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A two magnon scattering theory for microwave relaxation in magnetic systems is formulated in the
framework of the Hamiltonian formalism. The paper provides general expressions for
inhomogeneity coupling coefficients in the case of localized inhomogeneities. An approximate
solution for the relaxation rate of the ferromagnetic resonance uniform mode relaxation rate is
presented. Two examples of the application of the theory are presented, one for bulk polycrystalline
ferrites and one for polycrystalline metallic thin films. © 2007 American Institute of Physics.
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I. INTRODUCTION

Processes that involve decay in the amplitude of magne-
tization oscillations, generally termed relaxation processes,
are important for fundamental and practical reasons. These
processes, for example, set a natural limit for switching times
and magnetic recording data transfer rates.1 There are two
main pathways for magnetization relaxation: �i� energy trans-
fer out of magnetic system to a thermal bath that consists of
phonons or conduction electrons, for example, and �ii� en-
ergy redistribution within a magnetic system. The former is
usually termed as intrinsic damping. The latter involves cou-
pling between the various magnetization oscillation modes,
often called spin waves in wave theory or magnons in quan-
tum particle theory. These two terms are often used inter-
changeably.

In the lowest order magnon coupling process, where
only two excitations are involved, one magnon is destroyed
and another is created. Such a process is called two magnon
scattering �TMS�.2 This process can be described in terms of
a scattering of the spin waves due to bulk and/or surface
inhomogeneities. In the case of static inhomogeneities, the
scattering may be taken as elastic, so that the initial and final
magnon states will have the same frequency �. The state
wave vectors, denoted by k, however, will differ by amounts
that correlate with the spatial variation of the inhomogene-
ities.

Two magnon scattering processes are often invoked to
account for additions to the intrinsic ferromagnetic resonance
�FMR� relaxation rate or resonance linewidth for bulk3,4 and
thin film5 ferrites as well as metallic magnetic films and
multilayers.6–8 The driven FMR mode is usually spatially
uniform or near uniform and is taken to correspond to a k
=0 spin wave excitation. A valid two magnon scattering re-
laxation channel for the uniform mode requires two things:
�1� available nonzero k modes that are at the same frequency
as the driven FMR mode and �2� inhomogeneities with ap-

propriate sizes or size distributions to couple the FMR mode
to these degenerate spin wave modes. The total FMR relax-
ation rate then reflects a decay of uniform mode magnons
due to TMS as well as intrinsic processes.

In the case of weak inhomogeneities, the coupling be-
tween uniform and nonuniform modes can be treated as a
small perturbation and the TMS contribution to the relax-
ation rate can be evaluated by Fermi’s golden rule. This
quantum mechanical approach has been adopted by several
authors.9–11 Reviews may be found in Refs. 2 and 12, for
example. Alternative methods involve the evaluation of the
inhomogeneity contribution to the microwave suscep-
tibility13,14 or the magnetization time response,15,16 as well as
the direct numerical diagonalization of the Hamiltonian with
inhomogeneity coupling terms included.17,18 Higher order
approaches include considerations of secondary scattering
between nonuniform magnons19 and modifications in the
density of degenerate states in the presence of
inhomogeneities.20

Two magnon scattering contributions to the uniform
mode ferromagnetic resonance relaxation rate have been in-
vestigated theoretically and experimentally since the late
1950s. The very early works focused on TMS processes in
bulk ferrites. The intense technological interest in ferrite
based radar devices drives continuing work in this area to the
present day. The main contributions to the TMS relaxation
rate in ferrite systems come from �i� coupling due to the
dipole fields associated with pores and surface voids9,10 and
�ii� effective field fluctuations associated with the magneto-
crystalline anisotropy of the randomly oriented grains in
polycrystalline samples.21 The particular case of the thin fer-
rite disk geometry was considered, for example, by Sparks22

and most recently by Hurben and Patton,23 among others.
There has also been a strong interest in TMS relaxation

in metallic thin films. Wigen24 was the first to incorporate the
TMS theory into the analysis of linewidth data for obliquely
magnetized Permalloy films. In this analysis, however, the
density of degenerate states was evaluated from bulk spin
wave dispersion relations rather than those applicable to thin
films. It is known, however, that the dynamic dipole fields
associated with film surfaces can modify the applicable dis-
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persion relations25,26 and density of states considerations in a
significant way. Such effects can lead, for example, to pro-
found dependences of the FMR linewidth on the film thick-
ness.

A semiquantitative discussion of two magnon scattering
contributions to the FMR linewidth in thin metallic films was
first provided by Patton et al.6 for in-plane magnetized Per-
malloy films. The full theoretical analysis of two magnon
scattering processes in thin metallic films started some de-
cades later with the work of Arias and Mills.16 Their model
involved scattering from regularly shaped surface defects
due to both dipole fields and surface anisotropy, and it spe-
cifically addressed the situation for ultrathin films. The
model predictions have been tested experimentally by Lind-
ner et al.27 and McMichael et al.,28 for example. Recently,
McMichael and Krivosik presented a detailed classical
model of TMS relaxation for localized randomly distributed
inhomogeneities.14 Nonlocal dipole scattering due to a ran-
dom surface roughness has been treated by Dobin and
Victora29 and by Maranville et al.30

This article follows closely the TMS analysis of Mc-
Michael and Krivosik14 for localized scattering. The theory
presented here, however, is formulated within the framework
of a Hamiltonian formalism. This approach is widely used in
the theory of weakly dissipative systems, and it is particu-
larly suitable for the study of nonlinear magnetic
excitations.31,32 Recently, for example, there has been a large
amount of Hamiltonian based theory on a wave front reversal
in ferrite films.33,34 This phenomenon involves both two
magnon scattering and nonlinear parametric processes, and
this combination holds significant potential for new micro-
wave signal processing devices. Hamiltonian approaches to
TMS processes have also been used in the analysis of non-
linear magnetization dynamics in the vicinity of the ferro-
magnetic resonance35,36 and large angle switching.29 In spite
of the above activity, there exists no general and comprehen-
sive statement of the formal Hamiltonian TMS theory and
the corresponding Hamiltonian coefficients for basic mag-
netic systems. This work addresses this problem.

Section II presents the basic theoretical approach. It
gives a review of the working equations for the dynamic
magnetization response in a homogeneous sample, provides
general expressions for the inhomogeneity coupling coeffi-
cients for localized inhomogeneities, and presents an ap-
proximate solution for a uniform mode free decay response.
Section III provides an example calculation for anisotropy
scattering in a polycrystalline sphere. In Sec. IV, a simplified
theoretical approach is used for the analysis of the original
data on Permalloy thin films from Ref. 6. Section V provides
a summary and conclusions. Gaussian units are used
throughout.

II. THE HAMILTONIAN FORMALISM

A. Dynamic magnetization response and equation
of motion

This section provides an overview of the Hamiltonian
method in the spin-wave theory. There are several methods
for the theoretical analysis of spin wave excitations in ferro-

magnets. In the classical approach, spin waves are regarded
as propagating deviations of the macroscopic magnetization
M from equilibrium. The dynamics of these deviations de-
rives from the classical torque equation of motion,

dM�r,t�
dt

= − ���M�r,t� � Heff�r,t� , �1�

where � is the electron gyromagnetic ratio and Heff�r , t� is a
net effective field that includes both external and internal
field components. In order to facilitate the analysis of the
spin wave dynamics and interactions in a compact way, Eq.
�1� is commonly transformed into a set of equations of mo-
tion for scalar complex Fourier component spin-wave ampli-
tudes. The Hamiltonian formalism provides a way to achieve
such a transformation in four conceptually simple steps.

In the first step, one needs to write down the total mag-
netic energy H in specific form. In general terms, H may be
written according to

H = �
V

Wd3r , �2�

where W is an energy density and the integral is over the
sample volume V. Both H and W are real. The connection
between this energy and the effective field in Eq. �1� is given
by

Heff�r,t� = −
1

V

�H
�M�r,t�

, �3�

with the variational derivative defined in the standard way

�H
�M

= V� �W
�M

− �
�=x,y,z

d

d�

�W
��dM/d��	 . �4�

In the second step, the magnetization components Mx,y,z

are expressed in terms of a pair of conjugate variables a�r , t�
and a*�r , t� according to

iMx�r,t� + My�r,t� = Msa�r,t�
2 − a�r,t�a*�r,t� �5�

and

Mz�r,t� = Ms�1 − a�r,t�a*�r,t�� . �6�

Here, Ms denotes the saturation magnetization of the material
of interest. This transformation was first developed by
Schlömann.31,37 It has been used by many authors for the
study of spin wave dynamics and related problems.38–41 One
can see that in the small signal limit a has a simple physical
interpretation, namely, a� i�x+�y, where �x,y are the x- and
y-direction cosines of the magnetization vector M.

With the use of Eqs. �5� and �6�, Eq. �1� may be trans-
formed into a pair of coupled equations of motion for a�r , t�
and a*�r , t� in Hamiltonian form, according to

i
da�r,t�

dt
=

� U
�a*�r,t�

�7�

and the corresponding complex conjugate expression,
−ida*�r , t� /dt=� U /�a�r , t�. In the above, U is the magnetic
energy from Eq. �2�, but now expressed in frequency units
according to
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U =
���

MsV
H . �8�

As with H, U is always real.
In the third step, the spatial dependences of the conju-

gate variables a�r , t� and a*�r , t� are expanded in a suitable
basis system. In the usual case, linear normal modes for a
given sample geometry are chosen as the basis functions.
The appropriate choice in many situations is a plane wave
Fourier series expansion according to

a�r,t� = �
k

ak�t�eik·r �9�

along with the corresponding complex conjugate expression
for a*�r , t�. Each ak�t� and ak

*�t� expansion coefficient repre-
sents the complex amplitude of a planar spin wave that
propagates in a direction of the wave vector k. The k=0
mode corresponds to the uniform magnetization mode. Such
a plane wave expansion has been established as a permissible
approximation for bulk samples as long as the mode wave-
length �2� / �k�� is much smaller than the sample dimensions.
Plane wave expansion has been also employed for laterally
unbounded ultrathin films for which the condition �k�d�1 is
satisfied, where d is the film thickness.42 In this ultrathin film
limit, the dynamic magnetization amplitude can be taken to
be uniform across the film thickness, and the normal modes
are, in essence, propagating plane waves confined in the film
cross section. The Fourier expansion is then over k vectors
constrained to the film plane.

The ak variables are often rescaled as âk=

MsV /g	Bak, where g is the Landé g factor and 	B is the
Bohr magneton.13,19 A given pair of these rescaled âk and âk

*

then represent the classical analog to the usual magnon an-
nihilation and creation operator pair in the second quantiza-
tion formalism of quantum mechanics.43 This analog origi-
nates from the fact that each excited spin wave reduces the z
component of the total magnetic moment of the sample by a
given amount, either by MsVakak

* or by g	Bâkâk
*.

The Fourier transform operation is canonical and the
equations of motion for the ak and ak

* will therefore retain the
Hamiltonian form of Eq. �7�, but with the variational deriva-
tives replaced by partial derivatives. This replacement relates
to the fact that the ak and ak

* are amplitudes in discrete k
space.

There is one more crucial modification. Intrinsic dissipa-
tion due to interactions between the spin waves and the ther-
mal bath is accommodated through the ad hoc addition of a
relaxation rate 
k term to the coupled equations of motion
for ak and ak

*.31,32 This relaxation rate 
k parameter is real. In
principle, such a term could also be obtained directly from
additional Hamiltonian terms that represent spin wave cou-
pling to the thermal bath.44 The development will show that
in the first order approximation, the two magnon relaxation
rate term simply adds to the 
k just introduced. By implica-
tion, other two particle interaction terms will have the same
effect, at least to lowest order. The 
k, therefore, simply
accounts for intrinsic thermal bath decay terms in a heuristic
way.

Based on the above, the coupled equations of motion for
the ak and ak

* may be written according to

i� d

dt
+ 
k�ak�t� =

� U
�ak

*�t�
�10�

and

− i� d

dt
+ 
k�ak

*�t� =
� U

�ak�t�
. �11�

In the fourth and final step, the energy U is expanded in
a power series in the ak and ak

*, written as U=U �0�+U �1�

+U �2�+¯. The superscripts indicate the degree in powers of
the different ak, ak

*, akak�, akak�
* , etc., products. Although the

initial Hamiltonian is usually easy to write down, this expan-
sion in the ak and ak

* is often tedious to obtain. When com-
pleted, however, it allows for the evaluation of all of the
different orders of spin wave interaction processes in an ex-
tremely simple manner. This operational simplicity will be-
come clear in the sections to follow.

B. Normal modes and spin wave dispersion for a
homogeneous sample

From the derivative form on the right sides of Eqs. �10�
and �11�, one can see that a truncation of the U expansion
beyond the quadratic terms in the ak and ak

* corresponds to a
linearization of the equation of motion. The zeroth order
term is immaterial for dynamics. The first order term in the U
expansion defines static equilibrium and may also include a
pumping term from the external fields. The linearized normal
modes of the magnetic system are fully defined, therefore,
through the quadratic U �2� part of the energy. For a spatially
homogeneous sample, this part may be expressed as

U hom
�2� = �

k

Akak

*�t�ak�t� +
1

2
�Bkak

*�t�a−k
* �t� + c.c.�� .

�12�

The expansion coefficients Ak and Bk take the form

Ak =
���
2

�Hxx,k + Hyy,k� �13�

and

Bk =
���
2

�− Hxx,k + Hyy,k + 2iHxy,k� , �14�

where Hxx,k, Hyy,k, and Hxy,k are components of what will be
termed the homogeneous stiffness field tensor. The specific
form of these components will depend on the system of
interest.45,46 An outline of the development of these terms is
given in the Appendix. Two sets of specific expressions, one
for bulk samples of ellipsoidal shape and one for in-plane
magnetized thin films, are given in Secs. III and IV. Note that
Hxx,k, Hyy,k, and Hxy,k are real. This means, in turn, that Ak is
also real and the conditions Ak=A−k and Bk=B−k are valid.

With the form of U hom
�2� as given in Eq. �12�, Eqs. �10�

and �11� will comprise coupled equations of motion for a
given pair of ak and ak

* amplitudes or, equivalently, pairs of
ak and a−k

* amplitudes. For some aspects of the analysis, the
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�ak ,a−k
* � form proves convenient. The decoupling can be ac-

complished through a canonical transformation first devel-
oped by Holstein and Primakoff �HP�.47 For the present pur-
poses, this transformation may be written as

ak�t� = ukck�t� + vkc−k
* �t� , �15�

where the transformation coefficients are specified through

uk =
Ak + �k

2�k
, �16�

vk = −
Bk

�Bk�

Ak − �k

2�k
, �17�

and

�k = 
Ak
2 − �Bk�2 = ���
Hxx,kHyy,k − Hxy,k

2 . �18�

Equation �18� also gives the �k�k� dispersion relation for the
normal mode excitations associated with these amplitudes.
From the properties of Ak and Bk it follows that �1� the uk are
real and �2� the conditions uk=u−k, vk=v−k, and �k=�−k are
satisfied.

The HP transformation casts Eq. �12� into a diagonal
form as U hom

�2� =�k�kck
*�t�ck�t�. The new pair of conjugate

variables ck�t� and ck
*�t� correspond to the linear normal spin

wave modes. Since the transformation from the ak and ak
* to

the ck and ck
* is canonical, the equations of motion for the ck

and ck
* follow the same form as for the ak and ak

*. However,
insofar as U hom

�2� is diagonal in ck and ck
*, the equations of

motion are now uncoupled. One then has

i� d

dt
+ 
k�ck�t� =

� U hom
�2�

�ck
*�t�

= �kck�t� , �19�

along with the counterpart equation for ck
*�t�. For a homoge-

neous system, the dispersion �k�k�, together with the relax-
ation rate parameter 
k, now provides all the information
needed to describe the linear spin wave dynamics. The ck�t�
and ck

*�t� correspond to plane waves with a well defined dis-
persion. One can also work backwards, as needed, to extract
the physical dynamic magnetization response as a Fourier
superposition of these normal modes, suitably transformed.

The working equations developed up to now constitute
the lead into the main problem at hand, namely, the spin
wave dynamics and the additional relaxation processes that
are present in the presence of inhomogeneities. The next sec-
tion considers the extension of the formalism established so
far to this problem. The new ingredient is a spatial variation
of the stiffness fields due to the inhomogeneities. This results
in a new coupling between spin wave modes at the same
frequency but with different wave vectors, or, in other words,
two magnon scattering.

C. Inhomogeneity coupling and mode mixing

Spatial inhomogeneities introduce an additional contri-

bution to the energy density that will be denoted as W̃. In
what follows, a tilde ��� will be used to denote any inhomo-
geneity related quantity. Spatial inhomogeneities may be
classified according to the sources of the spatial fluctuating

effective field and separated into two categories, local and
nonlocal. A polycrystalline ferrite or thin film with densely
packed randomly oriented crystalline grains, for example,
constitutes a system with local inhomogeneities. Samples
with pores, pits, or surface irregularities that produce long
range dipole fields, on the other hand, provide examples of
nonlocal inhomogeneities. The formulation here will focus
on local inhomogeneities. In the case of nonlocal scattering
processes, one can cast the working equations in a similar
form, albeit with a somewhat more complex analysis than
that given below.29

For the dense polycrystalline sample with local inhomo-

geneities, the important contributions to W̃ generally derive
from the magnetocrystalline anisotropy in randomly oriented
grains and the r-dependent variation in M associated with
the plane and spin waves. This second effect is critical. It is
present even for a completely saturated sample with a uni-
form and r-independent static magnetization, the situation
considered below. In the simple case of uniaxial grains, one

can write W̃�r ,M�=−Ku�r� /Ms
2�e�r� ·M�r��2, where Ku�r�

represents the spatially dependent uniaxial anisotropy energy
density parameter and e�r� is a unit vector that defines the
grain-to-grain r-dependent uniaxial easy axis. Later in the
analysis, the practical parameters of importance will be de-
veloped in terms of the components of an r-dependent 2

�2 effective field tensor h̃�r� and the corresponding Fourier
components of these fields.

Turn now to the dynamics. For purposes of analysis, it is
assumed that the sample remains magnetically saturated with
a well defined static and r-independent magnetization vector
specified as M0=Msẑ. One also takes the dynamic magneti-
zation, given by m�r , t�= �M�r , t�−M0�, to be small. In this

limit, W̃�r ,M� may be expanded in a Taylor series about the
magnetization equilibrium position. Taken out to second or-

der terms only, W̃�r ,M� takes the form

W̃�r,M� � W̃�r,M0� + �MW̃��r,M��M0
· m�r,t�

+ 1
2mT�r,t� · �M�MW̃��r,M��M0

· m�r,t� .

�20�

One then proceeds to apply the same transformations devel-
oped in the previous sections to the dynamic magnetization,
first in terms of the conjugate a�r , t� and a*�r , t� variables,
then in terms of the ak and ak

*, and finally in terms of the
previously diagonal ck and ck

*.
Recall that the second order homogeneous sample

Hamiltonian U hom
�2� , after transformation to the ck and ck

*, is
diagonal and leads to the spin wave dispersion and normal
modes. The corresponding second order terms in the ck and

ck
* for the transformed W̃�r ,M� will be nondiagonal. The

additional coupling between the ck and ck
* modes in this case

can be viewed as the basis of two magnon scattering.
The algebra is somewhat tedious but straightforward.

Only a brief roadmap is provided here. The first transforma-
tion leads to a second order energy density component, writ-
ten in frequency units, that takes the form
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���
Ms

W̃ �2� = Ã�r�a�r,t�a*�r,t�

+
1

2
�B̃�r�a*�r,t�a*�r,t� + c.c.� , �21�

with coefficients Ã�r�= ����h̃xx�r�+ h̃yy�r�� /2 and B̃�r�
= ����−h̃xx�r�+ h̃yy�r�+2ih̃xy�r�� /2. The h̃xx�r�, h̃yy�r�, and

h̃xy�r� denote the spatially dependent components of the in-

homogeneous stiffness field tensor h̃�r�. Formally, these
components are given as

h̃���r� =��Ms

�2W̃�r,M�

�M�
2 �

M0

−� �W̃�r,M�
�Mz

�
M0

, � = x,y

�22�

and

h̃xy�r� = Ms� �2W̃�r,M�
�Mx�My

�
M0

. �23�

Note that the functional forms for the new spatially depen-

dent Ã�r� and B̃�r� functions in terms of the h̃xx�r�, h̃yy�r�,
and h̃xy�r� parallel the original homogeneous sample Ak and
Bk expressions in terms of the Hxx,k, Hyy,k, and Hxy,k. This
parallel form is not a coincidence. It is related directly to the
quadratic form of the energy in both cases. This parallel
structure also carries over to the equations that connect the

Fourier transform parameters Ãq, B̃q, h̃xx,q, h̃yy,q, and h̃xy,q.
The second transformation makes direct use of these Fourier
transforms and yields a second order Hamiltonian,

Ũ �2� =
���

MsV
�

V

W̃ �2�d3r

=
1

2 �
qkk�

�Ãqak
*�t�ak��t��q−k+k�

+ B̃q
*ak�t�ak��t��−q+k+k�� + c.c. �24�

The Kronecker delta ��� functions express the overall con-
servation of wave vector that includes the pseudomomentum
of the Fourier components of the inhomogeneity terms.

It is useful at this point to contrast these h̃xx,q, h̃yy,q, and

h̃xy,q Fourier transformed inhomogeneous stiffness field ten-
sor components with the previously developed Hxx,k, Hyy,k,
and Hxy,k homogeneous sample stiffness field tensor compo-
nents. The summary of the development for Hxx,k, Hyy,k, and
Hxy,k in the Appendix illustrates how these fields derive from
internal effective fields taken as linear functionals of the vec-
tor magnetization. The k dependences for these Fourier com-
ponent fields therefore reflect the nature of the mutual inter-
actions between the magnetic moments or the interaction

with external field. In contrast, the h̃xx,q, h̃yy,q, and h̃xy,q stiff-
ness fields derive from the inhomogeneous energy density

W̃�r ,M�, and their wave vector dependences reflect prima-
rily the spatial variation in the material inhomogeneities.

Apart from the details, however, these Fourier compo-
nent field terms will be large when �q� is on the order of an
inverse grain size. The sizes of these terms will be on the
order of the anisotropy field parameter 2Ku /Ms. At the same

time, the �±q�k+k� factors in the terms in Ũ �2� will tend to
couple specific k and k� modes that satisfy the condition
�k−k����q�. This coupling is the source of the two magnon
scattering.

In terms of the ck and ck
*, the total second order Hamil-

tonian U �2� takes the form

U �2� = U hom
�2� + Ũ �2�

= �
k

�kck
*�t�ck�t� +

1

2�
kk�

�G̃k,k�ck
*�t�ck��t�

+ F̃k,k�ck
*�t�ck�

* �t� + c.c.� . �25�

The coefficients of the new ck
*ck� and ck

*ck�
* pair terms are

given by

G̃k,k� = Ãk−k��ukuk� + vk
*vk�� + B̃k−k�ukvk�

* + B̃−k+k�
* vkuk�

�26�

and

F̃k,k� = Ãk+k��ukvk� + vkuk�� + B̃k+k�ukuk� + B̃−k−k�
* vkvk�.

�27�

From the properties of the HP transformation, one can show

that these coefficients satisfy the conditions G̃k,k�= G̃k�,k
* and

F̃k,k�= F̃k�,k.

The full G̃k,k� and F̃k,k� expressions given above appear
to be fairly formidable. Section II D below, however, will
show that the relevant parameter for uniform mode two mag-

non relaxation is �G̃0,k�2. Section II E will then consider a

further reduction in the form for �G̃0,k�2 based on general
considerations for the spatial correlation of the Fourier com-

ponents of the stiffness field tensor h̃�r�. Keep in mind that
the uk and vk are defined through the Ak and the Bk coeffi-

cients in U hom
�2� . At the same time, the Ãq and B̃q track back to

the Fourier components of h̃�r�. For all terms, the surviving
q values are specified through the Kronecker delta functions
in the terms of Eq. �24�, with either k or k� set to zero. This

means that all of the related parameters in �G̃0,k�2 will ulti-
mately track back to correlations between the surviving Fou-

rier components of h̃�r�, with multipliers that involve prod-
ucts of the homogeneous stiffness field tensor components
Hxx,k, Hyy,k, and Hxy,k, for k=0 with those for k�0. A prac-

tical and fairly general working expression for �G̃0,k�2 will be
given in Sec. II E. Part of the power of the Hamiltonian

approach is that the needed �G̃0,k�2 for real systems can often
be extracted in a relatively simple form. This will become
clear from the examples considered in Secs. III and IV.

083901-5 Krivosik et al. J. Appl. Phys. 101, 083901 �2007�

Downloaded 23 Apr 2007 to 129.82.140.121. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



Apart from the apparent complexity of the G̃k,k� and

F̃k,k�, it is clear that the previously diagonal equation of mo-
tion for ck�t� is no longer diagonal. This equation of motion
now takes the form

i� d

dt
+ 
k�ck�t� = �kck�t� + �

k�

�G̃k,k�ck��t� + F̃k,k�ck�
* �t�� .

�28�

One can see that the inclusion of inhomogeneities in the
analysis, in combination with a proper Hamiltonian treat-
ment of the extra terms in the energy, leads directly to new
coupling terms in the equation of motion. The main contri-
bution to the two magnon scattering relaxation for a given ck

mode is due to G̃k,k� terms for �k�� values that are within an
inverse grain size of the given �k�. If the k mode of interest is
the uniform mode, for example, the coupling will be to all k�
modes within a sphere of radius �� /
, where 
 is the size of
the grain or other inhomogeneity. As this analysis is applied
to specific situations, the parameter 
 will carry over to a
correlation length for the inhomogeneity of interest.

The above relations constitute a general formulation of
the linearized spin wave equations of motion in the case of
local inhomogeneity scattering. Nonlocal inhomogeneity
scattering will lead to the same form of the Hamiltonian but
with different coupling coefficients. From the development
of the equations of motion, one can also see that the analysis
can be easily extended beyond the small signal limit. One
simply has to take higher order terms in the inhomogeneity
energy Taylor expansion into account, along with the appro-
priate transformations. This relatively simple and conceptu-
ally straightforward inclusion of nonlinearity is a particular
advantage of the Hamiltonian method. However, in the prob-
lems associated with nonlinear magnetization dynamics in
the presence of inhomogeneities, it is usually sufficient to
take the inhomogeneity contribution in the linearized form
along with the higher order terms from the homogeneous
Hamiltonian.31,33,34

It is possible, in principle, to diagonalize the new total
Hamiltonian �25� and find the new normal modes and the
corresponding eigenfrequencies. Such a procedure has been
used in Refs. 17 and 18, for example, for the numerical
analysis of FMR spectra in thin films with simple types of
inhomogeneities characterized by randomly distributed local
fields. It is found, however, that the absorption profile for
weak scattering is reasonably well described by the approxi-
mate solution for the uniform mode relaxation rate that can
be found from the above working equations. Uniform mode
decay is considered below.

D. Uniform mode free decay rate

A series of simplifications allows one to solve the aug-
mented uniform mode �k=0� free decay problem embodied
in the above equations. The first such simplification is to
ignore the secondary scattering between the nonuniform or
k�0 modes. The basic argument here is that the multiple

scattering events among the k�0 will always occur with a
very short characteristic time that can be neglected in the
overall sequence of scattering events.

The set of coupled equations of motion for the single
c0�t� and ensemble of ck�t� amplitudes implicit in Eq. �28�
may then be written in a simple form as

i� d

dt
+ 
0�c0�t� = �0c0�t� + �

k�0
�G̃0,kck�t� + F̃0,kck

*�t��

�29�

and

i� d

dt
+ 
k�ck�t� = �kck�t� + G̃0,k

* c0�t� + F̃0,kc0
*�t�, k � 0.

�30�

It is to be emphasized that the k parameters in the above are
explicitly for k�0 modes. The surviving coupling coeffi-
cients now involve only the k=0 mode and individual un-
coupled k�0 modes.

The second simplification is to seek c0�t� solutions in the
adiabatic approximation. The uniform mode and k�0
modes are taken to have the forms c0�t�= c̄0�t�e−i�0t and
ck�t�= c̄k�t�e−i�kt, respectively, where the c̄0�t� and c̄k�t�
specify slowly time varying envelope functions. The above
equations may then be combined to yield a c̄0�t� equation of
motion of the form

dc̄0�t�
dt

= − 
0c̄0�t� − �
0

t

W̃�s�c̄0�t − s�ds , �31�

with a driving function W̃�s� given by

W̃�s� = �
k�0

e−
ks��G̃0,k�2ei��0−�k�s − �F̃0,k�2ei��0+�k�s� . �32�

Under the slowly varying envelope assumption, one can ne-

glect the retardation implicit in the W̃�s�c̄0�t−s� integral term
by setting c̄0�t−s�� c̄0�t�. The differential equation in Eq.
�31� can then be solved by separation of variables. For times
much longer than the inverse relaxation rate, or for t
�1/
k, however, the upper integration limit may be set to �.
One then obtains a relatively simple equation of motion for
the envelope function c̄0�t� given by

dc̄0�t�
dt

� − �
0 + �̃0�c̄0�t� , �33�

where �̃0 is given as a sum over the available nonzero k
states according to

�̃0 = i �
k�0


 �G̃0,k�2

�0 − �k + i
k
−

�F̃0,k�2

�0 + �k + i
k
� = i�̃0 + 
̃0.

�34�

Keep in mind that the original homogeneous sample har-
monic frequency response at �0 has already been taken out
of the problem through the substitution c0�t�= c̄0�t�e−i�0t. It is
clear, therefore, that the inhomogeneities bring in two ef-
fects. First, the inhomogeneity coupling produces a shift of
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the uniform mode eigenfrequency �0 by an amount that cor-

responds to the imaginary part of �̃0, namely, �̃0. Second, the
two magnon scattering also brings in an additional contribu-

tion to the relaxation rate given by the real part of �̃0,
namely, 
̃0. Both results are tied directly to the coupling

coefficients G̃0,k and F̃0,k. These, in turn, connect back to the

fluctuating field Fourier components h̃xx,q, h̃yy,q, and h̃xy,q.

Notice two further characteristics of the �̃0 source func-
tion for the two magnon decay and frequency shift. First, the

denominators for the G̃0,k terms are resonant. These terms
are large only when ��0−�k� is on the order of or smaller
than the intrinsic spin wave relaxation rate 
k. Loosely
speaking, this means that only those modes within 
k of the
uniform mode frequency �0 will contribute to the scattering.
In quantum terms, this corresponds to energy conservation
for the individual �0→�k mode scattering events, apart
from the caveat of broadened spin wave modes. In contrast

with the G̃0,k term responses, the F̃0,k term denominators are
nonresonant. Under the reasonable assumption that ��0

+�k�� ��0−�k� is true, one can safely neglect the contribu-

tions of the F̃0,k term to either the two magnon frequency
shift �̃0 or the two magnon relaxation rate 
̃0.

In the 
k→0 limit the inhomogeneity contribution to the
relaxation rate is reduced to the form


̃0 � ��
k

�G̃0,k�2� ��0 − �k� . �35�

This Fermi golden rule form closely matches the result one
would obtain directly from the quantum formulation of spin
wave scattering. The usual factor of 2 in front of the sum
from the quantum analysis is absent. This is due to the fact
that relaxation rate 
̃0, as defined, reflects the decay of the
uniform mode amplitude c0 rather than the magnon occupa-
tion number which scales with �c0�2. The delta function in Eq.
�35� conveys the stipulation that the usable k modes must be
degenerate with the uniform mode frequency. This degen-
eracy is one of the key constraints in practical calculations.

E. Randomly distributed inhomogeneities

It was noted in Sec. II C that the sought after �G̃0,k�2
factors will all involve correlations between pairs of the sur-

viving Fourier components of h̃�r� multiplied by products of
the homogeneous stiffness field tensor components for k=0
and those with k�0. The latter are a matter of algebra. The
former require some discussion. These correlations may be
expressed through a working relation,

1

V
�

V

h̃���r�h̃�����r + R�d3r

= �h̃���r�h̃�����r��C�R� ��,�,��,�� = x,y� , �36�

where �¯� denotes a spatial average and C�R� is an appro-
priate correlation function. For practical purposes, the spatial
average may be replaced by a configuration average.

Following Schlömann,21 plausible choices for C�R�
should generally include functions that are nonzero for �R�

values that are on the order of or smaller than 
 and zero for
�R��
, where 
 denotes the size of the inhomogeneity. The
condition C�0�=1 is true, by definition. As a rule, the par-
ticular choice for C�R� does not affect the final results in any

significant way. For applications to �G̃0,k�2, one needs the
Fourier transform of Eq. �36�. This is given as

h̃��,k
* h̃����,k = �h̃���r�h̃�����r��Ck, �37�

where Ck is the Fourier transform of C�R�. Two points
should be noticed here. �1� The upper cutoff wave number in
Ck is of the order of �k��� /
. �2� The limiting value of Ck
in the low wave number limit will be on the order of C0

�V
 /V, where V
 is a mean inhomogeneity volume. Both
properties may be readily obtained from the properties of the
correlation function C�R� and the Fourier transform.

Based on the outline given in Sec. II C and the above
correlation function nomenclature, it is straightforward to

obtain �G̃0,k�2 in terms of the various parameters developed
or defined above. The result is

�G̃0,k�2 =
���4Ck

4�k�0
��h̃ xx

2 �Hyy,kHyy,0 + �h̃ yy
2 �Hxx,kHxx,0

+ 2�h̃xxh̃yy���k�0/���2 + Hxy,kHxy,0�

+ �h̃ xy
2 ��Hxx,kHyy,0 + Hyy,kHxx,0

− 2��k�0/���2 − Hxy,kHxy,0��� . �38�

Note that the Hxx,k, etc., denote the homogeneous sample
stiffness field tensor components, and these occur as prod-

ucts of terms for k=0 and k�0, while the �h̃ xx
2 �, etc., denote

the spatially averaged values of the indicated inhomogeneous
stiffness field tensor component products, as indicated.

The evaluation of the specific spatial averages involves
only knowledge of the specific energy form of interest. By
way of example, Sec. III will present expressions for the
spatially averaged product terms for cubic magnetocrystal-
line anisotropy obtained from previous work,14 along with
general comments on the procedure.

F. Two magnon scattering as a uniform mode
frequency perturbation

Before the consideration of specific calculations based
on the above working equations, it is useful to examine a
relatively simple intuitive result based on spatial linewidth
broadening considerations. From Sec. II B, the uniform
mode frequency for a homogeneous sample may be written
as �0= ����Hxx,0Hyy,0−Hxy,0

2 �1/2. One may now consider the
inhomogeneous sample to be comprised of small grains, each
with a slightly different local uniform mode frequency,
specified as �0�r�. The spatial dependence of �0�r� can be
then obtained from the spatial variation of the uniform mode

stiffness fields H̃xx,0�r�=Hxx,0+ h̃xx�r�, H̃yy,0�r�=Hyy,0

+ h̃yy�r�, and H̃xy,0�r�=Hxy,0+ h̃xy�r�. The overall form of
�0�r� will be the same as given above, but with the homo-
geneous sample stiffness fields replaced by the total stiffness
fields
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�0�r� � ���
H̃xx,0�r�H̃yy,0�r� − H̃xy,0
2 �r� . �39�

To the lowest order in the h̃xx�r�, h̃yy�r�, and h̃xy�r�, the spa-
tial frequency deviation from �0, taken as ��0�r�, is obtained
as

��0�r� =
��0

�Hxx,0
h̃xx�r� +

��0

�Hyy,0
h̃yy�r� +

��0

�Hxy,0
h̃xy�r�

=
���

2�0
�Hxx,0h̃yy�r� + Hyy,0h̃xx�r� − 2Hxy,0h̃xy�r�� .

�40�

One can see, therefore, that the spatial variations in the in-
homogeneous sample stiffness fields yield a corresponding
spatial inhomogeneous broadening in the FMR frequency.
One can then take the Fourier transform of ��0�r�, denoted
as ��0,k, as a coupling coefficient between k=0 and k�0
magnetization modes. Indeed, in the limit of low k scatter-
ing, that is, for scattering to modes with k�0, one can show

that �G̃k,0�2 is reduced to a simple physical form, namely,

�G̃0,k�2 � ���0,k�2 = ���0
2�r��Ck. �41�

For weak, long wavelength inhomogeneities, therefore, the
two magnon scattering process amounts to a frequency
broadening effect ameliorated by the correlation function of
the fluctuations that are the source of the scattering in the
first place.

In the limit of zero intrinsic damping, one can make use
of Eq. �35�, apply the frequency line broadening connection,
and obtain


̃0 � ����0
2�r���

k
Ck���0 − �k� � ����0

2�r��C0g��0� ,

�42�

where g��0�=�k���0−�k� is the total density of states for
the low k spin wave modes that are degenerate with the
uniform mode. For a well characterized sample, all of the
quantities in Eq. �42� are known. One has, therefore, a rea-
sonable expression for the two magnon relaxation rate based
on relatively simple physical considerations on the resonance
frequency broadening.

III. ANISOTROPY SCATTERING IN A
POLYCRYSTALLINE FERRITE SPHERE

This section summarizes a representative calculation of
the two magnon scattering relaxation rate for a bulk �three-
dimensional �3D�� insulating material. As a specific example,
a dense polycrystalline ferrite sphere magnetized to satura-
tion by a uniform static field H is considered. It is assumed
that grain orientations are randomly distributed and that each
grain is comprised of a single crystal with cubic magneto-
crystalline anisotropy. This is the classic two magnon scat-
tering problem first treated by Schlömann.21 As in Ref. 21,
intrinsic damping will be neglected. The starting point for the
analysis is Eq. �35�.

The needed parameters for the isotropic sphere sample
are �1� the homogeneous sample stiffness fields, Hxx,k, Hyy,k,

and Hxy,k, both for a general k value and for k=0, �2� the
corresponding spatial averages for the inhomogeneous

sample stiffness fields given by �h̃ xx
2 �, �h̃ yy

2 �, �h̃ xy
2 �, and

�h̃xxh̃yy�, and �3� the correlation function Fourier transform,
Ck. For computational purposes, one also needs to convert
from the k sum over degenerate spin wave modes to an
integral, according to �k→V / �2��3���k2 sin �kdkd�kd�k.
This conversion is justified for typical macroscopic sample
sizes.

The homogeneous sample stiffness field algebra is based
on the method outlined in the Appendix. The internal effec-
tive field is comprised of the static field, uniform demagne-
tizing fields, exchange fields, and dipole-dipole fields with
surface effects neglected. The components of the spin wave
stiffness fields are obtained as

Hxx,k = Hi + Dk2 + 4�Ms sin2 �k cos2 �k, �43�

Hyy,k = Hi + Dk2 + 4�Ms sin2 �k sin2 �k, �44�

and

Hxy,k = 4�Ms sin2 �k sin �k cos �k. �45�

In the above, Hi=H−4�Ms /3 is the internal static field and
D is an exchange constant. The �k and �k denote the standard
azimuthal and polar spin wave propagation angles, respec-
tively, that define the direction of the wave vector k relative
to the direction of the static field. The above fields combine
to give a bulk sample spin wave frequency �k written in the
standard form as

�k = 
�Hi + Dk2��Hi + Dk2 + 4�Ms sin2 �k� . �46�

Note that the bulk sample �k�k� function contains no azi-
muthal angle dependence. The homogeneous sample stiff-
ness fields for k=0 are given by

Hxx,0 = Hyy,0 = H = �0/��� �47�

and

Hxy,0 = 0. �48�

Note that the FMR frequency �0 for a spherical sample is
just equal to ���H.

The spatial averages for the inhomogeneous sample stiff-

ness fields �h̃ xx
2 �, �h̃ yy

2 �, �h̃ xy
2 �, and �h̃ xxh̃ yy� involve an

analysis based on the cubic magnetocrystalline energy den-
sity as developed in general terms in Sec. II C. To the lowest
order, cubic symmetry leads to an anisotropy energy density

of the form W̃=K1��X
2�Y

2 +�Y
2�Z

2 +�Z
2�X

2�, where K1 is the
usual first order magnetocrystalline anisotropy energy den-
sity parameter and the �X,Y,Z denote the direction cosines
between the magnetization vector M�r� and the local cubic
X, Y, and Z axes in the random crystalline grains. It is useful
to define a cubic anisotropy field parameter Ha=2K1 /Ms.

The extraction of the spatial average quantities �h̃ xx
2 �, �h̃ yy

2 �,
�h̃ xy

2 �, and �h̃xxh̃yy� is a matter of �1� a careful analysis of

energy derivatives for W̃ specified in Sec. II C and �2� proper
spatial averaging. McMichael and Krivosik gave the details
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of such an analysis for a variety of inhomogeneities in Ref.
14. The needed spatial averages for cubic anisotropy are ob-
tained as

�h̃ xx
2 � = �h̃ yy

2 � =
29

105
Ha

2, �49�

�h̃ xy
2 � =

9

105
Ha

2, �50�

and

�h̃xxh̃yy� =
11

105
Ha

2. �51�

Note that all terms involve the square of the anisotropy field
multiplied by some numerical factor. Other types of aniso-
tropy generally lead to the same form, but with different
numerical factors.

Finally, turn to the correlations. A relatively standard
choice for the correlation function C�R� is21

C�R� = e−�R�/
, �52�

where 
 is now a characteristic correlation length that may be
associated with the grain size in the polycrystalline sample,
for example. The Fourier transform of Eq. �52� yields48

Ck � Ck =
2�2

V

f�k�
k2 , �53�

with

f�k� =
4

�


3k2

�1 + �k
�2�2 . �54�

The f�k� nomenclature follows the notation of Ref. 21. Note
that f�k� is a steeply peaked function with its maximum at
k=1/
. In wave number space, f�k� will select out only those
Fourier components around this peak position for a strong
contribution to the scattering.

The stage is now set for the evaluation of the two mag-
non relaxation rate from Eq. �35�. With the sum over k re-
placed by a volume integral over k space as given above, use
of the prescribed homogeneous stiffness fields and the spa-
tially averaged inhomogeneous stiffness field products just
listed, the final result is obtained as


̃0 =
����2Ha

2

105
�

0

�

dk�
0

1

d cos �kf�k�

��1 + 19
���
�0

�Hi + Dk2 + 2�Ms sin2 �k�	
����0 − �k� . �55�

Keep in mind that even though this is a 3D problem, the

�G̃0,k� is independent of the azimuthal spin wave propagation
angle �k. The result in Eq. �55� matches the original result
given by Eq. �47b� in Ref. 21. This result has formed much
of the basis of the linewidth analysis for dense bulk poly-
crystalline ferrites from the 1960s. The value of the present
rendering of this result is in the step by step and relatively

transparent development directly from Hamiltonian prin-
ciples.

IV. TWO MAGNON SCATTERING LINEWIDTH IN THIN
FILMS

Ferromagnetic resonance in a variety of forms is widely
used to determine the uniform mode relaxation or damping
rate through linewidth measurements for thin magnetic films
in general and metallic films, in particular. It has been well
known since the late 1960s, moreover, that two magnon scat-
tering can make significant contributions to these linewidths,
as in Ref. 6, for example. In spite of this, the predominant
popular approach for most workers has been simply to ana-
lyze all data on the basis of a single phenomenological
damping parameter based Landau-Lifshitz or Gilbert damp-
ing model. While there have been notable exceptions to this
phenomenological approach for data analysis, mainly
through the working equations from the Arias and Mills
theory,10 as provided in Refs. 8, 27, and 49, for example,
there has really been no cogent application of the two mag-
non theory to a wide range of thin film FMR linewidth data.
The purpose of this section is to provide such an application
based on the equations developed above and the long stand-
ing linewidth data from Ref. 6 for a range of Permalloy film
thicknesses and FMR frequencies. These data were obtained
for in-plane static fields.

The data from Ref. 6 are analyzed in terms of a simple
model that includes three contributions to the relaxation rate:
intrinsic magnon-electron scattering, eddy current Ohmic
losses, and two magnon scattering. The magnon-electron
scattering contribution was analyzed in terms of Gilbert
damping.50,51

Within the framework of the Gilbert model, the intrinsic
contribution to the uniform mode relaxation rate can be writ-
ten as


0,m−e = �G�0PA, �56�

where �G is the Gilbert damping parameter. The �G param-
eter can, in principle, be obtained in terms of the band struc-
ture, as discussed in Ref. 50 and elsewhere. For the present
purposes, �G will be used simply as an adjustable parameter.
The PA factor is related to the uniform mode ellipticity and
can be expressed as50

PA =
���

2�0
�Hxx,0 + Hyy,0� =� ��0

����H
�

FMR

, �57�

where H, as in the last section, is the external static field and
the derivative is evaluated at the resonance point. Note that
the second equality in Eq. �57� is valid only if the change in
static field H does not affect the magnetization static equilib-
rium. In such a case the PA factor serves also as a conversion
factor between the relaxation rate and the field linewidth.52,53

If the x and y directions are taken to be perpendicular and
parallel to the film plane, respectively, one has Hxx,0�H
+4�Ms and Hyy,0�H. The off-diagonal Hxy,0 stiffness field
component for this geometry is zero. The films in Ref. 6 had
the usual in-plane uniaxial anisotropy that is typical of field
deposited Permalloy films. This has not been included in the
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analysis here. Trial calculations that include the anisotropy
show no appreciable effect.

Eddy current losses can be particularly pronounced for
thicker films and higher frequencies. For a negligible ex-
change interaction and small dissipation, the eddy current
relaxation rate can be written in the same form as Gilbert
damping given by Eq. �56� with �G replaced by54,55

�ec =
�

3c2

���4�Ms

�
d2. �58�

Here, � is the electrical resistivity, d is the film thickness, and
c is the speed of light.

The final and critical contribution to the relaxation rate
and the FMR linewidth for this discussion is the two magnon
contribution due to inhomogeneities, based on the formalism
in Sec. II. For in-plane magnetized high magnetization thin
films and relatively low frequency ferromagnetic resonance,
the degenerate nonuniform modes have relatively low k val-
ues. In this case, the approximations discussed in Sec. II F
are applicable.27

If one further assumes that the inhomogeneous stiffness
fields do not differ significantly from each other, one can

write �h̃ xx
2 ���h̃ yy

2 ���h̃ 2�. In this case Eq. �42� is simplified
to


̃0 � ����2�h̃2�C0PA
2g��0� . �59�

For a very thin film, moreover, the dynamic magnetization
does not vary significantly across the film thickness. In this
uniform magnetization mode approximation, the calculation
of the density of states function g��0� may be reduced to a
two dimensional k-space formulation for in-plane propagat-
ing modes and may be rewritten as

g��0� = �
k

� ��0 − �k� �
A

�2��2 � � ��0 − �k�dk , �60�

where A is the film area. The integration in Eq. �60� may be
evaluated analytically for the ultrathin film limit.14,16 In such
a case the result does not depend on the film thickness. Here,
however, numerical integration has been used, with the full
spin wave dispersion �k taken in the uniform magnetization

mode approximation.14,42 This dispersion can be expressed
through �k= ���
Hxx,kHyy,k, with the homogeneous spin
wave stiffness fields given as

Hxx,k = H + Dk2 + 4�MsNk�kd� �61�

and

Hyy,k = H + Dk2 + 4�Ms sin2 �k�1 − Nk�kd�� . �62�

Here, �k is now the angle between the in-plane spin wave k
vector and the direction of the external static field H. The
ultrathin film dipole field function Nk is given by Nk= �1
−e−kd� /kd. Finally, a two dimensional Fourier transform of
the correlation function given by Eq. �52� in the k=0 limit
yields C0�2A
 /A, where A
 is a mean inhomogeneity area.

Based on the above working equations, the total relax-
ation rate may be written as


0 = ��G + �ec��0PA + KPA
2 � � ��0 − �k�dk , �63�

where K�0.16���2�h̃2�A
. Note that the specific numerical
factor in the parameter K will depend on the choice of cor-
relation function. Other than this, the form above for the total
relaxation rate can be taken as fairly general, subject to the
limits already noted.

The field swept FMR linewidth �H is then given as

�H��0,d� =
2
0

���
1

PA
=

2

���
��G + �ec�d���0

+
2K

���
PA��0� � � ��0 − �k�d��dk . �64�

Equation �64� has been written in such a form as to keep all
dependences on the FMR frequency �0 and film thickness d
explicit.

Figures 1 and 2 summarize the field linewidth data from
the published graphs in Ref. 6 for a series of Permalloy films,
along with corresponding fit results based on the above
working equations. Graph �a� in Fig. 1 shows the half power
field swept linewidth �H as a function of film thickness d for
the indicated frequencies. The various symbols show the data
and the solid curves show the fits. Graph �b� shows the data
and fit for 7 GHz only, along with a breakdown of the com-
ponent eddy current �ec�, magnon-electron �m-e�, and two
magnon �m-m� contributions to the linewidth, as indicated.
Figure 2 shows the corresponding results for three of the
films in a linewidth versus frequency �f� format.

The fitting was done in a general way, with common
material and structure parameters used for all the films. The
focus was on the realization of a reasonable overall fit that
adequately demonstrates the overall trend of the data rather
than a point-by-point matchup. The curves shown were ob-

FIG. 1. Field swept linewidth �H as a function of film thickness d for a
series of Ni77Fe23 thin films. Graph �a� shows data from Ref. 6 at specified
frequencies indicated by the various symbols. The solid lines represent fits
of Eq. �64� to the data with fitting parameters as given in the text. Graph �b�
shows data and fit results at 7 GHz, along with a breakdown of the compo-
nent eddy current �ec�, magnon-electron �m-e�, and two magnon �m-m�
contributions to the linewidth, as indicated.
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tained for 4�Ms=10 kG, ��� /2�=2.9 MHz/Oe, �G=0.0057,
�=3415 s �38 	� cm in Systeme International �SI� units�,
and �h̃2�A
=9�10−9 Oe2 cm2. The � value needed to fit the
data is somewhat higher than the typical literature values

15–25 	� cm for Permalloy.56 The �h̃2�A
 appear reason-
able. For an average characteristic inhomogeneity length, 

�50 nm, that corresponds to nominal Permalloy film grain
sizes for the deposition conditions in Ref. 6, one obtains a

reasonable inhomogeneity field �h̃� value of about 10 Oe.
One can see that the fits generally replicate the trends of

the data in both graphs. Keep in mind that the combination
of eddy current damping and magnon-electron damping
alone would give only a linewidth that scales linearly with
frequency and quadratically with film thickness. Both the
data and the fits provide convincing evidence for an addi-
tional two magnon component with more complicated d and
f dependences. These dependences come from the variation
in the density of states for the two magnon scattering. The
breakdowns in Figs. 1�b� and 2�b� show these effects. Note,
in particular, the small but distinct m-m components in the
�b� graphs in both figures. The scatter in the data in Fig. 1 is
too large to see the two magnon effect on the response as
clearly as one might like, but the overall trend, especially in
graph �a�, provides reasonably convincing evidence of such a
response. The two magnon knee can be discerned somewhat
more clearly in Fig. 2.

Considered overall, the data, the fits, and the break-
downs demonstrate fairly clearly the role of the two magnon
scattering contribution to the Permalloy film in the linewidth.
In spite of the fairly basic simplified model used here, mainly
for the sake of simplicity of analysis, the quantitative as well
as qualitative match of the theory to the entire ensemble of
data for a single set of fitting parameters is remarkable.

V. SUMMARY AND CONCLUSIONS

In summary, this work presents a compact but complete
synopsis of two magnon scattering theory done within the
framework of the Hamiltonian formalism. It provides general
expressions for the inhomogeneity coupling coefficients in
the case of localized inhomogeneities. The key ideas may be
extended to nonlocal scattering without any modification in
the formalism. At the present stage, the theory is applicable
to problems where the nonuniform magnetization excitations
can be described as plane wave modes. In principle, other
types of normal mode expansions could be used in place of
the plane waves, but such modifications will, by necessity,
significantly expand the amount of algebra. For practical pur-
poses, the plane wave approach as presented appears to be
adequate for most material systems of technological interest.

By way of example, two specific applications of the
theory are presented. The first involves a representative cal-
culation of the two magnon scattering relaxation rate for an-
isotropy scattering in bulk polycrystalline spheres. It is
shown that the result obtained from the Hamiltonian ap-
proach matches exactly the classic solution from Ref. 21. In
the second example, previously published FMR linewidth
data versus film thickness and frequency for thin NiFe films
have been analyzed on the basis of the working TMS equa-
tions developed here from the Hamiltonian formalism. It is
shown that the theory provides results that are in reasonable
agreement with the data.
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APPENDIX

This appendix provides a roadmap for the evaluation of
homogeneous stiffness field tensor introduced in Sec. II B.
The analysis starts from the magnetic energy H written in
the form

H = − �
V

M�r,t� · Hext�r,t�d3r

−
1

2
�

V

M�r,t� · HM�r,t�d3r . �A1�

Here, the first term represents the Zeeman energy that de-
rives from the interaction of the magnetization with an exter-
nal magnetic field Hext�r , t�. The second term represents the
interaction energy of the magnetization with the separate and
distinct internal magnetic self-field HM�r , t�. This field is
assumed to be a linear functional of the magnetization
M�r , t�. Examples of such internal fields include the Max-
wellian dipole field, the non-Maxwellian macroscopic ex-
change field, and the non-Maxwellian effective field associ-
ated with a uniaxial anisotropy. Other self-fields that are
given by higher order functionals of the magnetization, such

FIG. 2. Field swept linewidth �H as a function of frequency f for a series of
Ni77Fe23 thin films. Graph �a� shows data from Ref. 6 at specified thick-
nesses indicated by the various symbols. The solid lines represent fits of Eq.
�64� to the data with fitting parameters as given in the text. Graph �b� shows
data and fit results for the 320 nm thick film along with a breakdown of the
component eddy current �ec�, magnon-electron �m-e�, and two magnon
�m-m� contributions to the linewidth, as indicated.
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as an effective field due to cubic anisotropy, for example,
may be incorporated into a linearized form through an ap-
propriate Taylor expansion. It is important to keep in mind
that the magnetization response in the small signal limit is
fully described by a Hamiltonian that contains powers of the
magnetization up to the second order alone.

For simplicity, take Hext�r , t�=Hẑ as a spatially homoge-
neous static field. Within the plane wave approximation, the
spatial dependences of M�r , t� and HM�r , t� in Eq. �A1� can
be expanded in the Fourier series according to

M�r,t� = �
k

Mk�t�eik·r �A2�

and

HM�r,t� = �
k

HM,k�t�eik·r. �A3�

From the linearity of the Fourier transform, it follows that
the Fourier components HM,k will depend linearly on Mk.
For a spatially homogeneous sample one can write this de-
pendence as

HM,k�t� = − 4�N̂k · Mk�t� , �A4�

where N̂k is a 3�3 spin wave tensor. The factor −4� is
chosen to give a form for HM,k that resembles expressions
for the demagnetization fields of a homogeneously magne-

tized ellipsoid. The components of the N̂k tensor, namely,
Nij,k �i , j=x ,y ,z�, depend on the specific type of the internal
magnetic field. If the form of the energy is known, these
components can be readily evaluated. For example, for ex-
change, one has a simple functional for the corresponding
effective exchange field, Hexch�r , t���2M�r , t�. This corre-

sponds, in turn, to a spin wave tensor N̂k
exch�k2I, where I is

a unitary matrix. Insertion of Eqs. �A2�–�A4� into Eq. �A1�
yields a homogeneous sample magnetic energy of the form

Hhom = − VHMz,0 + V
4�

2 �
k

Mk
*T · �N̂k · Mk� . �A5�

Since the energy in Eq. �A5� is real, one can show that
Nij,k=Nji,k=Nij,k

* is satisfied.
The Mz component of the magnetization can be elimi-

nated from Eq. �A5� with the use of a small signal limit
approximation, Mz�Ms− �Mx

2+My
2� /2Ms. The quadratic part

of the energy in Eq. �A5� then includes terms that are qua-
dratic in Mx,k and My,k. This quadratic part of the energy can
be written as

Hhom
�2� =

V

2Ms
�
k

�Mx,k
* My,k

* � · �Hxx,k Hxy,k

Hxy,k Hyy,k
� · �Mx,k

My,k
� ,

�A6�

where the components of the homogeneous stiffness field
tensor are given as

Hjj,k = Hi + 4�MsNjj,k�j j = xx,yy� �A7�

and

Hxy,k = 4�MsNxy,k, �A8�

where Hi=H−4�MsNzz,0 is the internal static field. As a final
step, the expression in Eq. �A6� can be transformed into the
form in Eq. �12� by means of the connections in Eq. �5�
taken in the small signal limit according to iMx,k+My,k

�
2Msak.
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