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Abstract

Halo formation for a test particle in a mismatched KV beam is
studied. Parametric resonances of the particle Hamiltonian due
to envelope modulation are studied with particular emphasis on
period 2 resonance which plays dominant role in Halo forma-
tion. It is shown that the onset of global chaos exhibits a sharp
transition when the amplitude of modulation is larger than a crit-
ical value which is a function of a single parameter,�, i.e., the
ratio of the space charge perveance to the focusing strength.

I. INTRODUCTION

The interest in intense charged particle beams has grown in
past few years due to demand in high brightness and high inten-
sity ion sources. For beams dominated by the self-space-charge
force Kapchinskij and Vladimirskij have constructed a self con-
sistent equilibrium distribution function which obeys the KV
equation governed by the external focusing field and the self
space charge force [1]. In order to understand the motion of a
test particle in KV beam simultaneous numerical integration of
envelope and particle equations of motion can be used. The as-
sumption is that the envelope evolution will affect the particle
dynamics, while the particle motion does not affect the enve-
lope. The results of numerical simulations indicate that the halo
formation arises mainly from resonance excitations [2-5].

This paper is organized as follows. In Sec. II, we review
properties of the envelope Hamiltonian and study a motion of
a weakly mismatched beam in a uniform focusing channel. In
Sec. III, the particle Hamiltonian is separated into autonomous
Hamiltonian and time dependent perturbation; the condition on
existence of primary parametric resonances is obtained. Condi-
tions for global chaos and estimation of halo diameter as func-
tion of modulation amplitude are considered. Conclusion is
given in Sec. IV.

II. THE HAMILTONIAN FOR THE ENVELOPE
PHASE SPACE

The KV envelope Hamiltonian for a uniform focusing chan-
nel is given by

He =
P 2

2
+
�2R2

2
�K ln(R) +

�2

2R2
(1)

(where� is the external focusing field,� is the emittance of the
beam andK = 2Nrcl

�23
is the space charge perveance parameter).
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Using scaling transformation, we obtain the following expres-
sion for the envelope Hamiltonian

He =
P 2

2
+
R2

2
� 2� ln(R) +

1

2R2
(2)

where� = K

2� �
. The matched beam radiusRo and the fre-

quency of small amplitude envelope oscillations�e are given by

Ro =

qp
�2 + 1 + � (3)

�e = 2

r
1� �

�p
�2 + 1� �

�
(4)

Because of thenonlinear space charge force the envelope tune
Qe(Je) varies fromQ(Je = 0) = �e to Q(Je ! 1) ! 2.
When� = 0, the envelope dynamics is linear andQe = 2; at
the infinite space charge limit�e =

p
2.

III. THE HAMILTONIAN FOR THE PARTICLE
PHASE SPACE

The Hamiltonian for a test particle is given by

Hp =
pr

2

2
+

L2

2 r2
+
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2
�
�
�
r2 �R2

�
R2

�(R� r)

�2� ln( r
R
)�(r �R) (5)

For a beam with mismatch parameterM � 1 envelope radius
changes harmonically with timeR(t) = Ro (1�M cos(�e t));
the particle Hamiltonian can be separated into autonomous
HamiltonianHpo(pr; r) (can be rewritten in terms of canon-
ical action-angle variables) and time-dependent perturbation
�H(pr; r; t).

Hpo(pr; r) =
p2

2
+

L2

2 r2
+
r2

2
�
�
�
r2 �Ro2

�
Ro

2 �(Ro � r)

�2� ln( r
Ro

)�(r � Ro) (6)

�H(pr; r; t) = �
�
�
r2 � Ro

2
�

Ro
2

M cos(�e t)�(Ro � r) (7)

Below we consider onlyL = 0 case (we replace coordinater
by y). For a beam with a matched envelope radiusRo particle
motion inside the core (jyj < Ro or equivalentlyJp < 1

2
) is

linear with

�p =
p
�2 + 1� � (8)
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Figure 1. Qp

�e
vs Jp for � = 2:19. Intersections of horizontal

lines withQp

�e
mark locations of parametric resonances.

On the other hand in the limit of large amplitude oscillations the
space-charge force is not important; particle motion is almost
harmonic withQp = 1. Thus the tune of a test particle outside
the core lies within the range[�p; 1).

Note that functional dependence of particle tune vs. action
has a cusp atr = Ro (see Figure 1); this suggests that a sim-
ple power expansion may not be applicable. On the other hand
the sharp rise of the particle tune outside the core will bear im-
portant implications to parametric resonances when the system
is subject to harmonic perturbations (such as wake fields or en-
velope modulation).

In terms of action-angle variables the particle Hamiltonian be-
comes

Hp = Hpo(J) �M� cos(�e t)

1X
n=�1

Gn(J)e
in (9)

where the strengths of primary resonancesGn(J) are

Gn(J) =
1

2�

Z
�

��

�
y2

Ro
2 � 1

�
�(Ro � y)e�in d (10)

Because the Hamiltonian is symmetric with respect toy ! �y
all odd harmonics vanish. The location of primary parametric
resonances for particle motion can be found from:

nQp(JFP )� �e + nM�G
0

n
(JFP ) = 0 (11)

If M �G
0

n
(JFP ) is small, the threshold of existence ofn-th

order primary parametric resonance is given by�p

�e
= 1

n
. There-

fore as� increases more high order resonances appear (see Fig-
ure 2). In generaln-th order primary resonance exists only if

� >
n2 � 4p
8 (n2 � 2)

(12)

This has an important implication for Halo formation which
is enhanced when many high order resonances overlap creating
large chaotic area in the phase space. Also as it was found in nu-
merical simulations the resonance strength will increase as well.
Finally we see that for a beam with a very large space charge pa-
rameter many resonances appear near the core and create a large
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Figure 2. The range of ratios of the particle tune to the envelope
tune as function of effective space charge strength�.

region of stochasticity. Though motion inside the core is stable,
the dynamics of the particle from the diffusive tail is determined
by the presence of this chaotic regions.

A. Halo and global chaos

We examine particle motion in Poincar´e surfaces of section
at the minimum envelope radius locations; Poincaré energy for
particle motion is defined as energy calculated at the minimum
radius locations. The Poincaré energy of a test particle outside
the core is always larger thanEP =

�p

2 (1�M)2
maximum energy

of core particles. We now consider the motion of a particle with
Poincaré energyE = � EP . For a given mismatch parameter
M and� there is a critical number�cr such that all test particles
with � > �cr will orbit about the2 : 1 resonance (which exists
for all values of�) and thus become halo particles. Numerical
simulations indicate that�cr is a smooth function of mismatch
parameterM (Figure 3 a) if� < 2:2 . However for� > 2:2,
we can always observe very sharp transition whenM exceeds
some critical valueMcr(�) (Figure 3 b). When� is small there
are few resonances near the core. Since the width of period 2
resonance and width of stochastic layer varies smoothly with
the modulation amplitude,�cr will decrease smoothly asM in-
creases. On the other hand when� is large there are many pri-
mary and secondary resonances and local chaos is formed near
the core. Once the stochastic layer layer of period 2 resonance
overlaps with local chaos, global chaos occurs.

B. Period 2 resonance and Halo diameter

It is evident from numerical simulations that Halo diameter is
determined mainly by period 2 resonance. Though the location
of SFP of this resonance is shifted when modulation amplitude
increases, this shift is linearly proportional toM (Figure 4) and
is omitted for the sake of simplicity. So we can estimate the
maximum transverse energy of Halo particles byE(Jr) +

�E

2
whereE(Jr) is the energy of resonance particle and�E is the
energy width of the resonance :

�E = Qp(Jr)� J = 4Qp(Jr )

s
M G2 (Jr)

Q
0

p
(Jr )

(13)
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Figure 3. a).�cr as function ofM for � = 2 (boxes) and 2.5
(circles). b).Mcr vs space charge parameter� obtained from
numerical simulations .

Taking advantage of the fact that dynamics of the system is de-
fined by a single parameter� we can use the following approx-
imate formula for maximum transverse energy of Halo particles
(Figure 4) :

Emax = � �Er(�) + � � �e(�)
p
M � � (14)

where� � 2:5 obtained from numerical simulations.

IV. CONCLUSION
In conclusion, we studied the beam transport problem solving

simultaneously the dynamic equations for the KV envelope and
a test particle. Parametric resonances for particle motion can
be generated by a mismatched envelope oscillations. The res-
onance condition is found to depend only on a single effective
space charge parameter�. Due to the mismatched beam enve-
lope oscillations, the period 2 resonance occurs at all values of
space charge perveance. From our numerical simulations, it is
observed that the critical Poincar´e energy for the halo particle
exhibits a sharp transition when plotted as a function of enve-
lope mismatch parameter what is related to the onset of global
chaos. The relation between the critical mismatch parameter
Mc and the effective space charge parameter� is obtained from
numerical simulations. Halo diameter is estimated. Effects of
angular momentum are considered in other publications [6].

We have studied the halo formation for a space charge dom-
inated beams in a uniform focusing channel. This method can
readily be applied to study the beam transport problems in a
periodic focusing channel, where Floquet transformations is
needed before analytic solution can be obtained [6].
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Figure 4. Maximum energy of Halo particles (boxes), equation
14(line) and location of SFP of period 2 resonance (crosses) as
function of modulation amplituteM for � = 1:25; 6:25;12:5.
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