) into Eq. (3 · 26), we get 

/3' 2= (/3+')2 + (/3-'Y + (f3o'Y = 1-e-4
!2 (V -1) H-2

, 

which, together with H' = 8H/8S2, leads to 

(ln H 2
)' = 4 (/3'2 -1). 

(5·4) 

(5·5) 

The above two equations show that, unless V becomes sufficiently large for 

Q:::::::..oo, both /3'2.:::::.1 and H~const for Q:::::::..oo (just as in the Bianchi-type I 

universe) hold good in a good approximation. For the potential V given by 

Eq. (5 ·1), however, the required condition does not always hold. In fact, the 

above potential varies from v~8W/ for W13= ({3/ + /3- 2Y12 :::::::..0 to the following 

asymptotic form: 

for f3+~- oo, (5·6) 

which is valid if lf3-1<-v'3f3+· A substitution of Eq. (5·6) in the expression 

H- 2e_4
!J V 1 (which assures a large discrepancy of {3' 2 from unity) provides us 

with 

(5·7) 

where (w13)wall stands for an equi-potential wall in an W 13-plane specified by {30 = 

const in the {3-space. If the position of a world point is within the potential 

wall, i.e., W13 = (/3+2 +f3- 2Y12<1 (Wf3)walll, there hold lf3'1 =1, H=const and I (W13):a11 l 

=1/2 in a good approximation. Accordingly, if IW/1:::::::..(1-{3o'2Y12>1/2, the world 

point collides soon after with the potential wall in an inelastic manner and 

changes into again the rectlinear motion specified by I {3' I = 1 and H = const 

(smaller than its initial value) till the subsequent collision with another potential 

wall. The difference of this picture from its general relativistic counterpart is 

the situation that the existence of the inertial mode makes the motion of a world 

point to be three-dimensional. 

In order to deal with the bounce phenomena of a world point with the tri-

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

7
/6

/1
8
2
4
/1

9
1
0
7
6
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



1836 H. Nariai 

angular potential walls3
> derivable from Eq. (5 ·1) in more detail, let us consider 

the effective Hamiltonian which is defined to be H given by Eqs. (3 · 26) and 

(5 · 6), I.e., 

(5·8) 

Then, from Eqs. (5 · 2) and (5 · 3), we can derive the following additional constants 

of motion (in the approximation adopted now): 

P- = const, J=iP+ + H = const. (5·9) 

Since the motion of a world point before and after its bounce with the potential 

wall specified by Eq. (5 · 7) is the same as that specified by Eqs. (4 · 5) and (4 · 6), 

we may put 

(P+IH)i= ((3+'\= -sin 8i cos V/i, 

(p_jH)i= Cf3-')i=sin f)i sin V/i, 

(Po/ H)i = (f3o')i =cos f)i , 

(P+/H)f= (f3+')1 =sin 81 cos (f/J, 

(p_jH)1 = Cf3-')1 =sin 81 sin V?!, 

(5·10) 

where (f)i, V/i) and (f)h (f?1) are the angular variables specifying the directions 

of motion before and after the bounce. A substitution of Eq. (5 ·10) in Eqs. 

(5 · 3 · 2) and (5 · 9) gives 

(5 ·11) 

(5·12) 

(5 ·13) 

where we may assume that both f)i and 81 are smaller than n/2 and they are 

not equal to each other, because the case f)i = 81 = n/2 corresponds to the general 

relativistic model, and Hi=(=H1 if P±=f=O. Eliminating Hi and H 1 from Eqs. (5 ·11) 

rv (5 ·13)' we 0 btain 

sin V?dsin ei-sin V?dsin f)f=t sin(V?i+V?!), 

tan f)i sin V/i =tan 81 sin (f?1 , 

(5 ·14) 

(5 ·15) 

which, together with Eq. (5 ·13), are the bounce law in question. The bounce 

phenomenon obeying the above law is schematically shown in Fig. 1. 

To make the required calculation simple, let us pick up a special case such 

that 

{)i+{)J=n/2, V?i+V?1 =n/3. 

Then it follows from Eqs. (5 · 14) and (5 · 15) that 

sin V/i = .;
3 

sine f cos 8d (cos {) f- cos f)i)' 
4 

(5·16) 

(5 ·17) 

(5·18) 
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A" c" 

e, 112 

112 

c 
!-----~--.,...{3+ 

60° 
~---+c--;..~P 

112 

c' 
(a) (b) 

Fig. 1. Schematical representation of the bounce of a world point with one of the tri-angular 
potential walls moving with 0.5 .!2-velocity. 
(a) Situation in the (/3+, 13-)-plane. (h) Situation in the (/3o, wp)-plane. 

Since Eq. (5 ·18) is symmetrical with respect to the interchange of 8i and 8 f 
( = n/2- 8i), it has two solutions such that ()i = t arc sin (8- 2 v'13) = 0.4545 or 
8i = n/2- t arc sin (8- 2 v'13) = 1.116. Of the two solutions, the latter alone makes 
the value of r:pi given by Eq. (5 ·17) positive. Thus we obtain 

{ 

8i = 1.116 (63.95°)' 8, = 0.4545 (26.05°)' 

r:pi = 0.1826 (10.46°)' r:p, = 0.8645 ( 49.54°)' 

H 1 /Hi=cos 8t/cos 81 =0.4686. 

(5·19) 

On the other hand, Misner's general relativistic resule) (corresponding to the 
case where 8i = 81 = n/2 and r:pi + r:p1 = n/3) is as follows: 

{ 
r:pi = 15.5°, r:p, = 44.5°, 

(5· 20) 
H 1/ Hi= sin r:pt/sin r:p1 = 0.382. 

A comparison of both results shows that, owing to the presence of the inertial 
mode, the damping rate of the "energy" per one bounce, i.e., (Hi- H 1) /Hi, is 
smaller about 14% and the incident angle r:pi in the W' ,a-plane is smaller about 
33% than their general relativistic counterparts. In spite of this, the inertial 
mode is useless to modify the relation 

(5. 21) 

whose quantum versiOn led Misner3
) to the conclusion (cf. § 1) on the inevitability 

of the initial singularity in relativistic cosmology. Here Qi and !21 stand for the 
time durations during which a world point moves in the /1-space before and after 
the bounce with one of the tri-angular potential walls, as shown in Fig. 1. This 
is due to the situation that (Hi sin 8i, H 1 sin 81 ) and (!Ji/sin 8i, !21/sin 81) play 
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1838 H. Nariai 

the same roles as (Hi, H 1) and (Qi, Q1) in the derivation of Eq. (5 · 21). 

To rewrite the bounce law (5 · 13) rJ (5 ·15) in terms of the Lifshitz and 

Khalatnikov's parameter u appearing in Eq. ( 4 ·15), let us insert Eqs. ( 4 ·10) 

and ( 4 ·16) into Eq. (5 ·10). Then we can rewrite Eqs. (5 ·14) and (5 ·15) as 

{ (p2)i- (pl)i} I {3 (Ps)i + 1} = { CP2)1- (pl)J} I {3 (Ps)j + 1}, 

{ (p2)i- (pl)i} l(i = { (p2)f- (pl)f} I(J' 

(5. 22) 

(5· 23) 

where (Pa)i=Pa(ui, (i) and (Pa)1 =Pa(ub ( 1) should be given by Eq. (4·15). Even 

in the general relativistic case, however, the relation between ui and u1 thus 

derived is not the simple law u1 = ui -1,4
) but its rewritten form 2uiu1 + ui + u1 

= 0.
18

) Taking account of such a situation, let us assume that 

(5. 24) 

where Pa (a= 1, 2, 3) are given by Eq. ( 4 ·15). Then it follows from Eqs. (5 ·13), 

(5 · 22) and (5 · 23) that 

(5· 25) 

and 

(5· 26) 

which is much complicated than u1 = ui -1 corresponding to the limiting case 

such that (i---?0, ( 1 ---?0 and (t/(1 ---? (u/ + u1 + 1) I (u/ + ui + 1). This is the reason 

why we have mainly relied on the Hamiltonian approach rather than on the 

Lifshitz-Khalatnikov approach. 

§ 6. Dynamical behavior of the gravitational and inertial modes 

in the Bianchi-type I universe with p = p 

As pointed out in § 3, there exists an extremely early stage such that the 

full Hamiltonian (3 · 25) can be approximated by the simplified form (3 · 26) only 

when the constituent matter and radiation of the universe satisfy the inequalities 

o<p<pl3. This is clearly seen from an application of Eqs. ( 4 · 3), ( 4 · 4), ( 4 · 5) 

and ( 4 ·10) to the Bianchi-type I universe with p = p (but not p = pl3), because 

Eq. (3 · 30) with V = 1 leads to H~(G(¢) 0 !J.*)-
112 (P+

2 + P-2 + p 0'') exp (- 3qQI2)-?0 

in contradiction with Eq. ( 4 · 4). Accordingly, we shall deal with the Bianchi­

type I universe with p = p in what follows. 

In this universe, the exact Hamiltonian is of the form 

(6·1) 
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Hamiltonian Approach to the Dynamics 1839 

which shows that there are three constants of motion 

P± = const, H=const. (6·2) 

If we put 

v= (p/ + P- 2 + Po2
) /H 2

, v*= (P+
2 + P-2

) /H 2 
= const, (6· 3) 

it follows from Eqs. (6 ·1) and (3 · 29) that 

jJ.*eA./3o = H 2v ( v -1) (6 · 4) 

and 

(6·5) 

Moreover, the remaining canonical equations of motion f3n' = fJHjfJpn (n = +, -, 0) 

are reduced to 

eJ..dQ= v 
(v-1) Jv-v*' 

dv 
(6·6) 

d/3±1 dQ = (P±I H) (
2

v ~ 1
) , 

v 
(6· 7) 

where p0 =sHJv-v* and s= ± 1. An integration of Eq. (6·6) gives 

(if O<v*<1) 

(6·8) 

where we have chosen an integration constant suitably. Similarly, it follows 

from Eqs. (6 · 7) and (6 · 8) that 

2 jv-v* 2 jv-v* 
1- arc tan + 1 

1 
arc tan 

1 
, 

v v* v* v v*- v*-

2 ( jv-v* j1-v*\ 
1- arc tan -arc tan ) 

vv* v* v* 

(6·9) 

(i) The case v*>1: 

Since the right-hand side of Eq. (6 · 8) is a monotonously increasing function 

of v becoming infinitely large when v---?oo, the range of Q is either (- oo, 0) or 

(0, oo) according as s = - 1 or 1. In addition, irrespective of the sign of s, we 

have 
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1840 H. Nariai 

(6·10) 

A substitution of the above expression in Eq. (6 · 5) g1ves 

for eQ:::::..oo, (6 ·11) 

which shows that p~oo or 0 for tJ~oo(e=1) or -oo(s=-1). This means 

that, so far as v*> 1, the initial singularity of infinite density is inevitable. 

Moreover, it follows from Eqs. (6 · 8) and (6 · 9) that 

{
(P±/H)( 2 v~- 1 ),g for Q:::::..O, 

{3±::::::.. v* -1 

(P±/H) (srr/J.) (1/.Jv* +1/.Jv*-1) 

(6 ·12) 

for stJ:::::..oo. 

(ii) The case O<v*<1: 

Equation (6·8) shows that stJ~-oo or oo according as v~1 or oo. 

Accordingly we have 

1
().2/4)!2 2 for !2::::::..-oo, 

v:::::.. 1+4(1-v*)exp( -J,.J1--;*Q) for Q:::::..oo, 
(6 ·13) 

provided that Po=- H .Jv- v* or e = -1. On inserting the second expression of 

Eq. (6 ·13) into Eq. (6 · 5), we obtain 

p:::::.. (9H2/16G) (1- v*) exp { (6-). .J1- v*) Q} for Q:::::..oo. (6 ·14) 

In order that the above p may be of a finite value even when SJ~oo, the para­

meter ).= {12/ (3 + 2a>) }112 (cf. Eq. (3 · 21)) must be equal to 6/ .J1- v*, so that 

we have 

(6·15) 

On the other hand, the scalar-tensorial versions divided by the Einstein formulae 

for the so-called 3 tests of general relativity are represented by (the perihelion 

advance of Mercury)= (4+3a>)/(6+3a>), (the gravitational deflection of light) 

= (3 + 2a>) / ( 4 + 2a>) and (the gravitational shift of the wave length of light) = 1, 

respectively. 8
) A substitution of Eq. (6 ·15) in the first formula gives (the 

perihelion advance of Mercury) =v*/(v*-4)<0 which contradicts with the 

experimental evidence. If a>2:6 as insisted upon by Brans-Dicke,8
) we have J.<6/ 

.J1- v* showing again the inevitability of infinite density for tJ~oo. Moreover, 

it follows from Eqs. (6 · 8) and (6 · 9) with e = -1 that 

{3±::::::.. 1
- (P±/H) (rr/A..Jv*) for Q:::::..- oo, 

(P±/H)Q for Q:::::..oo. 
(6·16) 

As is seen from Eqs. (6 ·12) and (6 ·16), the functional form of {3± or the 

metric component gab (cf. Eq. (3 ·15)) in the case p = p varies sensibly with the 

lapse of time, while its counterpart (cf. Eq. (4·5)) in the case p=p/3 is inde­

pendent of time. In spite of this, it has been shown that the initial singularity 
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Hamiltonian Approach to the Dynamics 1841 

of infinite density cannot be eliminated, by virtue of the situation that Eq. (6 ·15) 

is incompatible with the requirement of w2:6. 
Remark The dynamical system specified by the Hamiltonian H given by Eq. 

(6 ·1) can be quantized by replacing (f3n, Pn) (n = +, -, 0) with the operators 

satisfying the commutation relations f3mPn- Pnf3m = ihomn· Then we must replace 

the factor v (v -1) in Eq. (6 · 5) with its vacuum expectation value. Even if the 

expectation value of p becomes finite for Q~oo, the metric component gao itself 

becomes singular because of the factor R 2 = (1/6n) e-2
!.1. 
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Appendix 

The potential walls in other Bianchi-type universes 

As was shown in § 3, the canonical description of Bianchi-type expanding 

universes in the Brans-Dicke cosmology is represented by the motion of a world 

point in the three dimensional /3-space in the presence of the potential walls with 

gravitational origin, as well as of another potential with inertial origin (effective 

in the case of p=p). In §§ 4"--'5 we have analyzed in what way the former 

potential has influence upon the motion in the case of Bianchi-type IX universe, 

while the role of the latter potential in the Bianchi-type I universe has been 

studied in § 6. The subject of this appendix is to derive various potential walls 

(with gravitational origin) corresponding to other Bianchi-type universes, by the 

use of Eqs. (3 ·17), (3 ·18) and (3 · 20). 

We can prove that the asymptotic potential walls (in the 'UJ ,s-plane specified 

by (30 = const) corresponding to Bianchi-types II and IV are a straight-lines and 

two half-straight-lines intersecting with the corner angle n/3, respectively. The 

straight-line and one of the two half-straight-lines move with 0.5 !2-velocity, so 

that they may bounce with the world point only one time. Moreover, the asymp­

totic potential walls corresponding to Bianchi-types III and VII are shown to 

be of the same tri-angular form as that of the Bianchi-type VI. Accordingly, 

we shall call attention to the universes of Bianchi-type V, VI and VIII, res­

pectively. 

a) Bianchi-type V (specified by na0 =0, aa=(1, 1, 1)/.JB): 

For this universe, Eq. (3 · 17) is reduced to 

(A·1) 

The above potential gives rise to the asymptotic tri-angular form shown in Fig. 2, 
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1842 H. Nariai 

Fig. 2. The tri-angular potential walls in the 

Bianchi-type V universe. 

Fig. 3. The tri-angular potential walls in the 

Bianchi-type VI universe. 

derivable from the condition that the potential becomes effective, i.e., H- 2e_4SJV 1 

(cf. Eq. (3 · 26)). 

b) Bianchi-type VI (specified by n11 = - n
22 = 1, n 33 = aa = 0): 

For this universe, we have 

(A·2) 

whose asymptotic form is shown in Fig. 3. 

c) Bianchi-type VIII (specified by n 11 =n22 = -n 33
=1~aa=0): 

For this universe, we have 

(A·3) 

which is of the same form as Eq. (5 ·1), except for the plus sign in front of the 

third term on the right-hand side. However, the third term does not contribute 

to the asymptotic form, so that the latter is identical with the one shown in 

Fig. 1, in spite of the situation that the Bianchi-type VIII universe is an open 

universe. 

Among the above three universes, the first two provide us with the bounce laws 

different from that discussed in § 5. In the Bianchi-type V universe, the bounce 

cannot at all occur, because each of the three walls AB, BC and CA moves with 

unit 52-velocity, just as the world point. On the other hand, in the Bianchi-type 

VI universe, the world point may collide only with the two walls BC and CA 

whose .!J-velocities are 1/2. 

References 

1) H. Nariai, Prog. Theor. Phys. 46 (1971), 433. 

H. Nariai and K. Tomita, Prog. Theor. Phys. 46 (1971), 776. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

7
/6

/1
8
2
4
/1

9
1
0
7
6
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Hamiltonian Approach to the Dynamics 1843 

2) R. Utiyama and B. S. DeWitt, J. Math. Phys. 3 (1962), 608. 

3) C. W. Misner, Phys. Rev. 186 (1969), 1319, 1328; Relativity, edited by M. Carmeli, S. I. 
Ficker and L. Witten (Plenum Press, New York, 1970), p. 55. 

4) E. M. Lifshitz and I. M. Khalatnikov, Adv. in Phys. 12 (1963), 185. 

V. A. Belinski, I. M. Khalatnikov and E. M. Lifshitz, Adv. in Phys. 19 (1970), 525. 

E. M. Lifshitz, I. M. Lifshitz and I. M. Khalatnikov, Soviet Phys.-JETP 32 (1971), 173. 

5) F. Hoyle and J. V. Narlikar, Proc. Roy. Soc. A273 (1963), 1. 

6) H. Nariai, Prog. Theor. Phys. 32 (1964), 450, 837. 

7) P. Jordan, Schwerkraft und Weltall (Braunschweig, 1952). 

8) C. Brans and R. H. Dicke, Phys. Rev. 124 (1961), 925. 

9) H. Nariai, Prog. Theor. Phys. 42 (1969), 742, 544; 43 (1970), 334; 47 (1972), 118. 

10) V. A. Belinski, I. M. Khalatnikov and M.P. Ryan, Preprint (Landau Inst. for Theor. Phys., 

1971). 

11) L. Bianchi, Mem. Soc. I tal. Sci. (3) 11 (1897), 267. 

12) R. Arnowitt, S. Deser and C. W. Misner, Gravitation: An Introduction to Current Re-

search, edited by L. Witten (Wiley-Interscience, Inc., New York, 1962), Chap. 7. 

13) R. H. Dicke, Phys. Rev. 125 (1962), 2163. 

14) H. Nariai and Y. Ueno, Prog. Theor. Phys. 24 (1960), 593. 

15) M. P. Ryan, Ann. of Phys. 65 (1971), 506. 

16) Ya. B. Zel'dovich, Soviet Phys.-JETP 29 (1969), 1056. 

17) H. Nariai and T. Kimura, Prog. Theor. Phys. 28 (1962), 529; 29 (1963), 296. 

18) C. W. Misner, Phys. Rev. Letters 20 (1969), 1071. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

7
/6

/1
8
2
4
/1

9
1
0
7
6
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2


