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Abstract. A spanning cycle in a graph G is called a hamiltonian cycle, and
if such a cycle exists G is said to be hamiltonian. Let G be a graph and H be
a subgraph of G. If G contains a hamiltonian cycle C such that E(C)∩E(H)
is empty, we say that C is an H-avoiding hamiltonian cycle. Let F be any
graph. If G contains an H-avoiding hamiltonian cycle for every subgraph H
of G such that H ∼= F , then we say that G is F -avoiding hamiltonian. In this
paper, we give minimum degree and degree-sum conditions which assure that
a graph G is F -avoiding hamiltonian for various choices of F . In particular, we
consider the cases where F is a union of k edge-disjoint hamiltonian cycles or a
union of k edge-disjoint perfect matchings. If G is F -avoiding hamiltonian for
any such F , then it is possible to extend families of these types in G. Finally,
we undertake a discussion of F -avoiding pancyclic graphs.
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1. Introduction

In this paper we consider only graphs without loops or multiple edges. Let
|G| = |V (G)| denote the order of G. Additionally, let d(v) denote the degree of a
vertex v in G and let δ(G) and ∆(G) denote the minimum degree and maximum
degree of G, respectively. Let G be the complement of G. In this paper, we will
consider cycles to have an implicit clockwise orientation. With this in mind, given
a cycle C and a vertex x on C, we let x+ denote the successor of x under this
orientation and let x− denote the predecessor. For any other vertex y on C, we
let xC+y denote the path from x to y on C in the clockwise direction and xC−y
denote the path from x to y on C in the counterclockwise direction.

For any vertex v in G, let N(v) denote the set of vertices adjacent to v. If H is
a subgraph of G, we let NH(v) denote the set of vertices in V (H) adjacent to v and
N(H) denote the set of vertices adjacent to at least one vertex in V (H). For a vertex
v in V (G) we let dH(v) denote the degree of v in H. If C is a cycle contained in G
we let N+

C (v) denote the set of vertices on the cycle that are successors of vertices
in NC(v) and N+

C (H) denote the set of vertices on the cycle that are successors of
vertices in NC(H). Similarly we let N−

C (v) denote the set of vertices on the cycle
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that are predecessors of vertices in NC(v) and N−
C (H) denote the set of vertices on

the cycle that are predecessors of vertices in NC(H).

A spanning cycle in a graph G is called a hamiltonian cycle, and if such a cycle
exists, we say that G is hamiltonian. Hamiltonian graphs have been widely studied,
and a good reference for the recent status of such problems is [15]. Let σ2(G) denote
the minimum degree sum over all pairs of nonadjacent vertices in G. Ore’s Theorem
[13], one of the classic results pertaining to hamiltonian graphs, states the following.

Theorem 1.1 (Ore’s Theorem 1960). If G is a graph of order n ≥ 3 with σ2(G) ≥ n
then G is hamiltonian.

A graph is a butterfly if it is composed of two complete graphs intersecting
in exactly one vertex. If G is isomorphic to a butterfly or if Kn−1

2 , n+1
2

⊆ G ⊆
Kn−1

2
+ Kn+1

2
, then G is nonhamiltonian and σ2(G) = n − 1, demonstrating the

sharpness of Ore’s Theorem. In fact, it has been noted by several authors [1, 11, 12]
that these are the only nonhamiltonian graphs with this property. We will give a
new proof of this fact as a corollary to our main result. The class of butterflies
and Kn−1

2 , n+1
2

will play an important role in the main result of this paper. Dirac’s
Theorem [5], another classic result, is an immediate corollary of Theorem 1.1.

Theorem 1.2 (Dirac’s Theorem 1952). If G is a graph of order n ≥ 3 with δ(G) ≥
n
2 then G is hamiltonian.

Part of the impact of Theorems 1.1 and 1.2 is that the parameters σ2(G) and
δ(G) are often explored as threshold functions for hamiltonicity and other cycle-
structural properties. We will refer to the hypotheses of Theorems 1.1 and 1.2,
specifically the assumptions that σ2(G) ≥ n and δ(G) ≥ n

2 , as the Ore condition
and the Dirac condition, respectively.

We would like to call attention to a particular class of results pertaining to the
cycle structure of a graph. Let G be a graph, and let S = {x1, . . . , xk} be a subset
of V (G). if there is a cycle in G that contains all of the vertices in S, then S is said
to be cyclable. For instance, if each vertex in S has degree at least n

2 , then S is
cyclable [2, 17]. The problem of putting specified edges or paths in G on to cycles,
either arbitrarily or in a prescribed order, has also been considered. For instance,
in [9] it is shown (extending a result from [14]) that if G is a graph of order n with
σ2(G) ≥ n + k, and H is any collection of non-trivial paths in G having exactly
k edges, then there is a hamiltonian cycle in G containing all of E(H). A good
reference for both a classical perspective and recent progress on problems of this
type is [16].

In this paper, as a contrast to these results, we are interested in examining
conditions on a graph G that assure it will have a hamiltonian cycle that avoids
given subgraphs.

2. F -avoiding Hamiltonicity

Let G be a graph and H be a subgraph of G. If G contains a hamiltonian cycle
C such that E(C) ∩ E(H) is empty, we say that C is an H-avoiding hamiltonian
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cycle. Let F be any graph. If G contains an H-avoiding hamiltonian cycle for
every subgraph H of G such that H ∼= F , then we say that G is F -avoiding
hamiltonian. We note here that G is F -avoiding hamiltonian if and only if G−E(H)
is hamiltonian for every subgraph H of G such that H ∼= F . We wish to determine
conditions on G and F that assure G is F -avoiding hamiltonian.

The closure of a graph G of order n, denoted cl(G), is obtained by repeatedly
connecting nonadjacent vertices u and v such that d(u) + d(v) ≥ n until no such
pair of vertices exists. The following theorem from [4] will be used several times in
this section.

Theorem 2.1. A graph G is hamiltonian if and only if cl(G) is hamiltonian.

Our first two results give Ore-type conditions that assure G is F -avoiding hamil-
tonian.

Theorem 2.2. Let G be a graph of order n ≥ 3 and let F be a graph of order
t ≤ n

2 and maximum degree at most k. If σ2(G) ≥ n + k then G is F -avoiding
hamiltonian. This result is sharp for all choices of F .

Proof. Let H be any subgraph of G that is isomorphic to F and let G′ = G−E(H).
It suffices to show that G′ is hamiltonian. We will, in fact, show that cl(G′) is
hamiltonian implying the result by Theorem 2.1. Let v be any vertex in V (G)\V (H)
and let w be any vertex in G that is not adjacent to v. Then dG′(w) ≥ dG(w)− k
and dG′(v) = dG(v), so that

dG′(w) + dG′(v) ≥ dG(v) + dG(w)− k ≥ (n + k)− k = n.

This implies that v and w are adjacent in cl(G) and, in fact, that v is adjacent
to every vertex in cl(G). Hence, cl(G) is isomorphic to a complete graph of order
n − t joined to some graph of order t. The fact that n − t ≥ n

2 yields that cl(G)
is hamiltonian and, by Theorem 2.1, that G′ is hamiltonian as well. The result
follows.

Let H be any graph and let x be a vertex of maximum degree in H. To see
that the theorem is sharp, consider a graph on n vertices constructed from Kn−1

and an additional vertex v of degree ∆(H) + 1. This graph has σ2 = n + k− 1 and
contains numerous copies of H with v playing the role of x. Removing the edges
of any of these copies from G leaves a graph that is clearly not hamiltonian, as the
degree of v would be one.

�

We now turn our attention to the problem of finding F -avoiding hamiltonian
cycles in a graph G when the order of F is closer to the order of G.

Theorem 2.3. Let G be a graph of order n and let F be a graph with maximum
degree k. If σ2(G) ≥ n+2k then G is F -avoiding hamiltonian. This result is sharp
for all values of k.

Proof. Let H be any subgraph of G that is isomorphic to F and assume that
G − E(H) is not hamiltonian. Ore’s Theorem implies that G is hamiltonian,
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so we consider a hamiltonian cycle C in G that minimizes |E(C) ∩ E(H)|. Let
x1, x2, . . . , xn denote the vertices of C in order.

By assumption G − E(H) is not hamiltonian, so there is some edge xixi+1 on
C that is also in E(H). The fact that σ2(G) ≥ n + 2k implies that both xi and
xi+1 have degree at least 2k + 2. Suppose that y1, . . . , y2k+2 are neighbors of xi+1.
At most k of these neighbors are also neighbors of xi+1 in H leaving at least k + 2
neighbors, without loss of generality y1, . . . , yk+2, that are not neighbors of xi+1 in
H. As the degree of xi in H is also at most k, one of y1, . . . , yk+2, say yj , has the
property that y−j is not adjacent to xi in H. If xiy

−
j is an edge in G−E(H), then

xi, xi−1, . . . , xj , xi+1, xi+2, . . . , x
−
j , xi

is a hamiltonian cycle in G that contains less than |E(H) ∩ E(C)| edges of H,
contradicting our choice of C.

Therefore, we may assume that xiy
−
j is not in E(G). In this case,

xi, xi−1, . . . , xj , xi+1, xi+2, . . . , x
−
j

is a hamiltonian path in G. Let xi = z1, . . . , zn = y−j denote the vertices on this
hamiltonian path in order. Since xi and y−j are not adjacent and σ2(G) ≥ n + 2k

there are at least 2k+1 vertices zi such that zi is adjacent to y−j and zi+1 is adjacent
to xi. Since both xi and y−j are adjacent to at most k vertices in H, one of these
vertices z` has the property that neither y−j z` nor xiz`+1 are in E(H). Therefore,

C ′ = y−j , zn−1, . . . , z`+1, xi, z2, . . . , z`, y
−
j

is a hamiltonian cycle with |E(H)∩E(C ′)| = |E(H)∩E(C)| − 1 contradicting our
choice of C. The result follows.

We now show that the theorem is sharp for every value of k. Let n ≥ 2k + 1 be
an odd integer and let B be any k-regular bipartite graph with partite sets of size
n−1

2 . Complete the partite sets of B so that each is a copy of Kn−1
2

, forming a (no
longer biparite) graph B′. We then create the graph G by taking the join of B′ and
K1 and we note that σ2(G) = n + 2k − 1. If we remove the edges of the bipartite
graph B, we are left with two cliques of order n+1

2 intersecting in a vertex, which is
not hamiltonian. This implies that G is not B-avoiding hamiltonian, establishing
the desired sharpness.

�

In Theorems 2.2 and 2.3, note that in order to assure the existence of a hamil-
tonian cycle that avoids any nonempty collection of edges in G, we must exceed
the Ore condition. Perhaps unexpectedly, this is not so when we consider the Dirac
condition.

Theorem 2.4. Let G be a graph of order n ≥ 3 with δ(G) ≥ n
2 . If E′ is any subset

of E(G) such that |E′| ≤ n−6
4 then there is a hamiltonian cycle in G containing no

edge from E′. This result is sharp.

Proof. It suffices to prove theorem when |E′| = n−6
4 . Let H be the subgraph of G

induced by E′. Note that 〈V (H)〉 has at most n−6
2 vertices. Allowing G′ to denote
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G−E′, we proceed by considering cl(G′). Each vertex in G−V (H) still has degree
at least n

2 in G − E′, and as such G − V (H) is complete in cl(G′). Let v ∈ V (H)
be a vertex of degree ∆(H). Then

|V (H)| ≤ ∆(H) + 1 + 2(|E′| −∆(H)) ≤ n− 6
2

−∆(H) + 1,

as |V (H)| would be maximized in the case where those edges not adjacent to v form
a matching in H. This implies that |G− V (H)| = n− |V (H)| ≥ n+6

2 + ∆(H)− 1.
Thus, since G−V (H) induces a clique in cl(G′) each vertex in G−V (H) has degree
at least n+6

2 +∆(H)− 2. We now also note that each vertex in V (H) has degree at
least n

2 −∆(H) in G′. Let x and w be arbitrary vertices in G′ chosen from V (H)
and G− V (H) respectively. After closing G− V (H), we have that

d(x) + d(v) ≥
(n

2
−∆(H)

)
+

(
n + 6

2
+ ∆(H)− 2

)
= n + 1 > n.

This implies that for any choice of x and w, xw is in cl(G′). Consequently, cl(G′)
contains the join of K|G−V (H)| and K|V (H)|, which is hamiltonian since |G−V (H)| >
|V (H)|. Thus, as cl(G′) is hamiltonian, G is H-avoiding hamiltonian, and the result
follows.

To see that the theorem is sharp, let k ≥ 2 be a positive integer, and let
n = 4k + 2. We construct a graph H of order n by starting with the complete
bipartite graph Kn

2 −1, n
2 +1 and adding pairwise disjoint edges e1, . . . , ek+1 to the

partite set of size n
2 + 1. Removing any k = n−2

4 of the edges ei yields a non-
hamiltonian graph. Thus, if G is E′-avoiding hamiltonian, |E′| ≤ n−2

4 − 1 = n−6
4 .

�

3. An Extension of Theorem 2.3

If we relax the degree condition in Theorem 2.3 slightly, it becomes possible that
G−E(H) is no longer hamiltonian. We can show however, that if G−E(H) is not
hamiltonian then it must fall into one of two exceptional classes. The following is
the main result of this paper.

Theorem 3.1. Let k ≥ 0 be an integer and let G be a graph on n ≥ 2k +3 vertices
with σ2(G) ≥ n + 2k − 1. If F is a graph with maximum degree at most k, then G
is F -avoiding hamiltonian, or there is some subgraph H of G such that H ∼= F and
either G− E(H) is a butterfly, or Kn−1

2 , n+1
2

⊆ G ⊆ Kn−1
2

+ Kn+1
2

.

Before we begin we will give some useful notation and lemmas. Define G′ to be
the graph G−E(H) and observe that σ2(G) ≥ n+2k−1 implies that the minimum
degree of G is at least 2k + 1 and hence that the minimum degree of G′ is at least
k+1. Moreover, for any vertices x, y ∈ V (G) such that xy is not an edge in G,
dG′(x) + dG′(y) ≥ n− 1.

The following two lemmas will be used to prove Theorem 3.1.

Lemma 3.2. Let G be a graph on n ≥ 2k + 3 vertices with σ2(G) ≥ n + 2k − 1.
Then for any subgraph H ⊂ G with ∆(H) ≤ k, either G′ is a butterfly or G′ is
2-connected.
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Proof. Let H be a subgraph of G with ∆(H) ≤ k. We will show by way of contra-
diction that G′ is a butterfly or is 2-connected.

Suppose that G′ is disconnected and that Si and Sj are two distinct components
of G′ with |V (Si)| = si and |V (Sj)| = sj . Since the minimum degree of G′ is at
least k + 1, both si and sj are at least k + 2. Since H has maximum degree at
most k, there must exist x ∈ Si and y ∈ Sj such that xy is not an edge in G.
We have already observed that dG′(x) + dG′(y) ≥ n − 1. But dG′(x) ≤ si − 1 and
dG′(y) ≤ sj−1 implies that dG′(x)+dG′(y) ≤ si+sj−2 ≤ n−2. This contradiction
shows that G′ is connected.

Suppose then that G′ contains a cut vertex v and let Si and Sj be two com-
ponents of G′ − v with |V (Si)| = si and |V (Sj)| = sj . Since the minimum degree
of G′ is at least k + 1, the minimum degree of G′ − v is at least k. Hence each
component of G′ − v has at least k + 1 vertices. Let x be a vertex in Si. Then
for all j 6= i, there exists y ∈ Sj such that xy is not an edge in G, and therefore
dG′(x) + dG′(y) ≥ n − 1. (Note that this is true for every vertex of G′ − v.) We
also have that dG′(x) ≤ si and dG′(y) ≤ sj . Combining the inequalities we get
n − 1 ≤ dG′(x) + dG′(y) ≤ si + sj ≤ n − 1, which implies that si + sj = n − 1
(and also that G′ − v has exactly two components), dG′(x) = si dG′(y) = sj and
both x and y are adjacent v. This is true for all x ∈ V (Si), y ∈ V (Sj), so G′ is a
butterfly. �

Lemma 3.3. Let G be a graph on n ≥ 2k +3 vertices with σ2(G) ≥ n+2k− 1 and
let H be any subgraph of G with ∆(H) ≤ k. Let C be a longest cycle in G′, with
|C| = t. For any component S of G′ − C with |NC(S)| ≥ 2 we have the following:

(1) For all x ∈ V (S) and for all xi, xj ∈ NC(S) x+
i x+

j /∈ E(G′) and x+
i x /∈

E(G′). (For all x ∈ V (S) and for all xi, xj ∈ NC(S) x−
i x−

j /∈ E(G′) and
x+

i x /∈ E(G′).) Furthermore, |NC(S)| ≤ t
2 .

(2) For all x ∈ V (S) and for all xi ∈ NC(S) such that xx+
i is neither an edge

in G′ nor G, and for all y ∈ V (G′)−N+
C (S)− V (S), x+

i y ∈ E(G′). (For
all x ∈ V (S) and xi ∈ NC(S) such that xx−

i is neither an edge in G′ nor
G, and for all y ∈ V (G′) −N+

C (S) − V (S), x−
i y ∈ E(G′).) Furthermore,

x is adjacent to every vertex of V (S)− x.

Proof. For convenience let |NC(S)| = `.

1. This proof is by way of contradiction. Suppose that there exists x, y ∈ V (S)
and xi, xj ∈ NC(S) such that xix, xjy, x+

i x+
j ∈ E(G′), and let P be an x− y path

in S. (Note that this holds for x = y, with P a path of length zero.) Then the cycle
xxiC

−x+
j x+

i C+xjyPx is longer than C, contradicting that C is a longest cycle of
G′. Hence, x+

i x+
j /∈ E(G′) for all xi, xj ∈ NC(S). Now suppose x+

i y ∈ E(G′).
(Again, x = y is possible.) Then the cycle xxiC

−x+
i yPx is longer than C, contra-

dicting that C is a longest cycle of G′. So x+
i y /∈ E(G′) for all y ∈ V (S) and all
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xi ∈ NC(S). The argument for x−
i is similar. It follows that |NC(S)| ≤ t

2 .

2. Let x ∈ V (S) and xi ∈ NC(S) such that xx+
i is neither an edge in G′ nor G.

Then we know that dG′(x) + dG′(x+
i ) ≥ n − 1. Since there are no edges between

components of G′ − C, dG′(x) ≤ |V (S)| − 1 + `. Recall from (1) that x+
i is not

adjacent to any vertex of N+
C (S) nor V (S), so dG′(x+

i ) ≤ t− ` + n− t− |V (S)| =
n−|V (S)|− `. Combining the inequalities yields n−1 ≤ dG′(x)+dG′(x+

i ) ≤ n−1.
Therefore equality must hold, so x must be adjacent to every vertex in V (S) − x
and x+

i must be adjacent to every vertex in G′−N+
C (S)−V (S). The argument for

x−
i is similar. �

Proof. (of Theorem 3.1) Let G be a graph on n ≥ 2k + 3 vertices with σ2(G) ≥
n + 2k − 1 and let H be any subgraph of G with ∆(H) ≤ k. Let C be a longest
cycle in G′ and let t = |V (C)|. If C is a hamiltonian cycle, we are done. Suppose
then that C is not a hamiltonian cycle.

We begin by showing that G′ − C is connected. Suppose otherwise and let
S1, . . . , Sh be the components of G′ − C, with |V (Si)| = si for 1 ≤ i ≤ h. Without
loss of generality we will assume that si ≤ si+1 for 1 ≤ i ≤ h − 1. Let x ∈ Si and
y ∈ Sj for some distinct i and j. Then by part (1) of Lemma 3.3, dG′(x) ≤ si−1+ t

2

and dG′(y) ≤ sj −1+ t
2 which implies that dG′(x)+dG′(y) ≤ si +sj + t−2 ≤ n−2.

Consequently, as x and y are nonadjacent in G′, xy must be an edge in H. At most
k edges of H were incident with each vertex in each Si, so si ≤ k for all 1 ≤ i ≤ h.

Assume without loss of generality that x ∈ S1 and consider the neighborhood
of x on C. In G

dC(x) ≥ 2k + 1− (si − 1)−
∑
j 6=i

sj ≥ 2k + 2− hsh.

Since at most k edges of H were incident with each vertex in G, at most (h− 1)sh

edges between Si and Sj are in H for all j 6= i, so in G′

dC(x) ≥ 2k + 2− hsh − (k − (h− 1)sh) = k + 2− sh.

At most k − sh of the non-neighbors of x on C in G′ were neighbors of x on C
in G. Therefore, there exist xi, xj ∈ NC(x) such that xx+

i , xx+
j is neither an edge

in G′ nor G. By part (2) of Lemma 3.3 both x+
i and x+

j are adjacent to every
vertex in V (G′)−N+

C (x)−V (Si). Recall that y ∈ Sj , where j 6= 1. Then the cycle
xxiC

−x+
j yx+

i C+xjx is longer than C, which contradicts that C is a longest cycle
of G′. Therefore, G′ − C is connected.

Let S be the graph G′−C and define the neighborhood of S in C to be NC(S).
Suppose that |NC(S)| = `. Note that if G is not 2-connected, then by Lemma 3.2
G′ is a butterfly. We will assume that G′ is 2-connected.

Suppose that the order of S is at least k + 1 and let xi be in NC(S). Since S
is connected, no vertex in S can be adjacent to x+

i , but at most k edges incident
with x+

i were in H. Consequently, as there are at least k + 1 vertices in S, there
exists v ∈ V (S) such that x+

i v is neither an edge in G′ nor G, which implies
dG′(x+

i ) + dG′(v) ≥ n− 1. Then by part (2) of Lemma 3.3 we know that for every
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xi ∈ NC(S), NG′(x+
i ) = V (C) −N+

C (S). This means that dG′(x+
i ) = t − ` for all

xi ∈ NC(S). Since dG′(v) ≤ |V (S)| − 1 + ` = n − t − 1 + `, we also have that
dG′(x+

i ) + dG′(v) ≤ n− 1, so equality must hold. Consequently v must be adjacent
to every vertex in NC(S) and V (S)− v.

Suppose there is xj ∈ NC(S) such that x−
j /∈ N+

C (S). We have shown above that
x+

j x−
j and x+

j−1xj ∈ E(G′). Then the cycle vxj−1C
−x+

j x−
j C−x+

j−1xjv has length
t + 1, which contradicts that C is a longest cycle of G′. So for each xj , (x−

j )− is in
NC(S), implying that |NC(S)| = t

2 . Since G′ is 2-connected, there exists u ∈ V (S)
with u 6= v and xi ∈ NC(S) such that uxi ∈ E(G′). Then the cycle vxi−1C

−xiuv
has length t + 1, which contradicts that C is a longest cycle of G′. Therefore, we
will assume that S has order at most k.

Suppose then that |V (S)| = r, where 2 ≤ r ≤ k. Since the minimum degree of G′

is at least k+1, every vertex in S has at least k+1−(r−1) = k−r+2 ≥ 2 neighbors
on C. Let u, v be in V (S) and xi, xj be in NC(S), such that uxi, vxj ∈ E(G′), and
let P be any u − v path in S. For every vertex y ∈ V (C) such that x+

i y ∈ E(G′)
either x+

j y− /∈ E(G′) or x+
j y+ /∈ E(G′). Indeed, if y were to lie between x+

i and x+
j

on C, the cycle uxiC
−x+

j y−C−x+
i yC+xjvPu would be longer than C and were y to

lie between x+
j and x+

i on C the cycle uxiC
−y−x+

j C+yx+
i C+xjvPu would be longer

than C. Thus t ≤ n−2 implies that dG′(x+
i )+dG′(x+

j ) = dC(x+
i )+dC(x+

j ) ≤ n−2
and therefore that x+

i x+
j ∈ E(G) for all xi, xj ∈ NC(S). Since x+

i x+
j is not in

E(G′) for any xi, xj ∈ NC(S), these edges must be in E(H). But the minimum
degree of G′ is at least k + 1, so |NC(S)| ≥ k − r + 2 implies that there are at
least k − r + 1 such edges for each x+

i . Then r ≤ k implies that there is at least
one vertex w ∈ V (S) for each x+

i such that wx+
i is neither an edge in G′ nor G.

(These w are not necessarily distinct.) By the same argument used above we see
that |N(S)| = t

2 , so we can find a cycle longer than C, which is a contradiction.

Hence we may assume that |V (S)| = 1. Let x be the vertex in S and suppose
that dG′(x) < n−1

2 . Then there is a vertex x+
i ∈ N+

C (x) such that xx+
i is neither

an edge in G′ nor G and a vertex x−
j ∈ N−

C (x) such that xx−
j is neither an edge

in G′ nor G. Then by part (2) of Lemma 3.3, x+
i is adjacent to every vertex in

V (C)−N+
C (x) and x−

j is adjacent to every vertex in V (C)−N−
C (x) . First suppose

that x+
i = x−

i+1; that is, x+
i is the only vertex between xi and xi+1 on C. Then the

cycle xxiC
−xjx

+
i x−

j C−xi+1x is hamiltonian, which contradicts that C is a longest
cycle in G′. So x+

i 6= x−
i+1. By a similar argument we find that x−

j 6= x+
j−1. Hence

by part (2) of Lemma 3.3 we know that x+
i xj and x−

j x+
j are edges in G′. Then the

cycle xxiC
−x+

j x−
j C−x+

i xjx is a hamiltonian cycle, which contradicts that C is a
longest cycle in G′.

Therefore we may assume that dG′(x) = n−1
2 . Observe that N+

C (x) ∪ x is an
independent set of order n+1

2 . Since n ≥ 2k + 3, n+1
2 ≥ k + 2, so for every vertex

y ∈ N+
C (x) ∪ x there is a vertex z ∈ N+

C (x) such that yz is neither an edge in G′

norG. Then every vertex in N+
C (x)∪x is adjacent to exactly NC(x). It follows that

Kn+1
2 , n−1

2
⊆ G′ ⊆ Kn−1

2
+ Kn+1

2
. �
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The conclusion that there is a subgraph H ∼= F such that G − E(H) either
falls into the class of butterflies or is a supergraph of Kn−1

2 , n+1
2

is only feasible for
certain choices of F . The following two corollaries reflect this.

Corollary 3.4. Let k ≥ 0 be an integer and let G be a graph on n ≥ 2k+3 vertices
with σ2(G) ≥ n+2k− 1. If F is a graph of order n with minimum degree at least 1
and maximum degree at most k, then either G is F -avoiding hamiltonian or there is
some subgraph H of G such that H ∼= F and Kn−1

2 , n+1
2

⊆ G−E(H) ⊆ Kn−1
2

+Kn+1
2

.

Corollary 3.5. Let k ≥ 0 be an integer and let G be a graph on n ≥ 2k+3 vertices
with σ2(G) ≥ n+2k−1. If F is a connected graph with maximum degree at most k
and order at least n

2 + 1, then either G is F -avoiding hamiltonian or there is some
subgraph H of G such that H ∼= F and G− E(H) is a butterfly.

4. Applications of Theorem 3.1

We now apply Theorem 3.1 to problems involving not only hamiltonian cycles,
but also hamiltonian paths and perfect matchings. Recall that a hamiltonian path
in a graph G is a path containing every vertex of G. If G contains such a path we
say that G is traceable. We begin from the following well known theorem.

Theorem 4.1. Let G be a graph on n ≥ 2 vertices with σ2(G) ≥ n− 1. Then G is
traceable.

We want to categorize graphs that are F -avoiding traceable in a manner similar
to that given above for F -avoiding hamiltonian graphs. Since hamiltonian graphs,
butterfly graphs and any graph satisfying Kn−1

2 , n+1
2

⊆ G ⊆ Kn−1
2

+Kn+1
2

are known
to be traceable, the following corollary is an immediate consequence of Theorem 3.1.

Corollary 4.2. Let k ≥ 0 be an integer and let G be a graph on n ≥ 2k+3 vertices
with σ2(G) ≥ n + 2k − 1. If F is a graph with maximum degree at most k, then G
is F -avoiding traceable.

We now return our attention to hamiltonian cycles. The problem of determining
when a graph contains k edge-disjoint hamiltonian cycles has long been of interest.
In [7], it was shown that a graph G of sufficiently large order n with σ2(G) ≥
n + 2k − 2 contains k edge-disjoint hamiltonian cycles. The problem of finding
disjoint hamiltonian cycles in bipartite graphs has also been examined [8]. Other
results focus on finding k edge-disjoint hamiltonian cycles in graphs that satisfy the
Ore condition. In [6], it is shown that if G is a graph of sufficiently large order n
with σ2(G) ≥ n and δ(G) ≥ 4k − 2 then G contains k edge-disjoint hamiltonian
cycles.

In light of these results, we present the following variation. Let H be a family of
k ≥ 1 edge-disjoint hamiltonian cycles in a graph G. If G − E(H) is hamiltonian,
then G − E(H) contains a hamiltonian cycle C which, together with H, would
comprise a family of k + 1 edge-disjoint hamiltonian cycles in G. In fact, if G is F -
avoiding hamiltonian for graph F isomorphic to k edge-disjoint hamiltonian cycles,
then we are not only finding disjoint families of hamiltonian cycles, but in fact we
are able to extend any family of k edge-disjoint hamiltonian cycles to a family of
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k +1 edge-disjoint hamiltonian cycles. Taking into account Corollaries 3.4 and 3.5,
the following is an immediate consequence of Theorem 3.1.

Corollary 4.3. Let k > 0 be an integer and let G be a graph on n ≥ 4k+3 vertices
with σ2(G) ≥ n + 4k− 1 and let H be any collection of k edge-disjoint hamiltonian
cycles in G. Then H can be extended to a family of k +1 edge-disjoint hamiltonian
cycles. This result is sharp.

Corollary 4.3 complements the results mentioned above pertaining to the ex-
istence of k edge-disjoint hamiltonian cycles. To see that Corollary 4.3 is sharp,
consider a graph G of even order n ≥ 4k + 4 which is comprised of two disjoint
cliques of order n

2 , denoted G1 and G2, and a family H of k edge-disjoint hamil-
tonian cycles with the property that H is bipartite with partite sets V (G1) and
V (G2). Then σ2(G) = n + 4k − 2, but G − E(H) is isomorphic to 2Kn

2
which is

not hamiltonian.

Since a hamiltonian cycle of even order can be viewed as the union of two dis-
joint perfect matchings, we also obtain the following result pertaining to extending
families of perfect matchings.

Corollary 4.4. Let k > 0 be an integer and let G be a graph of even order n ≥ 2k+3
with σ2(G) ≥ n + 2k − 1 and let H be any collection of k edge-disjoint perfect
matchings in G. Then H can be extended to a family of k + 2 edge-disjoint perfect
matchings in G. This result is sharp.

To see that Corollary 4.4 is sharp, let t be an odd integer such that 2t ≥ 2k− 1
consider a graph G of order 2t which is comprised of two disjoint cliques of order t,
denoted G1 and G2, and a family H of k edge-disjoint perfect matchings with the
property that H is bipartite with partite sets V (G1) and V (G2). Then σ2(G) =
n + 2k − 2, but G − E(H) is isomorphic to 2Kt which does not contain a perfect
matching as t is odd.

As mentioned above, certain supergraphs of Kn−1
2 , n+1

2
and the class of butterflies

serve to establish the sharpness of Ore’s Theorem. That is, they are examples of
nonhamiltonian graphs of with σ2 = n− 1. If we let k = 0 in Theorem 3.1 we can
see that these are in fact the only such graphs. As was mentioned above, this fact
was also noted in [1], [11] and [12].

Corollary 4.5. Let G be a nonhamiltonian graph of order n with σ2(n) = n − 1.
Then either G is a butterfly or Kn−1

2 , n+1
2

⊆ G ⊆ Kn−1
2

+ Kn+1
2

.

5. F-avoiding Pancyclicity

A graph G is pancyclic if G contains a cycle of each length from 3 up to |G|.
The study of pancyclic graphs is a natural extension of the hamiltonian problem.
Having developed necessary conditions for a graph G to be F -avoiding hamiltonian,
we turn our attention to the analogous notion for pancyclic graphs. Let F and G
be graphs. If G− E(H) is pancyclic for every subgraph H of G such that H ∼= F ,
then we say that G is F -avoiding pancyclic. In this section we will give several
conditions on G and F which assure that G is F -avoiding hamiltonian. In addition
to Theorem 3.1, the following two theorems from [10] will be useful.
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Theorem 5.1. Let G be a graph of order n with V (G) = {v0, . . . , vn−1} and
hamiltonian cycle v0, . . . , vn−1, v0. If d(v0)+d(vn−1) ≥ n then G is either pancyclic,
bipartite or missing only an (n− 1)-cycle.

Theorem 5.2. Let G be a graph of order n with V (G) = {v0, . . . , vn−1} and
hamiltonian cycle v0, . . . , vn−1, v0. If d(v0) + d(vn−1) ≥ n + 1 then G is pancyclic.

We begin with an ore-type condition for H avoiding pancyclicity that leaves us
with no exception graphs.

Theorem 5.3. Let G be a graph of order n and let F be a graph with maximum
degree k. If σ2(G) ≥ n+2k+1 then G is F -avoiding pancyclic. This result is sharp
for all values of k.

Proof. By Theorem 2.3 we know that G′ = G − E(F ) is hamiltonian. Let x be
a vertex of G with d(x) = δ(G). Then there is a vertex y of G with d(y) ≥
n + 2k + 1− δ(G). Let C be a hamiltonian cycle in G′. Then dG′(y) + dG′(y+) ≥
n + k + 1− δ(G) + δ(G)− k = n + 1, so G′ is pancyclic by Theorem 5.2.

To see that this result is best possible, let n ≥ 2k + 2 be an even integer and
let H be any k-regular graph on n

2 vertices. We create the graph G by taking the
join of two copies of H. Then σ2(G) = n + 2k and the removal of the edges of each
copy of H leaves us with Kn

2 , n
2
, which is not pancyclic since it contains no odd

cycles. �

The following is a well-known result of Bondy [3].

Theorem 5.4. Let G be a graph of order n ≥ 3. If σ2(G) ≥ n then either G is
pancyclic or G is isomorphic to Kn

2 , n
2
.

If we relax the conditions on σ2(G) given in Theorem 5.3 slightly we obtain a
similar result.

Theorem 5.5. Let k ≥ 0 be an integer and let G be a graph on n ≥ 6k +4 vertices
with σ2(G) ≥ n + 2k. If F is a graph with maximum degree at most k, then G
is F -avoiding pancyclic or there is some subgraph H of G such that H ∼= F and
G− E(H) is Kn

2 , n
2
. This result is sharp for all values of k.

Proof. For simplicity we let G′ = G − E(H). By Theorem 2.3 we know that G′

contains a hamiltonian cycle C. If σ2(G′) ≥ n the result follows by Theorem 5.5.
Suppose that σ2(G′) < n and that G′ is not pancyclic. Let v be a vertex with
degree δ(G′) < n

2 . Then, as σ2(G) ≥ n + 2k and dH(v) ≤ k there are at least
n−1

2 −k vertices of degree at least n− δ(G′) ≥ n+1
2 . Since n ≥ 6k+4, n−1

2 −k > n
3 ,

and we can find two vertices x and y on C such that both x and y have degree at
least n+1

2 and 1 ≤ dC(x, y) ≤ 2.

If dC(x, y) = 1 then G′ is pancyclic by Theorem 5.2. Therefore we may assume
that dC(x, y) = 2.

We assume without loss of generality that x = y++ on C and let x = v0, v1, . . . ,
vn−2 = y, vn−1, v0 be the vertices of C in order following a clockwise direction. By
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Theorem 5.1, since dG′(x)+dG′(vn−1) ≥ (n−δ(G′))+δ(G′) = n, we need only show
that G′ contains an (n − 1)-cycle. In G” = G′ − vn−1, consider the hamiltonian
path v0, . . . , vn−2. We have dG”(v0) + dG”(vn−2) ≥ n + 1− 2 = n− 1, hence G” is
hamiltonian and therefore G contains an n− 1-cycle. The result follows.

To see that the result is sharp, let n ≡ 3(mod 4) and let H be any k-regular graph
on n+1

2 vertices. If we let G denote the join of H and Kn−1
2

then σ2(G) = n+2k−1
but G− E(H) is isomorphic to Kn−1

2 , n+1
2

. �

6. Conclusion

Given an arbitrary graph F and a graph G of order less than 2|F |, we would
like to determine sharp bounds on σ2(G) that determine when G is F -avoiding
hamiltonian. This would allow us to strengthen Theorem 2.3 in some sense.

Currently, we are investigating other notions similar to those introduced in this
paper. In particular, we are developing conditions under which a bipartite graph
is F -avoiding hamiltonian.

More generally, we pose the following problem. Let P be a graph property and
let G be a graph containing some H as a subgraph. It would be interesting to find
meaningful conditions on G (and possibly H) that assure G − E(H) has property
P .
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