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Hamiltonian dynamics of the SIS 
epidemic model with stochastic 
fluctuations
Gilberto M. Nakamura1,2,3* & Alexandre S. Martinez  1,2

Empirical records of epidemics reveal that fluctuations are important factors for the spread and 
prevalence of infectious diseases. The exact manner in which fluctuations affect spreading dynamics 
remains poorly known. Recent analytical and numerical studies have demonstrated that improved 
differential equations for mean and variance of infected individuals reproduce certain regimes of the 
SIS epidemic model. Here, we show they form a dynamical system that follows Hamilton’s equations, 
which allow us to understand the role of fluctuations and their effects on epidemics. Our findings 
show the Hamiltonian is a constant of motion for large population sizes. For small populations, finite 
size effects break the temporal symmetry and induce a power-law decay of the Hamiltonian near 
the outbreak onset, with a parameter-free exponent. Away from the onset, the Hamiltonian decays 
exponentially according to a constant relaxation time, which we propose as a metric when fluctuations 
cannot be neglected.

Models of disease transmission, or epidemic models for short, have been an integral part of the epidemiological 
toolkit, dating back from pioneer models of Kermack and McKendrick1. �e main goal of epidemic models can 
be summarized as the ability to accurately predict spreading patterns of a given communicable disease a�icting 
a speci�c population. �ese models allow decision makers to assess the various intervention strategies available 
to them and to plan accordingly. Several approaches have been developed to model disease outbreaks2, namely, 
compartmental equations, stochastic equations, agent-based simulations, etc. Each approach suits a particular 
aspect of the outbreak being studied, built upon hypotheses compatible with empirical records or based on a 
phenomenological context. �ey include, but are not restricted to, biological content of the disease, mechanisms 
behind pathogen transmission, social interactions among the target population and its spatial structure3. By the 
same token, di�erent models for the same disease and population may produce inconsistent results, possibly due 
to con�icting underlying hypotheses. For instance, the random-mixing hypothesis–i.e. the population is assumed 
to be homogeneous and its elements mix at random–seems reasonable to model pathogen transmission for air-
borne disease like in�uenza, but it seems equivocated for sexually transmitted diseases4. Recent studies using 
household data shows that the random-mixing hypothesis can produce reliable predictions for households, even 
for heterogeneous contact networks5. In general, available empiric data and numerical simulations provide evi-
dence that the disease spreading is largely a�ected by the heterogeneity of contact network of the population6–12.

Despite the signi�cant advances obtained in the past few decades, several challenges remain open. One issue 
concerns the failure to account for e�ects unrelated to diseases themselves, such as vaccination skepticism, which 
ultimately reduces children immunization rate. Outbreaks of treatable communicable diseases, like measles, are 
on the rise13. Another issue deals with understanding the complex dynamics and processes behind infections in 
both small and large scales14–16. To put it simply, there are too many variables and their e�ects are not entirely 
known due to the non-linear nature of the problem. As a consequence, the full extent of variable changes or their 
�uctuations remains poorly understood, which may produce sub-optimal intervention strategies. As an example, 
detailed �eld data from the recent Ebola epidemic have shown that smaller outbreaks from di�erent localities 
are asynchronous17. �e lack of synchronization between di�erent populations reduces the likelihood of patho-
gen eradication on a global scale, as long as migration is allowed in some form18,19. �e e�ects of migration and 
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spatial structures in epidemic models and pathogen variability have been under investigation for some time20,21, 
and they have been linked to chaotic dynamics in local population22. Experiments on the e�ects of migration 
between metapopulations, i.e. similar populations but spatially separated, subjected to temporal �uctuations have 
shown that pathogen prevalence is greatly in�uenced by the nature of the �uctuation23, highlighting the interplay 
between synchronization and pathogen prevalence in epidemics24.

Traditionally, the detailed examination of �uctuations–either temporal or spatial–and their e�ects on system 
dynamics have been largely described by correlation functions23,25. More recently, autocorrelation functions have 
been used to reveal the nature and general aspects of �uctuations in a simple agent-based epidemic model for a 
population of size N, in which temporal fluctuations are divided into two broad classes: gaussian and 
non-gaussian26. In the gaussian regime, the prevalence of the disease is well described by its instantaneous aver-
age, �nite variance, and higher cumulants can be neglected. �is is remarkable as it allows one to derive the exact 
contributions of �uctuations to disease outbreaks in the asymptotic limit N  1. Here, we show that the dynamical 
equations form a Hamiltonian dynamical system, and the way external noise can be incorporated to model dis-
ease outbreaks. �is approach allows us to discuss quantitatively the relevant scales of the problem, and interpret 
the resulting Lagrangian and canonical transformations.

Model
We begin our discussion using the susceptible-infectious-susceptible (SIS) epidemic model. �e SIS model 
describes the dissemination of a single communicable disease in a susceptible population of size N. �e transmis-
sion of the pathogen occurs when infectious hosts transmit the disease pathogen to healthy susceptible individ-
uals. �e infectious period extends throughout the whole course of the disease until the recovery of the patient, 
warranting a two-stage model: either infected or susceptible. �e essence of the model is summarized by inset in 
Fig. 1.

�e traditional formulation of the problem assumes the random-mixing hypothesis (see Introduction) holds 
for a large population size N1, compromised of statistically equivalent individuals. Under these circumstances, 
the only relevant variable is the instantaneous density of infected elements ρ(t), which means that �uctuations can 
be safely neglected. Furthermore, ρ(t) decreases with rate γρ, where γ is the recovery rate. New infections per unit 
of time (disease incidence) are proportional to αρ(1 − ρ), i.e., they depend on the chance that infected elements 
interact with susceptible ones, with intensity given by the transmission rate α. �is picture provides an interpre-
tation where ρ(t) is continuously exchanged between two compartments, leading a simple description called 
compartmental equation: dρ(t)/dt = αρ(1 − ρ) − γρ. For the sake of convenience, rede�ne the timescale as τ ≡ αt 
and ρ0 ≡ 1 − γ/α, so that

τ
ρ τ ρ ρ ρ= − .

d

d
( ) ( )

(1)0

Figure 1. Numerical simulations of the SIS model. (inset) Infected hosts (I) recover to susceptible state (S) 
with rate γ (le�). �e adequate interaction between an infected host with a susceptible one may trigger a 
new infection, with rate α (right). Stochastic e�ects are far more relevant for small population sizes (N = 50, 
γ/α = 1/2), reducing the accuracy of compartmental equations. �e forward-derivative dρ/dτ from data (cross) 
agrees with Eq. (5a) (solid line), while the compartmental equation Eq. (1) fails to reproduce the data (dashed 
line). �e forward-derivative dσ2/dτ from data (circles) also agrees with the formula in Eq. (5b) (line). All the 
lines are drawn using the simulated data for 〈ρ(τ)〉, σ2(τ), and ∆3(τ).
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Clearly, the equilibrium density can either be ρeq = 0 or ρeq = ρ0. Also, ρ0 is related to the basic reproduction 
number R0 = N(α/γ) which provides an estimate on the number of new infections per generation27.

In light of its long age, compartmental equations have met considerable success in predicting the time evo-
lution of disease outbreaks, providing valuable insights for intervention strategies and funding allocation28. 
However, outbreaks that fail to meet the underlying hypotheses (random mixing and large population of statisti-
cally equivalent elements) can contradict compartmental equations. �ese inconsistencies are largely attributed 
to stochastic e�ects and their inherent �uctuations2.

Improved Compartmental Equations
Stochastic variables are known to cause the emergence of critical phenomena in computer simulations of epi-
demic models, under certain parameter ranges29,30. One key ingredient common to critical phenomena is the 
scale invariance of �uctuations. �is special symmetry remains the foundation of cooperative phenomena and 
critical phase transitions, whose contributions span over a broad set of research �elds such as condensed-matter, 
quantum �eld theories, and neuroscience to name a few31–36. In these systems, �uctuations occur in all sizes 
and dictate the general behavior of the problem, which prompts for in-depth studies of their e�ects in epidemic 
models.

Stochastic epidemic models include non-deterministic events that intrinsically occurs during the course of 
the disease spreading process. Examples of these events include the transmission of the pathogen, and the elapsed 
time required for the complete recovery of patients. �e inclusion of these e�ects brings the models closer to 
more realistic expectations, which in turn can deviate from predictions using compartmental equations37–39. One 
prime example is the e�ects of the absorbing state in the SIS model, which has been examined in detail by Nåsell 
and others40–42. New experiments on this subject provide evidence that temporal �uctuations can drastically alter 
the prevalence of pathogens23. Spatial heterogeneity also introduces an extra layer of complexity as it may trap 
or delay the pathogen transmission20. As a result, the requirements of statistical equivalence may not hold for all 
scales. To deal with this issue, stochastic formulations and numerical simulations have been the default tools to 
investigate �uctuations in disease outbreaks. In what follows, we outline the general ideas behind the agent-based 
approach to describe the SIS model. A more detailed account of the results listed here are explained in detail in 
refs26,43,44.

Our discussion assumes the disease spreading follows a Markov chain in discrete time δt. Moreover, δt is such 
that at most a single recovery or transmission event is likely to occur during the course of its duration. Under 
these requirements, the master equation of the SIS model in discrete time reads

dP t

dt
H P t
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( )

(2)0
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Here, Pµ(t) refers to the instantaneous probability to observe the system in the µ-th con�guration. Con�guration 
labels follow the binary ruling µ = + + + −
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1, where nk = 1 if the k-th agent is infected, or 

nk = 0 otherwise, with k = 0, 1, …, N − 1. For instance, for N = 3, the con�guration |µ = 3〉 = |110〉 states that only 
the agent with label k = 2 is susceptible. �e matrix elements Hµν express the transition rates from con�guration 
ν to configuration µ. By virtue of probability conservation, in each time step the transition rules satisfy 

∑ =µ µνH 0. �e matrix elements H Ĥµ ν= 〈 | | 〉µν  are computed from projections on the time step operator
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where Ak is the adjacency matrix, nkˆ  represents the k-th occupation operator (with eigenvalues nk = 1 if infected, 
0 otherwise), and σ̂+k  are the localized spin-1/2 ladder operators that produce the transition S → I. Clearly, kσ̂

− 
produce the opposite transitions, I → S in relation the k-th agent. As notation, the hat symbol always accompanies 
operators to quickly distinguish them from numbers.

�e master equation Eq. (2) provides the means to evaluate the time evolution of relevant statistical moments 
of ρ(t). Notice that the average density of infected agents in the system reads

ˆ∑ ∑ρ µ µ〈 〉 = 〈 | | 〉 .
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Applying the time derivative, and using Eq. (2), one arrives at the equation of motion for 〈ρ(t)〉. Useful expres-
sions are known only for a few types of adjacency matrix A. The simplest one is the complete graph 

 δ= −A 1k k , which recovers the random mixing hypothesis. In those particular instances, the complete time 
evolution of the system comprehends a set of hierarchical equations that involves the statistical moments of ρ(t), 
as shown in refs. 43,45. More explicitly45, the first two equations for instantaneous mean 〈ρ〉 and variance 
σ2 = 〈ρ2〉 − 〈ρ〉2 are

ρ
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where ∆3(τ) = 〈ρ3(τ)〉 − 〈ρ(τ)〉3. �ese results �nd excellent agreement with simulated data using an ensemble 
with 106 replicas starting from the same initial condition (see Fig. 1).

Comparing Eqs (1) and (5), the case that considers temporal �uctuations decays faster than the compartmen-
tal equation by σ2(τ), even in the regime N 1. Both equations are equivalent whenever σ(τ) becomes irrelevant 
compared to 〈ρ〉. �erefore, a generalization of compartmental equations for the SIS model is readily available by 
retaining both mean and variance, neglecting higher statistical moments. �us, the dynamical system describes a 
gaussian variable evolving along time. �e skewness coe�cient vanishes as a direct consequence of this assump-
tion, so that ∆3(τ) ≈ 3〈ρ(τ)〉σ2(τ). For N 1, the resulting equations are
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We emphasize that the variance in Eq. (6a) slows down the growth rate of 〈ρ(τ)〉, recalling the Allee e�ect28,46.
�e dynamical system represented by Eq. (6) can also be obtained from a stochastic expansion following the 

guidelines in ref.47. In this case, assume the density ρ = 〈ρ〉 + η is well described by its instantaneous average plus 
some noise function η(τ). We assume 〈η〉 = 0 and 〈η2〉 = σ2(τ) for the sake of consistency. �e additional require-
ment η ρ| | 〈 〉  ensures stochastic e�ects act as perturbations. Expanding Eq. (1) as a Taylor series around ρ = 〈ρ〉, 
and then taking the ensemble average, produces
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where g(ρ) = ρ(ρ0 − ρ). Since 〈η〉 vanishes, the expansion recovers Eq. (6a) up to o(η4). �e task to obtain the 
equation of motion of σ2 is greatly simpli�ed by noting that
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Taking the ensemble average, one obtains (1/2)(d/dt)lnσ2 = [ρ0 − 2〈ρ〉] − 〈η3〉/σ2. Now, since η mimics a gaussian 
variable, 〈η3〉 = 0 and Eq. (6b) is recovered as well.

Equation (6) can be further combined into a single second-order di�erential equation26, with solution
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�e constants c1 and c2 depend solely on the initial conditions. �e special case =c c2 1
2 recovers the usual solution 

of Eq. (1). We assumed that �uctuations behave as gaussian �uctuations. While reasonable for various situations, 
the assumption does not hold for γ/α around unity or small population sizes, according to numerical simula-
tions26, in which Eq. (5b) should be used instead of Eq. (6b). For the sake of completeness, there is another solu-
tion in which σ2(τ) = 〈ρ(τ)〉2, with ρ τ ρ〈 〉 = + ρ τ−c e( ) /(2 )

0 1
0 .

Hamilton Equations
�e fact that the dynamical system Eq. (6) can be combined into a single second-order di�erential equation 
suggests an interpretation of the epidemic model in terms of Hamilton equations48. Hamiltonian systems are 
ubiquitous in Physics, serving as basis to describe and explain countless physical phenomena. �e hallmark of 
systems are the Hamilton equations:


τ
=
∂
∂

dq

d p
,

(10a)

dp

d q
,

(10b)τ
= −

∂
∂


where q(t) and p(t) are conjugated variables, and the Hamiltonian function  encodes some information about the 
problem–usually associated with energy for conservative systems but not restricted to them. Besides classical 
mechanics and related areas, quantum field theories and statistical mechanics are deeply intertwined with 
Hamilton’s principle and Liouville theorem. Despite its usefulness in Physics, Hamilton formulation and surround-
ing principles are rarely used in population dynamics, ecological problems, or epidemic models, where �rst-order 
di�erential equations are dominant. �e lack of second-order di�erential equations in these areas, although not 
prohibitive, raises questions about the description of the dynamics, as discussed extensively in ref. 49. In part, 
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because it means some interactions and stochastic e�ects acting on the system remain unaccounted. Signi�cant 
advances in the Hamiltonian formulation of stochastic epidemic models have been obtained using the eikonal 
approximation, with emphasis on the disease extinction and vaccination50,51. Generalizations for heterogeneous 
networks have also been investigated, providing improved control strategies52,53. Even more, the aforementioned 
Hamiltonian formulation explains other e�ects, such as the emergence of noise-induced metastable states54. �e 
crucial ingredient of these studies concerns the eikonal approximation, in which either the generating function or 
the density of infected is written as the exponential of the classical action of the system55. For populations with �xed 
size, one variable describes 〈ρ(t)〉, while its conjugate variable encompasses �uctuations52. However, the description 
of epidemics using this conjugate pair remains a complex task because the conjugate variable is not directly related 
to familiar statistics such as the standard deviation or variance. In what follows, instead of using the eikonal 
approach, we argue that Hamilton dynamics for the stochastic SIS model can be constructed from 〈ρ(τ)〉 and σ(τ).

In view of the inherent stochasticity behind disease spreading, it seems necessary to determine whether Eq. (6) 
form a Hamiltonian system or not. A brief inspection shows the pair (〈ρ〉, σ2) does not satisfy the usual Hamilton 
equations. �e solution to this issue is obtained by assuming, instead, that the correct conjugated pair is (〈ρ〉, 
h(σ2)), where h(x) is some analytical function. Inspiration from common pairs of conjugate variables can be used 
to re�ne the choice of h(x). For instance, the product 〈ρ〉 × h(σ2) should be dimensionless, in close analogy the 
scalar product between position and wave vectors. One possible candidate is h(x) = x−1/2, which entails 1/σ as the 
conjugated variable to 〈ρ〉.

De�ne the dynamical variables q(τ) = 〈ρ(τ)〉 and p(τ) = 1/σ(τ) to describe the SIS model. In addition, con-
sider the following Hamiltonian

 τ τ ρ τ
τ

= − + .q p q
p

( ) ( )[ ( )]
1

( ) (11)0

Plugging these expressions in Eq. (10), one obtains the equations of motion:
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ρ ρ= − − ≡ − − 〈 〉 .

�us, at �rst glance  appears to be a valid candidate to describe the SIS model. Even more, replacing (q, p) by 
Eq. (9) in Eq. (11) shows that the Hamiltonian is a constant of motion ρ= −∞ − c c c( )

0 1 1
2

2
1/2. �e upper index 

in ∞ is a reminder that calculations take place in the absence of �nite size corrections.
However, taking �nite size corrections into account changes drastically the notion of  as a constant of 

motion. In fact, as Fig. 2 depicts, numerical simulations for �nite populations reveal  changes continuously 
along time until equilibrium sets in, akin to a non-conservative system. �e precise meaning of  in the epidemi-
ological context is still murky, at best. A detailed analysis of correlations between changes in  and the spreading 
pattern of real outbreaks is mandatory to understand the action-reaction analogy. In the meantime, it is instruc-
tive to study  for τ  1 and τ  1 (see Fig. 2). For τ  1, where incidentally �uctuations vary the most (see Fig. 1), a 
remarkable feature appears via the relation  ~ τ λ−  with λ = 1/2. In particular, the exponent λ seems insensitive 
to changes in the epidemiological parameter γ. �is parameter-free behavior is not observed for the remaining 
statistics, 〈ρ(τ)〉 and σ(τ). Power-laws are crucial to identify scaling relations and the emergence of universal 
features, and they are usually related to the symmetry of the problem rather than microscopic details. Here, evi-
dence of universal behavior is captured by the data collapse ρ/

0
2  (Fig. 2a inset). From these observations, we can 

infer �uctuations play a larger role in the early disease spreading, being largely independent of exact values of 
epidemiological parameters.

An e�ective decay τ τ−e / eff  describes the general behavior of  away from the outbreak onset. �e relaxation 
time τe� depends on N and the ratio γ/α, and it can be estimated from data by �tting  to an exponential function 
plus a constant. Alternatively, it can be evaluated as


 ∫τ τ τ= − ∞ .

∞
d

1

(0)
[ ( ) ( )]

(13)
eff

0

From a formal point of view, the evaluation of τe� requires the solutions of Eqs (5a) and (5b) in Eq. (11), 
followed by an integration. Surely, the procedure is arguably more demanding than estimating R0. However, as 
others have reasoned before, R0 provides a naive estimation on secondary infections because the growth rate of 
the outbreak changes continuously along time56. In contrast, τe� mimics a constant of motion.

Lagrangian and Canonical Transformations
Another insight from τe� links the temporal integral of  with the mechanical action S. A formal connection with 
S is desirable because it brings a large machinery revolving around variational principles and conservation laws. 
However, the action ∫ τ τ=S d q q( , ; )  is a functional of the Lagrangian . It turns out that  can obtained from 
 by inspection. From Eqs (15) and (7),  takes the following form:  p q q p p dq d p[ ( ) ] ( / ) 2/

0
2ρ τ= − + = +− . 

Recalling the formal expression pq= −H L, it becomes clear that
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σ τ ρ
τ

= − = − = − − −
p

q q
dq

d

2
2 ( ) 2 ( ) ,

(14)0

where we have used Eq. (6a) and considered only the positive root. �us,  is proportional to the standard devia-
tion while the action entails the accumulated deviation over the course of the outbreak. To check our result for 
large populations N 1 , the minimal action recovers Eq. (1) as expected for a noise-free system. In general, the 
equation of motion reads

τ
ρ
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ρ= −
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�e fact that  contains solely the standard deviation allows us to understand how to add uncorrelated �uctu-
ations into the model. By virtue of Var[x + y] = Var[x] + Var[y] for uncorrelated random variables x and y, the 
perturbed Lagrangian can be obtained by adding a σext

2(τ) to the variance of the system σ2(τ):

ρ
τ

σ τ′ = − − − + . q q
dq

d
2 ( ) ( )

(16)ext0
2

�is picture is consistent with addition of a noise function σext
2(τ) to Eq. (6a). �e perturbed Lagrangian ′  

describes, ultimately, the time evolution of the disease prevalence in environments with noise. Note that this 
description di�ers from the usual derivation of Langevin equations, in which the noise function (force) r(τ) cou-
ples linearly with q, i.e.,   τ τ′ = − r q( ) ( ). By the same token, the addition of correlated signals η(τ) to the 
Lagrangian entails corrections from the covariance matrix: since Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y], 

then σ σ ρ η′ = − + +ρ η 2 2Cov[ , ]2 2 . �e covariance matrix can estimated or modeled directly from data, pro-

Figure 2. Finite size e�ects on the Hamiltonian. (a) Simulated data with N = 50 and 106 Monte Carlo runs for 
various ratios γ/α. (inset) Data collapse using the scaling factor ρ0

2, suggesting an universal behavior at the 
beginning of the outbreak. (b) Initial decay of  compatible with power-law, ~ τ λ− . �e exponent λ = 1/2 
remains constant for di�erent ratios γ/α, suggesting an universal behavior.
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moting further understanding on the spreading of co-existing diseases, where facilitation or competition pro-
cesses are in place.

With both Hamiltonian and Lagrangian formalisms secured, canonical transformations become available. 
�ese transformations are particularly useful to highlight properties of the dynamical systems and to solve them. 
�ey change the old variables (q, p) into new variables (Q, P), while preserving Hamilton’s equations. �ere are 
a large number of transformations available: it would render impossible to cover all of them here. Instead, we 
show that at least one canonical transformation exists, and that it promotes the interpretation of the stochastic 
spreading process as e�ective mechanical systems. Consider: P1(t) = 2p1/2q and Q1(t) = −p1/2. �e Poisson bracket 
{Q1, P1}q,p = (∂Q1/∂q)(∂P1/∂p) − (∂Q1/∂p)(∂P1/∂q) = 1 shows the transformation is canonical. Setting m = 2, the 
Hamiltonian in terms of the canonical variables (Q1, P1) becomes

m
P Q

Q

m Q

1

2
( )

2

1

(17)
1 1 0 1

2 0
2

1
2

1
2

 ρ
ρ

− = + − − .

One may interpret −1 as the Hamiltonian of an e�ective mechanical problem in one-dimension, in which 
the particle has mechanical momentum P1(τ), with generalized coordinate Q1(τ), subjected to a velocity depend-
ent potential.

Conclusion
�e description of several real-world problems o�en includes stochastic �uctuations. �e SIS epidemic model 
includes them due to uncertainties associated with pathogen transmission. For small �uctuation amplitudes, 
〈ρ(τ)〉 and σ2(τ) are adequate descriptors. Our �ndings demonstrate 〈ρ(τ)〉 and 1/σ(τ) are conjugated variables, 
and they satisfy Hamilton’s equation. �ese results link the stochastic SIS epidemic model with a pure dynamical 
system, which can be solved and manipulated using standard analytical tools. We �nd the Hamiltonian is a con-
stant of motion for N  1. However, �nite size e�ects break the temporal symmetry of the system:  1/2τ−~  
follows a power-law around the outbreak onset. A clear explanation for this scaling is still lacking. �e relaxation 
time τe� portrays the decay of  until equilibrium sets in, meaning that it can also be used to characterize the SIS 
epidemic. Unlike popular estimates of epidemic growth rate, τe� remains constant along time and can be extracted 
from data values of . Finally, our results also suggest a way to incorporate interactions into the SIS model via the 
Lagrangian function. �is �nding has intriguing implications for our understanding of facilitation-competition 
mechanisms between co-occurring diseases since it does not replicate the canonical procedure to obtain Langevin 
equations.

Data availability
Numerical codes, simulation data and data descriptors are available at https://doi.org/10.17605/OSF.IO/WFCEP.
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