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HAMILTONIAN EIGENVALUE SYMMETRY FOR
QUADRATIC OPERATOR EIGENVALUE PROBLEMS

C. PESTER

ABSTRACT. When the eigenvalues of a given eigenvalue
problem are symmetric with respect to the real and the
imaginary axes, we speak about a Hamiltonian eigenvalue
symmetry or a Hamiltonian structure of the spectrum. This
property can be exploited for an efficient computation of
the eigenvalues. For some elliptic boundary value problems
it is known that the derived eigenvalue problems have this
Hamiltonian symmetry. Without having a specific application
in mind, we trace the question, under which assumptions the
spectrum of a given quadratic eigenvalue problem possesses
the Hamiltonian structure.

1. Introduction. Nonlinear eigenvalue problems arise in several
fields of mathematics including the analysis and numerical solution of
higher order systems of ordinary differential equations, for example,
in the robot model with electric motors in the joints, see [15] or [12].
Although solvers for quadratic eigenvalue problems are known, see, for
example, [4], the common way is to linearize the eigenvalue problem and
to transform it into a standard eigenvalue problem, for whose efficient
solution many algorithms exist; a good summary is given by Watkins
[16].

We focus on polynomial eigenvalue problems of order two. Quadratic
eigenvalue problems are treated, for instance, in the analysis and al-
gebra communities as well as in the engineering community. Depend-
ing on the underlying model problem, the resulting quadratic operator
eigenvalue problem might have a considerable structure which can be
exploited in the further analysis and computations. Our numerical
interest in a detailed analysis of such a structure arose from papers
including work by Leguillon [10], Kozlov, Maz’ya and Roßmann [9],
Apel, Sändig and Solov’ev [3] and Apel, Mehrmann and Watkins [2],
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FIGURE 1. The Hamiltonian structure of eigenvalues.

who studied the linear elasticity problem in the neighborhood of poly-
hedral corners. The computation of the singular part of the solution
to the linear elasticity problem near a polyhedral corner involves the
solution of a quadratic eigenvalue problem of the form: Find λ ∈ C,
u ∈ H, such that for all v ∈ H

(1) λ2m(u, v) + λg(u, v) = k(u, v),

where H is a given Hilbert space. The functions m, g and k are
sesquilinear forms defined on H × H, where m and k are Hermitian
and g is skew-Hermitian.

For some elliptic boundary value problems, it is well known that
the associated eigenvalue problems have a considerable structure: the
eigenvalues appear in pairs (λ,−λ) if λ is real or purely imaginary and
in quadruplets (λ,−λ, λ,−λ) otherwise, see Figure 1. This property is
called Hamiltonian eigenvalue symmetry or Hamiltonian structure of
the spectrum, motivated by the spectral properties of a Hamiltonian
matrix, see, for example, [12].

The Hamiltonian structure for eigenvalue problems which are associ-
ated with certain elliptic boundary value problems in the neighborhood
of three-dimensional polyhedral corners was observed, for instance, by
Leguillon [10] as a generalization of the two-dimensional case or by Ko-
zlov, Maz’ya and Roßmann [9] (see also references therein) who applied
a Mellin transformation to the given boundary value problem.
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Under which assumptions is the Hamiltonian eigenvalue symmetry
guaranteed for problem (1), in general? The focus in this paper lies on
eigenvalue problems of type (1) without any specific application in the
background. Obviously, the Hamiltonian structure is not always given.
Consider, for instance, g(u, v) = i m(u, v), k(u, v) ≡ 0, where i ∈ C
with i2 = −1. Then λ = −i is an eigenvalue of the problem

λ2m(u, v) + λi m(u, v) = 0,

but λ = i is not. We traced the spectral properties of problem (1)
and formulated a series of conditions which imply the Hamiltonian
structure. Since the conditions are formulated in an easy-to-check state,
they are sufficient, but not urgently necessary as is demonstrated in
some examples in Section 4. Still, they are satisfied in the practical
applications that we have in mind.

The Hamiltonian eigenvalue symmetry is of interest in the further
analysis of the problem like an efficient solution of its discrete formu-
lation. Adapted Arnoldi and Lanzcos algorithms can be applied then
which exploit the underlying structure. For a description of such algo-
rithms, we refer to [2, 5, 6, 8, 11, 17].

We could not find a self-contained proof or a summary of conditions
for the Hamiltonian structure of the spectrum of a quadratic eigenvalue
problem in the linear algebra, functional analysis or numerical analysis
literature. In a few pages, we give in this paper an overview of the most
important ingredients and definitions, followed by a list of assumptions
and a read-on-proof of the Hamiltonian eigenvalue symmetry, including
a discussion of the necessity of the assumptions. Of course, other
methods exist to prove this result, suggested, for example, by Kozlov,
Maz’ya and Roßmann [9], but they usually employ more background
information of the given problem and refer to further literature.

As the derivation requires ingredients from several fields of the math-
ematical sciences, we give an overview of the most important terms in
Section 2. For details, we refer to standard work in functional analysis,
operator theory, spectral theory, algebra and numerical analysis. In
Section 3, we discuss spectral properties of problem (1) and an associ-
ated eigenvalue problem for an operator pencil. We conclude the paper
with a few examples including an application of the results in Section 4.
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2. Operators in Hilbert spaces.

2.1 General notation. Let HR be a (separable) real Hilbert space and
denote by HC its complexification

HC = HR × HR = {u = (u1, u2) | u1, u2 ∈ HR}

with the operations

(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2) ∀ui, vi ∈ HR,

(a + ib)(u, v) = (au − bv, bu + av) ∀ a, b ∈ R, ∀u, v ∈ HR.

Each element uR ∈ HR shall be identified with the element (uR, 0) ∈
HC so that HR ⊂ HC and each element u = (u1, u2) ∈ HC can be
written as u = (u1, 0) + i(u2, 0) = u1 + iu2. Moreover, we define the
conjugate of u = (u1, u2) ∈ HC by

u = u1 + iu2 = u1 − iu2.

Definition 2.2 (Sesquilinear form). A map a : HC × HC → C is
called a sesquilinear form over HC , if

a(μu, v) = μa(u, v), a(u, μv) = μa(u, v), ∀μ ∈ C, ∀u, v ∈ HC

and
a(u + w, v) = a(u, v) + a(w, v) ∀u, v, w ∈ HC

a(u, v + w) = a(u, v) + a(u, w) ∀u, v, w ∈ HC .

Let 〈·, ·〉HC
: HC × HC → C denote an inner product on HC , that is

a Hermitian, positive definite sesquilinear form. A norm in HC is then
given by ‖u‖HC

:=
√

〈u, u〉HC
.

Definition 2.2 (Real operator). A linear, bounded operator A :
HC → HC is called a real operator if A(HR) ⊂ HR, that is, if
AuR ∈ HR for all uR ∈ HR.
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Definition 2.3 (Spectrum of an operator pencil). Let A : C →
L(HC , HC) be an operator pencil, that is, A(α) : HC → HC for fixed
α ∈ C. The set

Σ(A) := {α ∈ C | A(α) has no bounded inverse}
is called the spectrum of A(·). The number α0 ∈ Σ(A) is called the
eigenvalue of A(·), if there exists an element uα0 ∈ HC \ {0} so that
A(α)uα0 = 0. We denote the set of all eigenvalues of A(·) by σ(A):

σ(A) := {α ∈ C | ∃u ∈ HC \ {0}, so that A(α)u = 0}.

Eigenvalue problems for operator pencils have already been consid-
ered, for example, by Kozlov, Maz’ya and Roßmann [9].

Remark 2.4. We say that an operator J : X → Y is invertible (or that
J−1 exists), if for all y ∈ Y there is a unique element x ∈ X, so that
J x = y. In some books, the invertibility is defined by substituting Y
by the range R(J ) of J ; then, the operator J is surjective by definition
and the invertibility is equivalent to the injectivity of J .

Note that the sets Σ(A) and σ(A) are equal for finite-dimensional
operators; but they might differ for operators in infinite-dimensional
spaces. The set Σ(A) \ σ(A) is called the continuous spectrum of A(·).
The equivalence of ker(A(α)) = {0} and the invertibility of A(α) is
given only for special linear operators A(·), see Section 2.2.

2.2 Compact operators and Fredholm operators. In this subsection,
we give the definitions and, for our purposes, the most important
properties of compact and Fredholm operators. For details and proofs,
consult [1, 7, 14, 18] or any standard book on functional analysis or
operator theory.

Let H be a separable Hilbert space with an inner product 〈·, ·〉H :
H × H → C on H.

Definition 2.5 (Compact operators). A linear, bounded operator
C : H → H is called compact if, for each bounded sequence {xn} in H,
there is a subsequence {xnk

} so that Cxnk
converges in H, that is, if

‖xn‖H < ∞ ∀n =⇒ ∃xnk
, y� ∈ H : ‖Cxnk

− y�‖H −→ 0 as k → ∞.
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Remark 2.6. Let K(H) denote the set of all compact operators on
H. Then K(H) is a subspace of the space L(H) of all bounded, linear
operators on H, see [18, Satz II.3.2 (a)]. This means, in particular,
that the sum of two compact operators as well as a scalar multiple of
a compact operator is in K(H) and therefore compact.

Definition 2.7 (Compact embedding). We say that a space V
is compactly embedded into a space H ⊃ V if the corresponding
embedding operator is compact, that is, if for each bounded sequence
{un} in V there is a subsequence {unk

} with strong convergence in H.

We denote by R(A) and ker(A) the range and the kernel of the linear,
bounded operator A : H → H, respectively, and by R(A�) and ker(A�)
the range and the kernel of its adjoint. The following lemma is a well-
known result in functional analysis, see, for example, [18, Satz III.4.5].

Lemma 2.8. The relations

ker(A) ⊕ R(A�) = H and ker(A�) ⊕ R(A) = H

hold for each linear, bounded operator A : H → H.

Definition 2.9 (Fredholm operators). A linear, bounded operator
T is called a Fredholm operator if R(T ) = R(T ) and dim kerT < ∞
and dim kerT � < ∞. For a Fredholm operator T , the number
Ind T := dim kerT − dim ker T � is called the index of T .

Lemma 2.10. For each linear, bounded operator T the following
properties are equivalent:

(a) T is Fredholm and Ind T = 0.

(b) There is a compact operator C and an invertible operator J , so
that T = J − C.

Remark 2.11. Suppose that (a) is true in Lemma 2.10. Then
dim ker T = dim ker T � and thus ker T = {0} if and only if kerT � =
{0}. As a consequence of Lemma 2.8, we have that R(T ) = H if and
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only if R(T �) = H. Hence, T is invertible if and only if ker T = {0}.
Moreover, T is invertible if and only if T � is invertible.

3. The quadratic eigenvalue problem.

3.1 Definitions and assumptions. Let m, g, k : HC × HC → C be
sesquilinear forms over the Hilbert space HC with

k(u, v) = k(v, u), g(u, v) = −g(v, u), m(u, v) = m(v, u)
∀u, v ∈ HC .

We consider the quadratic eigenvalue problem (1): Find λ ∈ C,
u ∈ HC \ {0}, such that

λ2m(u, v) + λg(u, v) = k(u, v) ∀ v ∈ HC .

A solution (λ, u) ∈ C× (HC \{0}) to problem (1) is called an eigenpair
of problem (1); the number λ is then called eigenvalue and u is called
eigenelement.

Definition 3.1 (Hamiltonian eigenvalue symmetry). We say that the
eigenvalue problem (1) possesses a Hamiltonian eigenvalue symmetry
or that its spectrum has a Hamiltonian structure, if the eigenvalues are
placed symmetric with respect to the real and the imaginary axes; that
is, if λ ∈ C is an eigenvalue of problem (1), then so are −λ, λ̄, −λ̄.

Remark 3.2. A real two-by-two block matrix H is called Hamiltonian
if

(JH)� = JH with J =
(

O I
−I O

)
.

The term Hamiltonian eigenvalue symmetry is motivated by the struc-
ture of the spectrum of Hamiltonian matrices.

The question is under which conditions on m, g, k and HC the
Hamiltonian eigenvalue symmetry is given. In the derivation of the
desired properties, we followed the ideas of [3], where a quadratic
eigenvalue problem of type (1) is treated and transformed into an
eigenvalue problem for an operator pencil.
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In the following assumptions, we summarize conditions that are
sufficient for the Hamiltonian structure. They are usually easy to check
and satisfied in the applications that we have in mind.

(I) V := HC := HR × HR is the complexification of a separable
real Hilbert space HR, and H ⊃ V is a Hilbert space into which V is
compactly embedded.

(II) The functions m : H×H → C, g, k : V ×V → C are sesquilinear
forms with

m(u, v) = m(v, u) ∀u, v ∈ H, k(u, v) = k(v, u) ∀u, v ∈ V,

(III) The functions m, g, k are real, that is,

m(u, v) = m(u, v), g(u, v) = g(u, v), k(u, v) = k(u, v)
∀u, v ∈ V.

(IV) The sesquilinear form m satisfies

|m(u, v)| ≤ c‖u‖H‖v‖H ∀u ∈ H.

(V) There is a sesquilinear form d : H × V → C so that g(u, v) =
d(v, u) − d(u, v) for all u, v ∈ V and

|d(u, v)| ≤ c‖u‖H‖v‖V ∀u, v ∈ V.

(VI) The operator K : V → V induced by k(u, v) = 〈Ku, v〉V for all
u, v ∈ V is invertible; and for each fixed element u ∈ H, there is a
constant ck > 0, so that |k(u, v)| ≤ ck‖v‖V for all v ∈ V .

Alternatively, it is sufficient that the sesquilinear form k is positive
definite, that is,

k(u, u) ≥ 0 ∀u ∈ V, k(u, u) = 0 ⇐⇒ u = 0.

In the following, V and H denote the Hilbert spaces introduced by
assumption (I).
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Remark 3.3. The condition (III) that the functions m, g and k are
real does not mean that they are real-valued, but only that they have
real values for real arguments. This is equivalent to

m(uR, vR) ∈ R, g(uR, vR) ∈ R, k(uR, vR) ∈ R, ∀uR, vR ∈ HR.

Given a skew-Hermitian sesquilinear form g : V × V → C, there is
always a map d : V × V → C so that g(u, v) = d(v, u) − d(u, v), for
example, d(u, v) = −(1/2)g(u, v). Assumption (V), however, demands
that the sesquilinear form d is defined on a larger space, on H × V , so
that d = −(1/2)g is not necessarily the desired function. That is why
we cannot simply omit d or g. Still, the function g has to be defined
only on the space V ×V , whereas m has the largest domain H ×H due
to assumption (II).

If k(·, ·) defines an inner product on V , that is, if k(·, ·) is positive
definite, we can choose 〈u, v〉V = k(u, v) for all u, v ∈ V . Then, the
operator K in condition (VI) equals the identity operator I on V and
is therefore invertible.

For the inner products 〈·, ·〉V in V and 〈·, ·〉H in H, the corresponding
norms are given by ‖u‖2

V = 〈u, u〉V and ‖u‖2
H = 〈u, u〉H . Due to

assumption (I), the space V is embedded into H. Thus, the relation

(2) ‖u‖H ≤ c‖u‖V

holds for all u ∈ V , where c is a generic constant independent of u.

In the remaining section, we prove that the Hamiltonian eigenvalue
symmetry is actually given under these assumptions. When a weaker
condition is sufficient in one or another step, we will point this out.

3.2 The eigenvalue problem for an operator pencil. Corresponding to
the sesquilinear forms m, g and k, we introduce the linear operators
M,G,K : V → V by

Mu ∈ V, 〈Mu, v〉V = m(u, v) ∀ v ∈ V,

Gu ∈ V, 〈Gu, v〉V = g(u, v) ∀ v ∈ V,

Ku ∈ V, 〈Ku, v〉V = k(u, v) ∀ v ∈ V.
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The adjoint operators M�, G� and K� are given by

〈Mu, v〉V = 〈u,M�v〉V ∀u, v ∈ V,

〈Gu, v〉V = 〈u,G�v〉V ∀u, v ∈ V,

〈Ku, v〉V = 〈u,K�v〉V ∀u, v ∈ V.

Lemma 3.4. The operators M, G and K are well-defined.

Proof. The Riesz representation theorem states: Let 〈·, ·〉X be an
inner product on a Hilbert space X. Then for each bounded linear
functional F ∈ X�, there is a unique element uF ∈ X, so that
〈v, uF 〉X = F (v) for all v ∈ X, see, for example, [1].

We choose X := V and 〈·, ·〉X := 〈·, ·〉V as well as F (v) := Fm,u0(v) :=
m(u0, v) for a fixed element u0 ∈ V . Indeed, Fm,u0(v) is a lin-
ear functional; but, for its boundedness, we have to assume that
|m(u0, v)| ≤ c‖v‖V for all v ∈ V and for each fixed u0 ∈ V with
a generic constant c independent of v. Then, there is a unique el-
ement uFm,u0

∈ V , so that 〈v, uFm,u0
〉V = m(u0, v), and therefore,

〈uFm,u0
, v〉V = m(u0, v) for all v ∈ V . Consequently, Mu0 is given by

Mu0 = uFm,u0
.

Analogously, there exist unique elements uFg,u0
, uFk,u0

∈ V , so that
Gu0 = uFg,u0

and Ku0 = uFk,u0
, respectively, if we assume that

|g(u0, v)| ≤ c‖v‖V and |k(u0, v)| ≤ c‖v‖V for all v ∈ V and for each
fixed u0 ∈ V .

These boundedness conditions on m, g and k are satisfied thanks to
assumptions (IV), (V), (VI) and the embedding property (2).

Lemma 3.5. The operators satisfy M� = M, G� = −G, K� = K.

Proof. The assertion follows from

〈Mu, v〉V = m(u, v) = m(v, u) = 〈Mv, u〉V
= 〈v,M�u〉V = 〈M�u, v〉V

〈Gu, v〉V = g(u, v) = −g(v, u) = −〈Gv, u〉V
= −〈v,G�u〉V = 〈−G�u, v〉V
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〈Ku, v〉V = k(u, v) = k(v, u) = 〈Kv, u〉V
= 〈v,K�u〉V = 〈K�u, v〉V .

From the definition of M�, G�, K�, we conclude that M�� = M,
G�� = G, K�� = K, since 〈Mu, v〉V = 〈u,M�v〉V = 〈M�v, u〉V =
〈v,M��u〉V = 〈M��u, v〉V and, analogously, 〈Gu, v〉V = 〈G��u, v〉V
and 〈Ku, v〉V = 〈K��u, v〉V for all u, v ∈ V .

We introduce the operator pencil B(·) : C → L(V, V ) by

(3) B(λ) := K − λG − λ2M, λ ∈ C

and define the adjoint operator pencil

B�(λ) := [B(λ)]� = K� − λ̄G� − λ̄2M�, λ ∈ C.

Lemma 3.6 (Operator eigenvalue problem). The quadratic eigen-
value problem (1) is equivalent to the operator eigenvalue problem for
B(·). Find λ ∈ C, u ∈ V \ {0}, such that

(4) B(λ)u = 0.

Proof. We know from the definition of M, G and K that

〈B(λ)u, v〉V = 〈(K − λG − λ2M)u, v〉V
= 〈Ku, v〉V − λ〈Gu, v〉V − λ2〈Mu, v〉V
= k(u, v) − λg(u, v) − λ2m(u, v).

Furthermore, (λ, u) ∈ C×V is an eigenpair of problem (1) if and only if
k(u, v)−λg(u, v)−λ2m(u, v) = 0 for all v ∈ V , that is, 〈B(λ)u, v〉V = 0
for all v ∈ V . This is equivalent to B(λ)u = 0, since 〈·, ·〉V is positive
definite, and therefore, (λ, u) is an eigenpair of problem (4).

The assumptions (IV), (V) and (VI) were made so that the operators
M and G are compact (we will prove this in Section 3.3) and that the
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operator K is invertible. It follows from Lemma 2.10 and Remark 2.6
that the operator B(λ) is a Fredholm operator with index IndB(λ) = 0
for each λ ∈ C.

Due to Remark 2.11, we know that B(λ) is invertible if and only if
the equation B(λ)u = 0 has only the trivial solution u = 0. Hence, we
can write

σ(B) = {λ ∈ C | ∃u ∈ V \ {0}, so that B(λ)u = 0}
= {λ ∈ C | B(λ) is not invertible}.

3.3 Compactness of M and G. The aim of this subsection is the verifi-
cation that the operators M and G are compact under the assumptions
(I), (IV) and (V).

We consider any bounded sequence {un} in V . Since V is compactly
embedded into H due to assumption (I), there is a subsequence unk

which converges in H. For the sake of simplicity of notation, we denote
this subsequence by {un} and omit the subindex k. We conclude that
{un} is a Cauchy sequence in H. Assumption (IV) and the embedding
property (2) imply that

‖Mun −Mum‖2
V = |〈Mun −Mum,Mun −Mum〉V |

= |m(un − um,Mun −Mum)|
≤ c‖un − um‖H · ‖Mun −Mum‖H

≤ c‖un − um‖H · ‖Mun −Mum‖V .

Division by ‖Mun −Mum‖V yields

‖Mun −Mum‖V ≤ c‖un − um‖H .

Since {un} is a Cauchy sequence in H, we obtain that {Mun} is a
Cauchy sequence in V . Exploiting that V is complete, we conclude
that {Mun} converges in V , which proves the compactness of M.

By analogy with the operator M, we introduce the operator D : V →
V by

〈Du, v〉V = d(u, v) ∀u, v ∈ V.
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Then, with the same arguments as above, we get from assumption (V)
that the operator D is compact. Hence, the adjoint operator D�, which
is given by

〈Du, v〉V = 〈u,D�v〉V ∀u, v ∈ V,

is compact as well (theorem of Schauder), see [7]. Moreover, we have
for all u, v ∈ V that

〈Gu, v〉V = g(u, v) = d(v, u) − d(u, v) = 〈Dv, u〉V − 〈Du, v〉V
= 〈v,D�u〉V − 〈Du, v〉V = 〈D�u, v〉V − 〈Du, v〉V
= 〈(D� −D)u, v〉V .

Therefore, by Remark 2.6, the operator G = D� −D is compact.

3.4 Proof: λ ∈ σ(B) ⇒ −λ ∈ σ(B). Returning to the eigenvalue
problem for the operator pencil B(·) and the Hamiltonian structure of
the spectrum, we start with the proof that with λ ∈ C also −λ ∈ C is
an eigenvalue of problem (4).

Lemma 3.7. The relation B�(λ) = B(−λ) is true for all λ ∈ C.

Proof. Each λ ∈ C satisfies B�(λ) = K�−λG�−λ
2M� = K−(−λ)G−

(−λ)2M = B(−λ).

Lemma 3.8. The operators B and B� have the same eigenvalues,
that is, σ(B) = σ(B�).

Proof. Since B(λ) is a Fredholm operator with index 0, we have that
λ ∈ σ(B) if and only if B(λ) is not invertible. By Remark 2.11, this
is true if and only if B�(λ) is not invertible, which is equivalent to
λ ∈ σ(B�).

Corollary 3.9. If λ ∈ σ(B), then −λ ∈ σ(B).

It remains to show either that λ ∈ σ(B) or that −λ ∈ σ(B) given
λ ∈ σ(B). The existence of the fourth eigenvalue that completes the
Hamiltonian structure follows then immediately from Corollary 3.9.
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3.5 Proof: λ ∈ σ(B) ⇒ λ ∈ σ(B). The essential condition for this
subsection is that the sesquilinear forms are real, see assumption (III).
We use this property to evaluate the term B(λ)u.

Lemma 3.10. The relations Mu = Mu, Gu = Gu, Ku = Ku are
true for all u ∈ V .

Proof. Assumption (III) implies for each u ∈ V that

〈Mu, v〉V = 〈Mu, v〉V = m(u, v) = m(u, v) = 〈Mu, v〉V ∀ v ∈ V,

which proves the assertion for Mu. The relations Gu = Gu and
Ku = Ku follow analogously.

Corollary 3.11. The relation B(λ)u = B(λ)u is true for all u ∈ V .

Proof. Lemma 3.10 yields for each u ∈ V that

B(λ)u = (K − λG − λ2M)u = Ku − λGu − λ2Mu

= Ku − λGu − λ
2Mu = B(λ)u.

Corollary 3.12. If λ ∈ C is an eigenvalue of B(·) then so is λ.

Proof. If λ ∈ C is an eigenvalue of B(·), then there is an element
u ∈ V \{0}, so that B(λ)u = 0. Consequently, we have that B(λ)u = 0.
Corollary 3.11 implies that B(λ)u = 0, that is, λ is an eigenvalue of
B(·), since u ∈ V \ {0}.

This part of the proof holds even if B(λ) is not Fredholm; this means
that the compact embedding part of assumption (I) and the special
structure of g formulated in assumption (V) were not used here. Neither
was condition (II) employed. The boundedness conditions in (IV) (VI),
however, cannot be omitted, because we used them in the proof that
the operators M, G and K are well defined, see Lemma 3.4.
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3.6. The Hamiltonian eigenvalue symmetry. The following
theorem is the consequence of the previous results.

Theorem 3.13 (Hamiltonian eigenvalue symmetry). If the assump-
tions (I) (VI) are satisfied, then, the spectrum of the quadratic eigen-
value problem (1),

λ2m(u, v) + λg(u, v) = k(u, v),

is symmetric with respect to the real and imaginary axes, that is, if
λ ∈ C is an eigenvalue of problem (1), then so are −λ, λ, −λ.

The theorem is easily proven by the use of Corollary 3.9 (λ ∈ σ(B)
⇒ −λ ∈ σ(B)), Corollary 3.12 (λ ∈ σ(B) ⇒ λ ∈ σ(B)) and Lemma 3.6
which states that λ ∈ C is an eigenvalue of problem (1) if and only if
B(λ)u = 0, where u �= 0 is the corresponding eigenelement.

Remark 3.14. The same symmetry is given for nonlinear eigenvalue
problems of higher order,

n∑
i=0

λimi(u, v) = 0,

with alternating sequences of Hermitian and skew-Hermitian sesquilin-
ear forms mi(·, ·), if −m0 satisfies condition (VI), the other Hermitian
forms fulfill condition (IV) and (V) holds for the skew-Hermitian forms.
Polynomial eigenvalue problems of this form were treated, for example,
by Mehrmann and Watkins [12].

4. Examples.

Example 4.1. Consider the counter-example of the introduction:
g(u, v) = i m(u, v), k(u, v) ≡ 0. Obviously, k is not positive definite
and the operator K induced by k(·, ·) is the zero operator and therefore
not invertible. Hence, the Fredholm theory cannot be applied.

Note that, in general, we cannot conclude from this that the desired
eigenvalue symmetry is not given; in this example, however, λ = −i is
an eigenvalue, but λ = i is not.
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Example 4.2. Let V be a finite-dimensional complex Hilbert space;
without loss of generality, V = Cn, n ∈ N. Let m, g, k be given by

m(u, v) = v�Mu, g(u, v) = v�Gu, k(u, v) = v�Ku ∀u, v ∈ V,

where M , G, K are complex n × n-matrices.

Let 〈·, ·〉V denote the usual inner product, 〈u, v〉V := v�u. The
operator M induced by m(u, v) = 〈Mu, v〉V for all u, v ∈ V is then
defined by m(u, v) = v�Mu, that is, M = M . Analogously, we have
that G = G and K = K. Hence, the eigenvalue problem is equivalent
to the matrix eigenvalue problem: Find λ ∈ C, u ∈ Cn, such that

λ2Mu + λGu = Ku.

The assumptions (II) and (III) imply that M , G and K are real matrices
with M = M�, G = −G� and K = K�.

Indeed, the Hamiltonian eigenvalue symmetry can be proven then:
Assuming that λ is an eigenvalue, we get by conjugating and trans-
posing the equation that −λ is an eigenvalue, too. The characteristic
polynomial det(λ2M +λG−K) has real coefficients, which implies that
λ is an eigenvalue as well, and therefore so is −λ.

Note that (VI), demanding the invertibility of K, need not be satisfied
here; nor are (IV) or (V) essential. Nevertheless, it is necessary that M ,
G and K are real. Indeed, one easily finds complex counter-examples,
compare M = I, G = 2i I, K = 2I, where λ = −i + 1 and −λ = −i− 1
are eigenvalues, but λ and −λ are not.

Finally, let us consider a quadratic eigenvalue problem that arises in
numerical practice. In the neighborhood of polyhedral corners, the
singular part of the solution to the linear elasticity problem has a
special structure. The computation of the corner singularities can be
reduced to a quadratic eigenvalue problem of type (1), which we learnt
from [10]. Since the underlying problem is an elliptic boundary value
problem, Kozlov, Maz’ya and Roßmann [9] suggested to apply a Mellin
transformation from which the Hamiltonian eigenvalue structure can
be obtained as well. Further details including the operator eigenvalue
problem formulated in Section 3.2 are given by Apel, Sändig and
Solov’ev [3].
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Example 4.3. The study of corner singularities leads to the consid-
eration of a ball circumscribing the polyhedral corner. Using spherical
coordinates and a specific approach for the structure of the solution
to the linear elasticity problem, one obtains the quadratic eigenvalue
problem

λ2m(u, v) + λg(u, v) = k(u, v),

see [13] with λ ∈ C, u, v ∈ V , where V = H1
0 (Ω)3 and H = L2(Ω)3

are spaces of vector functions over a subdomain Ω of the unit sphere in
R3. This eigenvalue problem was written down in a slightly different
form by Leguillon [10]; we refer also to the paper by Apel, Sändig and
Solov’ev [3], which was the basis for the derivation of the Hamiltonian
eigenvalue symmetry in this paper.

The space H1
0 (Ω) is compactly embedded into L2(Ω), hence so is V

into H. The assumptions on m, g and k are satisfied in the given
problem; therefore, the suggested symmetry of the spectrum can be
concluded, as was done rather shortly by Apel, Sändig and Solov’ev [3,
Theorem 10] or Leguillon [10] or only for the discrete formulation, for
instance, by Apel, Mehrmann and Watkins [2, Proposition 1], see also
Mehrmann and Watkins [12] and references therein.

5. Summary. We studied a quadratic eigenvalue problem and for-
mulated conditions under which the Hamiltonian eigenvalue symmetry
can be proven. To derive the Hamiltonian structure, we transformed
the problem into an eigenvalue problem for an operator pencil and ap-
plied Fredholm theory. Since it is usually difficult to check whether
a given operator is a Fredholm operator with index 0 or not, we for-
mulated simplified conditions in (I) (VI) which imply the Fredholm
property. At last, we proved that under these assumptions the spec-
trum of the quadratic eigenvalue problem

λ2m(u, v) + λg(u, v) = k(u, v)

has the desired structure. In general, these conditions are easy to check,
once the functions m, g, k are given.

Finally, we presented an application and discussed the necessity of
the assumptions in two further examples.
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