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Abstract 

The one-dimensional Poisson-Vlasov equations are cast into Hamiltonian 

form. A Poisson Bracket in terras of the phase space density, as sole 

dynamical variable, is presented. This Poisson bracket is not of the usual 

form, but possesses the commutator properties of antisymmetry, bilinearity, 

and nonassociativity by virtue of the Jacobi requirement. Clebsch potentials 

are seen to yield a conventional (canonicai) formulation. This formulation is 

discretized by expansion in teems of an arbitrary complete set of basis 

functions. In particular, a wave field representation is obtained. 
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The Vlasov equations, in Lagrangian variables, were shown by Low to 

possess an underlying Hamilton's principle. Here we discuss the Hamiltonian 

formulation of the one-dimensional version of these equations in terms of the 

usually encountered Eulerian description. 

In connection with the development of the inverse scattering method, 

Gardner showed that the Korteweg-deVries equation is an infinite dimensional 

Hamiltonian system. In so doing he obtained a Poisson bracket in terms of the 

noncanonical variable for this system. In a similar vein we have obtained 

Poisson brackets for the equations that describe a perfect fluid and ideal 

magnetohydrodynamics, the Maxwell-Vlasov and Poisson-Vlasov equations, and 

the equations which describe two-dimensional vortex fluids or guiding center 

plasmas. 

In the following we discuss the one-dimensional version of the 

noncanonical Poisson bracket developed in Ref. 5. It is shown that the 

introduction of Clebsch potentials transforms the noncanonical formulation 

into a canonical formulation. This formulation is discretized by expanding in 

terms of an arbitrary complete orthonormal set of basis functions. The exact 

Hamiltonian has quadratic plus quartic terms. Fallowing this, the particular 

basis of Fourier decomposition is developed. 

The one-dimensional Poisson-Vlasov equations are the following: 

3f 3f e ,. af 
^ ^ ) = - v ^ ( z , t , ^ | k , x , t ) ^ U , t , (1) 

a 

^-f (x,t> - - I e / f <z,t> dv (2) 
3x a 

where f is the phase space probability density, $ is the electrostatic a 
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potential, z = (x,v), a designates the species, and e and m are the signed 
r a a 
particle charge and tnaa3 respectively. The potential 4> is defined on R 
and f on R x R. [R is the interval (-•»,<»)]. Integrating Eq. (2) twice, 

a 

seeding solutions with asymptotic charge neutrality and vanishing electric 

field, we obtain 

A(x) = - y e f K (x|x>) f (z'J dz' a a 

where K(x|x') = 1/2 |x - x'|. (For convenience, we display only the arguments 

necessary to avoid confusion.) Equations (1) and (2) can be written compactly 

in the following form which is suggestive of the equations for two-dimensional 

vortex motion: 

3f 
— - = - w -V f (3) 
at — a p a 

where 7 _: O/x, 3/v) and P 

v = f v ' ^T f~ 1 e
a / K<x|x') f.(z') dz" 

Observe 7 • w = 0. p -a 

In Fefs. 4, 5, and 6 we discuss the properties of Poisson brackets. The 

brackets presented are not of the usual form, but do possess the Lie algebraic 

properties; bilinearity, antisymmetry, and nonassociativity as determined by 

the Jaeobi requirement. In Ref. 5 the three-dimensior.il version of Eq. (j, is 

expressed in Heisenberg form; i.e., 
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^ = [ f Q . «] , ,4) 

where the bracket on the right hand side is the field Poisson bracket. With 

slight modification we obtain the one-dimensional Poisson bracket 

a a a a 

where the quantities A and B, on which the bracket acts, are functionals such 

as the integral of the Hamiltonian density: 

r 1 , 2 
H[f ] = ) ;r m / v f (z) dz 

a 

~ ^ y e e„ / K(x|x") f (z)f U ' | dz dz' - (6) 

The braces of the integrand of Bq. (5) signify the usual particle Poisson 

bracket: 

|f.|.MlS.113s . ( 7> 

The functional derivative, 6A/6f , is defined by 

^- A[f + Eh] | = / |f h dz d£ ' o f e=o 

where h is an arbitrary, sufficiently differ«ntiable, function of z. Observe 

77 = 4 m v * " T e e f K ( x | x ' ) f ( a 1 ) dz • i H <5f 2 a <; a B J P P a 6 
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where H is the Hamiltonian (energy) of a particle in the potential 

Since 6f(z)/6f(z') = 6(z-z'), where 6<z) is the Dirac delta function, Eq. (4) 

with Eq. (6) is equivalent to Eq. (3). 

Practical exploitation of the Hamiltonian structure presented here, 

either numerical or analytical, requires discretization and truncation. For 

noncanonical Poisson brackets, which are linear in the dynamical variables of 

the system, we have observed that truncation destroys the Jacobi 

requirement. In order to rectify this situation we seek canonical 

variables. To this end we represent the distribution function in terms of 

;.; -jbsch potentials 

. i.ffa> ,„(a) 1Tlci) ,,!a) 
f

a

U ) ~ m I 3x 3v 3* 3v ) ' ( 8 > 

a 

This representation is not unique; e.g., one has the gauge condition that any 

function T a can be added to T provided 

9x 3v 3x 3v 

Substituting Eq. (8) into the equation of motion [Eq. (3)1 yields 

i * , a , ' ^ 1 + V V ( a , ! + H ^ > + V v p * ( a > - T ' - l = o 

where recall the braces are defined by Eq. (7), Clearly the above is 

statisfied (although not in the most general manner) if 4 and T satisfy 



the following: 

I t - * " ̂ a • Vp * 

H ^ ' - - . . V B T(°> . ,9) 
3t — a p 

Upon use of the chain rule for functional derivatives, the substitution [Eq. 

(811 renders the bracket [Eq- (511 canonical-.11 Eqs. (9) have the form 

3 * ( a ) &H 
3 t 

5T 

at = SH (101 

where H is now regarded as a functional of $ and T . 

Let us now expand $ and T in terms of an arbitrary orthonormal 

complete set of basic functions u (z). 

* = ) * , , Uu(z) k - -

r < a ) = I T ' O ) uk(z) . (Hi 
k — — 

Here u is doubly indexed by k and orthonormality, is with respect to the k 
following inner product: 

< uklii > = / \ v t * * - \,e 
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(* refers to complex conjugation and 6 is the Kronecker delta function.) 
k i X. 

The reality condition is assumed; e.g., in the case where u is complex [e.g., 
~ <o)* (a) Eq. (15)] in both its arguments, x and v, we require 4 = <P and 

similarly for T . In case y is real this condition is not applicable and 

the inner product is symmetric. Since an arbitrary functional M$] obtains 

its if dependence through $, it is not difficult to verify the following: k 

3A , SA B* , 6A ,,». 
k k — 

In this expression the A on the left hand side is to be treated as 3 function 

of the *. ; in the center and on the right, A retains its role as a functional 

of $. From Eg. (12) we obtain the following expression for the expansion of a 

functional derivative: 

£A y 3A 
k 9*k 

With this, the discretized version of Eqs. (TO) are 

>(a) 3H 
3 T k 

•(a) 3H 

k 

These equations can be symmetrized by making the substitution 
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We obtain 

• (a) . 3H . -(a)* . 3H ,,.. 
s * k - ^ 

The distribution function (density) has an expansion which is quadratic in 

the ijj and î  r a form which is reminiscent of quantum mechanics. From 

Eq. <6> \je obseTve that the Hamiltonian has terras quadratic ana quartic in 

the i|jk and .J>k 

Assuming periodic boundary conditions on a unit phase space box, we 

obtain the following wave field expression for the phase space density: 

V z ) = I En V 

where the orthonormal functions 

ik x + ik v 
u = i - e . ( 1 ' ) 
y k 2TT 

[Here k = (k-^k?)-] The Fourier coefficients of the density are seen by Eqs-

(8), (11), and (13), to be related to the "wave function" i|v through 

E<«> = V a
( a > t

 l a ) y t a >* (16) 
v *• t.n t £ 

where 

a ( a > = T T - ( M ^ i 1 ^ t.a. 2nm l 1 2 1 1.' 
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Substituting Eg. (16) into Bq. (6) yields the following expression For the 

Hamiltonian: 

„ r c < 2 ) , ( a ) * , ( a ) . r e a J . <4) ( a ) * , <a> , (f5>*. ( 6 ) 
H = 1 S„ , *„ til + ) —"• S„ J i . it Ui it Jl,k *«. r k '• m m S . , s , m , p v l * s vm *£ m — - a . Si a $ — -

V S S2=*2 
V t : 2 m 2 = P 2 

p i ^ r * r B i * ° 

a n d 

t -K. 

s < 2 > = il^U ( k , . , k , 

s ( 4 ) = - ' V 2 - g 2 S 1 H m T P 2 " m 2 P l ' 
A , s , m , p 4TI<S - J l 1 ><m - p ) 
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B. The Poisson bracket for the Poisson-Vlasov equation is the same as that 

for the vortex fluid and guiding-center plasma, although the Hamiltonians 

differ. See Hef. 6. 

9. This requires the use of the identity, j f'g,h|dz = - ; g'f,hl dz, which 

is readily verified by integration by parts. 

10. It is well-known that, since f is constant or. characteristics, 
a 

if f > 0 at t=0 for all z then f \» 0 for ail z and t. If 
•i a 

4 and T are chosen at t=0 such that f , as determined by Ea. (8), 
a 

is nonnegative, then the dynamical equations for T and 0 ' assure 

that f solves Bqs. (3); hence ncnnogativity of f is maintained. 

1 1. See Ref. 6 pp. 12 and 13. 


