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The Hamiltonian of the neutral scalar field in interaction with a fixed source, when the 

infinite renormalization of vacuum energy is necessary, is defined by the graph limit of approxi­

mate Hamiltonians. Re~arks are made on the asymptotic fields in this case. 

§ l. Introduction 

The existence of the asymptotic fields in quantum field theory as strong limits 

of operators in the Hilbert space has been established by several authors.1J-TJ How­

ever, all of the examples studied so far belong to the quantum field theory with 

the characteristics that they have no need of a renormalization. 

Recently the first example of the asymptotic fields in the system which re­

quires an infinite renormalization has been presented by Dimock in the Y~ theory.8l 

It will be worthwhile to study in a similar way another example with infinite 

renormalization, always bearing in mind the extension of the method of asymptotic 

fields applicable to more complex and more realistic cases. The simplest model 

towards this direction is the neutral scalar field in interaction with a fixed source. 

As is well known, the theory of neutral scalar field interacting with a fixed 

source in four-dimensional space-time shows its features distinct from both physical 

and mathematical points of view, according to the condition that the source func­

tion satisfies. Let w (k) = (k2 + m2Y/2 be the energy of a single boson with a posi­

tive mass m, and let (J) 112v (k) be proportional to the Fourier transform of the 

source function. Define the space Gn of the functions v (k) equipped with the 

norm 

(1·1) 

The Fock representation of the Hilbert space is possible so long as the function 

v (k) belongs to Ga. Under the strongest condition v E G1 the total Hamiltonian is 

defined by the regular perturbation. The condition v E G2 is necessary and sufficient 

for the Hamiltonian to be defined by the regular perturbation in quadratic form, 

when the shift of the vacuum energy is still finite. 9l 

If vEGa, but v $ G2, the vacuum energy shifts by an infinite amount, so. that 
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we need an infinite renormalization of the Hamiltonian in order that the latter 
should be defined properly. The purpose of the present paper is to give a math­
ematically rigorous definition to the total Hamiltonian and to remark on the strong 
asymptotic limit of operators. The existence of asymptotic fields in this case 
in the general scheme has been suggested by a previous consideration by one 
of us.10> 

In defining the Hamiltonian we follow Glimm and Jaffe,11> who used the graph 
limit to get the total Hamiltonian of the Y3 . theory with a space cutoff, but in­
dependent of momentum cutoff. Namely, in view of the fact that G1 is dense in 
Ga with respect to the norm jjv lis, we shall approximate the Hamiltonian H with 
any v E Gs by the sequence {H,.} with v,. E G1 in the sense of graphs, thus giving 
the correct definition to the Hamiltonian H. 

Together with definitions and notations, some mathematical tools are sum­
marized in § 2. Important estimates are derived in § 3. The total Hamiltonian 
is defined and some remarks on the asymptotic fields are made in § 4. 

§ 2. Preliminaries 

The total Hamiltonian of the neutral scalar field interacting with a :fixed 
source is formally given by 

with 

H=Ho+H1+C 

Ho= J w(k)a*(k)a(k)dk, 

H1= J (v(k)a*(k) +v(k)a(k))dk, 

C= Jiv(k) l 3w(k)-1dk, 

(2·1) 

where H 0 is the free Hamiltonian and it is a densely defined self-adjoint operator 
in the Fock space ::F. a(k) and a*(k) are, as usual, annihilation and creation 
operators of the boson normalized by the relation 

[a(k), a*(k')] =O(k-k'). 

The function [2w (k) J12v (k) is the Fourier transform of the source function.*> 
We are primarily interested in the case when v E Ga and hence the coun­

terterm C in the Hamiltonian is not finite. Quite formally it is known that this 
counterterm cancels completely the infinity appearing in the Hamiltonian. We 
shall see the correct meaning of such a renormalization cancellation in the course 

*> For the point source we have [2to(k)J111v(k) =g, the coupling constant, so that the corre· sponding function v(k) is in G,. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/48/1/281/1919674 by guest on 21 August 2022



Hamiltonian Defined as a Graph Limit zn a Simple System 283 

of defining the Hamiltonian by a limiting process. To this end we make use of 
the fact that the space G1 is dense in the space G 8 ; for any v E G 3, there exists 
a sequence of functions v,. such that v,. E G1 and 

lim //v,. -v lls=O. (2·2) 
7>-+<X> 

Correspondingly, let us introduce a sequence of approximate Hamiltonians H,. 
defined by 

(2·3) 

where 

Hz,.= J (v,.(k)a*(k) +v,.(k)a(k))dk, 

C,.= Jiv,.(k) i2w-1dk. 

Since v,. E G17 the total Hamiltonian 
of definition identical with D(H0). 

below uniformly in n. 

H,. is a self-adjoint operator with the domain 
As we shall see later, H,. is bounded from 

The Hamiltonian H in (2 ·1) is given a mathematical meaning as a limit of 

the Hamiltonians H,.. We use the notions of the graph limit and the resolvent 
convergence.12> Let {8,.} be a sequence of vectors 8,.ED(H,.) such that, putting 

¢,. = H,.8n, there exist 8 =lim 8,. and ¢=lim 1/Jn· Denote the sets of such limit 
n-+oo 

vectors {8} and pair of limit vectors {8, ¢} by D"' and G"'' respectively. The 
denseness of D"' is necessary and sufficient for G"' to be the graph of a symmetric 

operator H"'. The operator H"' is called the graph limit of {H,.}. 
H,. is uniformly bounded from below, so that there is a sufficiently large 

negative number -b(b>O) which belongs to the union of the resolvent sets of 

all H,.. Therefore, in order to state the self-adjointness of the graph limit, we 
have only to prove the strong convergence of the resolvents R,.(z) = (H,.-z)- 1 

for z= -b. It is easy to see that II( -b)R,.( -b) II is bounded uniformly in n 

and b. In general, if the resolvents R,.(z) converge strongly to an operator R(z), 

which has a densely defined inverse, we speak of the resolvent convergence of 
{H,.} . In our case, that R (-b) has a densely defined inverse is ensured by the 

existence of the graph limit and the uniform boundedness of II (-b) R,. (-b) II. 
H = R (- b )-1 - b defines an operator which has a dense domain and is independent 

of b. The self-adjointness of H follows from the boundedness of R( -b) which 

is evidently symmetric. We can prove that H"'=H. 
In summary, central problems in defining the total Hamiltonian of the present 

model are, among others, to ascertain the uniform lower boundedness of H,., the 
denseness of D"' and the strong convergence of {Rn (-b)}. Let us begin with 

the first problem. 
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§ 3. Estimates 

Two estimates important in the following are 

N<const(Hn+b) (3·1) 

and 

(3·2) 

where N = fa* (k) a (k) dk is the number operator. Here and in the sequel, we 
shall use the identical letter to denote constants of the same character, and all the 
constants are independent of n unless stated explicitly. 

The first order estimate (3 ·1) is valid on D ( (Hn + b Yl2) X D ( (Hn + b Yl2) and 
shows that the approximate Hamiltonian Hn is uniformly bounded below inn as 
required. It seems certain that the estimate (3 ·1) can be verified directly by 
calculating the quadratic form, just as in a similar calculation by Kato and one 
of us (N.M) in the fixed-source model with v E G 2• 2l> 9l In order to avoid un­
necessary complications, however, it will be convenient to use the dressing trans­
formation, whose exact form is known in this case. 

The derivation of (3 · 2) from (3 ·1) without reference to the dressing trans­
formation has already been given essentially in the previous work ;10l the only 
difference of a c-number counterterm in the Hamiltonians causes no substantial 
change in the estimate. It is sufficient to remark that the constant in (3 · 2) 
first appears accompanying llvn [[a, which is however regarded as uniformly bounded 
for large n, since llvn lis< llvn- v lis+ [[v lis and llvn- v lis can be made arbitrarily 
small. We omit the proof of the second order estimate. Instead we sha:ll give 
in the Appendix, together with a detailed description of the proof for (3 ·1), an 
orientation for the proof of the higher order estimate 

N 1<const(Hn+b)1 (3·3) 

valid on D( (Hn + b )112) X D( (Hn + b )fl2), where j is any positive integer. 

§ 4. Definition of the Hamiltonian 

Now we are going to give the Hamiltonian (2 ·1) with v E Gs a mathematical 
meaning as a graph limit of the approximate Hamiltonians (2 · 3) with Vn E G1 

such that lim lfvn- v lis= 0. We shall show a stronger convergence of resolvents 
for Hn, that is, the convergence in norm. Let Rn (-b) = (Hn + b )-1 be the re­
solvent of the Hamiltonian Hn. in which the constant b is to be taken large enough 
so that the first and second order estimates (3 ·1) and (3 · 2) hold. 

Lemma 4.1. 

IIRn( -b) -Rm( -b) 11~0 as n, m~oo. (4·1) 

Proof. Corresponding to Hn = H 0 + Hzn + Cn, we have 
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Rn( -b) -Rm( -b)= -Rm(-b) {(JHr+(JC}Rn( -b), (4·2) 

(JHr= S ((Jv(k)a*(k) +(Jv(k)a(k))dk, 

(JC= f(Jiv(k)l 2w- 1dk, 

(Jv(k) =vn(k) -vm(k), (Jv(k) =vn(k) -vm(k), 

(Jiv(k) 12 = lvn(k) 12 -lvm(k) I 2 =(Jv(k)vn(k) + (Jv(k)vm(k). 

The use of the pull through formula 

a(k)Rn( -b) =Rn( -b-w)a(k) -Rn( -b-w) [a(k), Hrn]Rn( -b) (4·3) 

with 

gives for the right-hand side of ( 4 · 2) 

where 

Rm( -b) {(}Hz+ (JC} Rn( -b) =R1 + R2 +Rs+ R4, (4·4) 

R1= S dk(Jv(k)a*(k)Rm(-b-w)Rn( -b), 

R2=Rm( -b) S dk(Jv(k)Rn( -b-w)a(k), 

Rs=Rm( -b) S dk(Jv(k)vm(k}[w- 1 -Rm(-b-(I))]Rn( -b), 

R4=Rm( -b) S dkv(k)vn(k) [w- 1 -Rn(-b-w)]Rn( -b). 

(4·5) 

Our aim is to show that 

llRill <const JJ(Jv lis, i=I, 2, 3, 4, (4·6) 

where the constant is independent of n and m for sufficiently large n and m. 

We shall see the renormalization cancellation in the estimate for IIRsll and JJR4ll . 
Indeed, by the resolvent equation 

we obtain 

JJRsll =IIRm( -b) S dk(Jv(k)vm(k)w(k)- 1(Hm + b)Rm( -b-w)Rn( -b) II 

< S dki(Jv(k)vm(k)w(k)-1 lllRm( -b-w)Rn(-b) II 

<const JJ(Jv llsllvm lis . 
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We here remark again that llvm lis is uniformly bounded for sufficiently large m. 
The estimate for IIR4 II can be carried out similarly. 

In order to get the estimate for IIR1II we use the unitary transformation 

which is well defined even for VmEGs, and transforms a(f) = fa(k)f(k)dk with 
jEL: into Uma(f) Um- 1 =a(f) + fvm(k)f(k)w(k)- 1dk and H 0 into Hm. Then we 
have 

and hence 

R1= f dk(Jv(k)a*(k) Um(H0 +b+w)-1Um - 1R,.( -b) 

= Um f dkiJv(k)a*(k) (H0 +b+w)-1Um- 1R,.( -b) 

- Um f dkiJv(k)vm(k)w(k)- 1 (H0 +b+w)-1Um - 1R,.( -b), 

IIR1II <II fdk(Jv(k)a*(k) (Ho+b+w)-1Um - 1R,.( -b) II 

+II f dk(Jv(k)vm(k)w(k)- 1(Ho+ b+ w)-1Um- 1R,.( -b) II 

< [ f dkj8v(k) 12 11 (N + 1)lf2 (Ho+ b+ w)-1Um - 1R,.( -b) 11 2 r2 

+ f dkl8v(k) llvm(k) lw(k)-111 (Ho+ b+ w)-11111 Um - 1R,.( -b) II 

<const[ f dkl8v(k) l2w(k)- 2 ll (N+ 1Y12 Um - 1R,.(-b) ll 2r2 

+ const f dkl8v (k) llvm (k) lw(k)-2 

<const ll8v lis II (N + 1) um-1R,.( -b) II+ const 118v llsllvm lis. 

The first term is estimated separately as follows. 

II (N+ 1) Um -lR,.( -b) II 

=II Um - 1 {N+1+ llvmlls2 + f (vm(k)a*(k) +vm(k)a(k))w(k)-1dk}R,.( -b) II 

<II (N+ 1)R,.( -b) II+ llvm lls2 IIR,.( -b) II +2llvm lis II (N+ 1Y12R,.( -b) II 

<const+ const llvm lls2 + const llvm lis. 

In the last inequality we have used the second order estimate (3 · 2). In this 
way we obtain 
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IIR1ll < (c1 + c2llv, lis+ Csllv, lls2) IIOv lis, 

and thus ( 4 · 6) is proved for R 1• The proof of ( 4 · 6) for R 2 is similar. 
Summarizing, we have from ( 4 · 2), ( 4 · 4) and ( 4 · 6) 

IIR,.( -b) -R,.( -b) II <constllv,.-v, lis 

for large n and m. Since llv,.-v,lla--70 as n, m--7oo, the proof of Lemma 4.1 
is completed. 

We have used the unitary transformation to prove ( 4 · 6) for R 1 and R2• It 
should be remarked that if v E G2 and the sequence {v,.} with v,. E G1 approximates 
v in the norm llv,.- vII a, then Lemma 4. 1 can be proved by Glimm's standard 
estimates13> without the aid of the unitary transformation. 

Next we show the existence of a graph limit of the sequence {H,.}. For 
this purpose, it suffices for us to notice the fact that the unitary transformation 
is just the dressing transformation. We state the following propositions without 
proofs. 

Lemma 4~ 2. Let (},.= U,.¢ and (}= U¢ for any ¢E 9!. Here U,. and U are 
unitary transformations given by the expression like ( 4 · 7) with v,. E G1 and 
vEGa, respectively, in place of v,, and limllv,.-vlla=O. Then U,. converges 
strongly to U: 

118,.-()JI--70 as n--7oo. 

Corollary 4. 3. Suppose¢ in Lemma 4.2 be written as ¢=Hox with XED(H0), 

and let 

¢ .. = U,.Hox = H,. U,.x and ¢ = UHox . 
Then we have 

11¢,.-¢11--70 as n--7oo. 

Lemma 4. 4. Let (},. = U,.x and (} = Ux with XED (H0). Let also ¢,. and ¢ be 
given as in Corollary 4. 3. Define D"' = {(}} and G"' = {(}, ¢}. The D"' is dense in 
9!, and moreover G"' is the graph of a symmetric operator H"' having D"' as its 
domain. 

That D"' is dense in r:.F is a direct consequence of the fact that {x} is dense 
in$. 

With Lemmas 4. 1 to 4. 4, what we said in § 2 leads us to 

Theorem 4. 5. Let R,. (-b) be the .resolvent of H,. with b >O large enough. 
Let R (-b) be the strong limit of R,. (-b), H"' the graph limit of H,., both as 
n--7oo. Then there exists R( -b)-1 and H"' is given by R( -b)-1-b. H"' is 
self-adjoint and its domain is D"'. 

H"' is the operator that gives the Hamiltonian (2 ·1) a correct meaning. We 
shall suppress the suffix oo from here on. Clearly H= UH0 U- 1 and D(H) = {Ux} 
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with XED(Ho). 
Once the total Hamiltonian H has been given a correct meaning, it is rather 

trivial to analyze the asymptotic condition in this case. Consider the adjusted 
operator defined by 

a! ( t) = eiHt e-iH0t a(/) eiH0t e-iHt 

= eiHt a (feiiD') e_m, 

and similarly for its adjoint. Here 

a(/)= fa(k)/(k)dk, 

(4·8) 

is a smeared annihilation operator. From the standard estimate lla(/) (N+ 1)-112 11 
<const llf II and the first order estimate (A· 4), it follows that the adjusted operator 
( 4 · 8) is well defined at least on D (H112). More precisely, since ( 4 · 8) can be 
transformed into 

(4·9) 

the domain of a1 (t) is identical with D (a(/)). If v is locally Lh the second 
term on the right-hand side of ( 4 · 9) tends to zero as t~ ± oo . by virtue of 
Riemann-Lebesgue's lemma. 

It will be interesting at the pedagogical level to note the possibility of ap­
plying the general scheme of asymptotic fields to the present model. Define the 
approximate adjusted operator a1 (t, n) by the expression like (4·8) with H re­
placed by Hn. The ascertainment of the two limiting processes 

(4·10) 
and 

(4·11) 

allows us to establish lla1 (t)8-a1 (t')BII~O as t, t'~oo by an .s/3 argument. In 
these relations Bn and 8 are the vectors we have met in defining the graph G"'. 
( 4 ·11) should be verified independently of n.. We first restrict the class of the 
functions involved. Let v and its first derivatives as well be in Gs. Then we 
can always find a sequence of functions Vn in G1 which, together with first de­
rivatives, tends to v in the Gs norm. Consider also f such that it is in C0"' and 
vanishes in a neighborhood of the origin of momentum space, For .such functions, 
it is not difficult to verify the asymptotic condition via ( 4 ·1) and ( 4 ·11); the 
validity of ( 4 ·10) is easily seen from Lemma 4. 2. 
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Appendix. 
We shall prove the first order estimate (3 ·1). Let us define Nn = UnNUn - 1 

and an If (f)= Unalf (f) U,. - 1 to give 
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where fn=Vn(J)- 1• In view of the relations Hn= UnHoUn- 1 and N<m- 1Ho, we 
have 

(A·2) 

For every rjJED((Hn+bYI2) we consider the quadratic form of (A·2). The 
positivity of N and the use of Schwarz's inequality yield 

(¢, N¢) < (¢, Nn¢) + 2llan (f,.) ¢1111¢ II+ II fn 11 2 11¢ 11 2• 

We use (A· 2) and the standard estimate 

llan (/n)Nn - 112 JJ< JJ fn JJ = llvn lis 
to obtain 

(¢, N¢) <_!_ (¢, Hn¢) + 1
2 (¢, Hn¢Y12 llvn lis II¢ II+ llvn IIlli¢ 11 2 

m vm 

Since llvnlis<iivn-vlls+ llvlis<const for large n, we have finally 

(¢,N¢)<const(¢, (Hn+b)¢) 
for large b. 

(A·3) 

It is not difficult to prove the higher order estimate (3 · 3) by induction with 
the aid of (A·l) and (A·3). We here remark only that the constants in (3·3) 
may vary with j. 

If Un in the above is replaced by U, it is immediate to get 

N<const(H+b) (A·4) 

and similar higher order estimates. 
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