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Hamiltonian guiding center equations in a toroidal system
S. S. Abdullaev and K. H. Finken
Institut für Plasmaphysik, Forschungszentrum Ju¨lich GmbH, EURATOM Association,
Trilateral Euregio Cluster, D-52425 Ju¨lich, Germany
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A Hamiltonian method to study the guiding center motion of charged particles in a toroidal magnetic
system has been developed. It uses a cylindrical coordinate system instead of a magnetic coordinate
system on which many conventional standard methods are based. The six-dimensional~6D!
Hamiltonian equations for the guiding center motion are derived by a canonical transformation of
fast-oscillating variables to slowly varying ones which are guiding center coordinates. It is shown
that one of these slowly varying variables, i.e., the action variable conjugated to the fast-oscillating
gyrophase is an adiabatic invariant for the tokamak equilibrium magnetic field perturbed by the
external time-dependent magnetic field. This allows to reduce the 6D Hamiltonian system to the 4D
one. The method is valid for the study of the guiding center motion of particles in time-dependent
magnetic and electric fields, especially, ergodic magnetic fields, where spatial and temporal scales
of variation are much larger than the gyroradius and the gyroperiod. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1502672#
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I. INTRODUCTION

Since the early 1960s the Hamiltonian approach
studying the charged particle motion in magnetic fields
been subject to many studies1–7 because of its significance i
magnetic fusion research. The equations of guiding ce
motion in Hamiltonian form has several advantages in
study of particle motion in magnetic confinement devices
allows one to use the methods of the Hamiltonian theory,
methods of canonical transformations, the Hamilton–Jac
method, Liouville’s invariants, perturbation theory and t
symplectic maps to efficiently solve the problem. Seve
Hamiltonian formulations of the guiding center motion ha
been proposed since the early 1980s~see Refs. 8–14!. Some
of these methods developed in Refs. 8–12 use magn
coordinates15 as canonical variables and therefore would
quire the existence of magnetic surfaces. The case destr
magnetic surfaces are treated either by assuming a sp
form for the magnetic field that gives rise to chaotic fie
lines, or using perturbation methods~see, e.g., Refs. 11 an
12!. According to the more general approach proposed
Ref. 13, later generalized in Ref. 14 to time-dependent fie
one should find a coordinate system in which one of
covariant components of the magnetic vectorB and the vec-
tor potentialA vanish, e.g.,Ar5Br50. These limitations on
the form of the magnetic field may not be satisfied in so
interesting cases of particle motion in tokamaks in the pr
ence of the external magnetic perturbations. As an exam
one can mention the tokamak with an ergodic divertor
signed to control the heat and particle transport at the pla
edge by an externally created magnetic field~Refs. 16 and
17!. All components of such a magnetic field with chao
field lines are nonzero,18 and it is difficult to find a coordi-
nate system in which one of the components of the fi
would vanish.

On the other hand, all these approaches are based o
4191070-664X/2002/9(10)/4193/12/$19.00
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existence of an adiabatic invariant, a magnetic momenm
5mv'

2 /2B, whereB5uBu andv' is the velocity componen
perpendicular to the magnetic field. However, for som
cases, for instance, in spherical tokamaks with a weak
strongly spatially varying magnetic field or in the presence
an electric field with strong gradients, the magnetic mom
m may break down~see Refs. 19 and 20!. Under such cir-
cumstances the above methods may not work well. Mo
over, as was shown in Refs. 21 and 22 even when the m
netic momentm is a good adiabatic invariant in gener
magnetic configurations it is not a single-valued function
position r . This makes it difficult to use the magnetic mo
ment as an invariant in the solutions of the gyrokinetic eq
tions.

In this work we propose a new Hamiltonian method
study the particle motion in a strong tokamak magnetic fi
using a cylindrical coordinate system. In its present form i
assumed that the toroidal fieldBw decays inversely propor
tional to the radial coordinateR, Bw}R21. This allows one
to derive simple Hamiltonian equations for the guiding ce
ter motion of particles. The idea is similar to the one pr
posed by Mynick in Refs. 3 and 4 two decades ago for
mirror and field-reversed configurations in which the parti
gyroradius is comparable to the system size. We formu
the canonical Hamiltonian equations in a cylindrical coor
nate system (R,F,Z) to describe the particle motion in
tokamak magnetic field which may include the internal
external time-dependent magnetic and electric field pertu
tions as well. One can expect that this approach may
useful when the adiabatic invariance is broken, or the gy
radius is comparable to the characteristic spatial scale
variation of magnetic and electric fields.

The idea is that the Hamiltonian of the three-dimensio
~3D! gyrating motion of a particle in strong magnetic an
electric fields may be presented as a Hamiltonian for
motion along the radial coordinateR in the effective poten-
3 © 2002 American Institute of Physics
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tial well U5U(R;Z,Pz ,F,Pw ,t), which is a steep function
of R and slowly varying along the other coordinates (Z,F)
and time t, also the momentum (Pz ,Pw), i.e., H5PR

2/2
1U. For a strong magnetic field, the motion along the rad
coordinate is highly oscillatory near the minimum ofU(R)
with the amplituderR and the frequencyvR being of the
order of the gyroradiusr c5ev'B/mc and the gyrofrequency
vc5eB/mc, respectively. Introducing action-angle variabl
(I R ,qR) to describe such a motion by means of the canon
transformations of variables (R,Z,F,PR ,Pz ,Pw)
→(qR ,Z̄,F̄,I R ,P̄z ,P̄w) given by the generating functio
S(R,Z,F,I R ,P̄z ,P̄w) of mixed variables, allows one to de
rive the Hamiltonian equations for the guiding center va
ables (qR ,Z̄,F̄,I R ,P̄z ,P̄w). A further canonical change o
variables allows us to eliminate the radial gyrophaseqR ,
and thus to obtain a 4D system of Hamiltonian equations

In Sec. II we derive the 6D and 4D Hamiltonian guidin
center equations using the procedure described above.
plified forms of these equations are obtained in Sec. III. T
guiding center equations are verified in Sec. IV by comp
ing them with the results of a direct numerical integration
the original Hamiltonian system. The discussion of the
sults obtained are presented in Sec. V.

II. HAMILTONIAN GUIDING CENTER EQUATIONS IN
CYLINDRICAL COORDINATE SYSTEM

In this section we derive the Hamiltonian for the guidin
center motion in a toroidal system with coordinat
(R̂,w,Ẑ). The particle motion is determined in the si
dimensional phase space~q,p! by the Hamiltonian equations

dqi

dT
5

]H

]pi
,

dpi

dT
52

]H

]qi
, i 51,2,3, ~1!

where (q1 ,q2 ,q3)5(R̂,w,Ẑ), (p1 ,p2 ,p3)5( P̂R ,P̂w ,P̂Z).
The Hamiltonian of the system~1! is

H~R̂,w,Ẑ,P̂R ,P̂w ,P̂Z , t̂ !

5
1

2mF S P̂R2
e

c
ARD 2

1
1

R̂2
S P̂w2

e

c
R̂AwD 2

1S P̂Z2
e

c
AZD 2G1eF, ~2!

whereA5A(R̂,w,Ẑ, t̂ )5(AR ,Aw ,AZ) is the magnetic vecto
potential, andF5F(R̂,w,Ẑ, t̂ ) is the electric field.

For the sake of simplicity one can always set the rad
component of the vector potentialAR to be zero, i.e.,AR

50, because of a gauge invariant of the vector potential.
suppose that thez component of the vector potentialAZ

which determines the toroidal fieldBw52]AZ /]R̂ be in
form AZ52B0R0 ln R̂, i.e., Bw5B0R0 /R̂, where B0 is a
strength of magnetic field at the major radius of torusR̂
5R0 . We also assume that the equilibrium poloidal ma
netic field of the plasma (BR ,BZ) and the perturbed mag
netic field created by the external coils may completely
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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described by the toroidal component of the vector poten
Aw(R̂,w,Ẑ, t̂ ):BZ5R̂21](R̂Aw)/]R̂, BR52]Aw /]Ẑ.

In a realistic magnetic equilibrium the toroidal fieldBw

may deviate fromBw5B0R0 /R̂ due to, for instance, a dia
magnetic current in the plasma. The method presented be
may be generalized to include this case as well.

Furthermore, we will use the the normalized coordina
x5(R̂2R0)/R0 ,z5Ẑ/R0 , the normalized timet5vct̂ , and
the normalized momenta:

px5
P̂x

mvcR0
, pw5

P̂w

mvcR0
2 , pz5

P̂Z2eA0z /c

mvcR0
,

where vc5eB0 /mc is a reference gyrofrequency,A0z

5AZ(R0)5 ln R0. The corresponding Hamiltonian functio
has the form

H~x,w,z,px ,pw ,pz ,t !

5
1

2 Fpx
21

~pw2 f !2

~11x!2 1~pz1 ln~11x!!2G1f~x,w,z,t !,

~3!

where H5H/(mvc
2R0

2) is the normalized Hamiltonian
f(x,w,z,t)5eF(R̂,w,Ẑ, t̂ )/(mvc

2R0
2) is a normalized elec-

tric potential andf [ f (x,z,w,t)5RAw(R̂,w,Ẑ, t̂ )/(R0
2B0) is

a normalizedw component of the vector potentialAw . We
assume that the toroidal magnetic fieldBw is larger than the
poloidal magnetic field (BR ,BZ) and the magnetic perturba
tion field Bpert.

The Hamiltonian ~3! may be given asH5px
2/21U,

where

U~x;w,z,pw ,pz ,t !

5
1

2 F ~pw2 f !2

~11x!2 1~pz1 ln~11x!!2G1f~x,w,z,t !, ~4!

is the effective potential for the one-dimensional moti
along the radial coordinatex. Since the poloidal magnetic
field determined byf is smaller than the toroidal fieldBt ,
and the electric fieldf is much smaller than the vector po
tentialAz , the radial dependence of the potential functionU
mainly depends on the second term on the right hand-sid
~4!, i.e., onUz(x)5(pz1 ln(11x))2. The effective potential
U has a minimum nearx5xc whereUz(xc)50 and sharply
grows with increasing distanceux2xcu. The shape of the
potentialU along thex coordinate is shown in Fig. 1 for the
values of particle energy (H1) and for the typical parameter
of the Torus Experiment for the Technology-Oriented R
search~TEXTOR!:17 B052.25 T, R05175 cm,a546 cm.

Particles trapped inside the potential well oscillate alo
the radial axis about their minimumxc . The amplitude of
oscillations depends on the particle energy. For an amplit
of oscillations much smaller than the characteristic spa
scale of variation of the magnetic field the potentialU may
be expanded in a series of powers (x2xc) near its minimum
at xc ,

U5U01
U09

2
~x2xc!

21 (
k>3

ak~x2xc!
k, ~5!
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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whereU05U0(z,pz ,w,pw ,t)[U(xc ;z,w,pz ,pw ,t), andak

5U0
(k)/k! are expansion coefficients. The minimum poi

xc , i.e., ]U/]x50, is determined by the equation

]U

]x U
x5xc

52F ~pw2 f !2

~11x!3 1
~pw2 f !

~11x!2

] f

]x
2

pz1 ln~11x!

11x

1
]f

]x GU
x5xc

50. ~6!

Then the Hamiltonian takes the form

H~x,z,w,px ,pzpw ,t !

5
1

2
@px

21vx
2~x2xc!

2#1 (
k>3

ak~x2xc!
k

1U0~z,pz ,w,pw ,t !. ~7!

The quantityvx5AU09 is the frequency of radial oscillation

vx5S ]2U

]x2 D 1/2U
x5xc

5
1

11xc
F12uz13uw

214uw

] f

]x
1S ] f

]xD 2

2~11xc!uw

]2f

]x2 1~11xc!
2
]2f

]x2 G1/2

, ~8!

where uf5vf /vcR05(pw2 f 0)/(11xc), uz5vz /vcR0

5pz1 ln(11xc) are normalized velocities. For moderate
energetic particles the frequencyvx is of order of 1, i.e., the
frequency of the radial oscillationsvR5vxvc is in the same
order as the gyrofrequencyvc .

The Hamiltonian~7! describes the fast oscillating motio
along thex coordinate around the centerxc with the fre-

FIG. 1. Radial dependencies of the effective potentialUeff(x)
5U(x;z,f,pz ,pw ,t) for different values of ion (H1) energyE. The tokamak
magnetic field is described by the standard equilibrium magnetic field~see
Sec. IV!. Curve 1 corresponds to the energyE550 eV, 22E51 keV, 3
2E510 keV, 42E5100 keV, and 52E51 MeV. The corresponding
horizontal arrows show the radial extend of particle oscillations. H
Eion

(ref)5mvc
2R0

2 is a reference ion (H1) energy,r 5R0x, R05175 cm.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
quencyvx . Both, the centerxc and the frequencyvx are
slowly varying functions of spacial coordinates (z,w), time
t, and the canonical momentapz ,pw , i.e., xc

5xc(z,w,pz ,pw ,t) and vx5vx(z,w,pz ,pw ,t). The equa-
tion for the guiding centerxc may be rewritten

uw
21uw

] f

]x
2uz2~11x!

]f

]x
50. ~9!

In the original variables this equation describes the b
ance of the centripetal forceFc5mvf

2 /R and the radial com-
ponent of the Lorentz forceFLR5eE1(e/c)(vfBZ

2vZBf):

mvf
2

R
5eER1

e

c
~vwBZ2vZBw!,

whereER52]F/]R.
Transformation to slowly varying variables. The direct

integration of the system of Hamiltonian equations~1! re-
quires very long computational times because the integra
time steps should be small as compared to the gyro-per
In order to simplify the problem one can change the f
oscillating variables in Eq.~1! to slowly varying ones. The
integration of the equations with respect to the latter va
ables would not be time consuming.

The Hamiltonian system~7! is similar to a one-
dimensional oscillator with a slowly varying frequency
oscillationsvx and the equilibrium pointxc in space and
time. For small amplitude of the radial oscillations, whe
one can neglect the expansion terms higher thank.2, the
problem is similar to the well-known problem of the ha
monic oscillator under slow changes in the frequency, wh
has been studied by many authors for a long time~see, e.g.,
Refs. 23–25!. If the gyration period 2p/vx is much smaller
than the time scaletB of a change ofvx and xc and the
transition time of the systemL/vT , whereL is spatial scale
of change of the magnetic field, andvT is a thermal velocity
of a particle, then the action variableI x defined asI x

5@px
2/vx1vx(x2xc)

2#/2 is the adiabatic invariant. The ex
istence of the adiabatic invariant significantly simplifies t
study of particle motion in an inhomogeneous magnetic fie

More rigorously, the adiabatic invariantI x can be intro-
duced by the canonical transformation of variables from
variables (x,z,w,px ,pz ,pw) to the new ones
(qx ,Z,F,I x ,Pz ,Pw) determined by the generating functio
F5F(x,z,w,I x ,Pz ,Pw ,t) of mixed variables, old coordi-
natesqi5(x,z,w) and new momentaPi5(I x ,Pz ,Pw), (i
51,2,3). Then the old momentapi5(x,z,w) and the new
coordinatesQi5(qx ,Z,F) are determined bypi5]F/]qi ,
Qi5]F/]Pi . We will seek the generating functionF in the
form

F~x,I x ,z,Pz ,w,Pw ,t !5zPz1wPw

1S~x,I x ,ez,ePz ,ew,ePw ,t !, ~10!

whereS is the part of the generating function which is slow
varying with respect to the variables (z,w,Pz ,Pw) as well as
to the timet,

e
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eS~x,I x ,z,Pz ,w,Pw ,t !

5Ex

px~x8;I x ,z,Pz ,w,Pw ,t !dx8, ~11!

where

px(x;I x ,z,Pz ,w,Pw)5F2~H2U0!2v0
2~x2xc!

2

2 (
k>3

ak~x2xc!
kG1/2

.

Here e is a small dimensionless parameter of the order
rx /L whererx is the amplitude of radial oscillations andL is
a characteristic spatial scale of the magnetic field variat
The generating functionF defines the ‘‘close to the identity’
transformation of variables (z,w,pz ,pw) and transforms the
fast variables (x,px) into the action-angle variables (qx ,I x):

I x5
1

2p R
C

px dx, qx5
]S

]I x
, ~12!

where the integral is taken along the closed curveC of con-
stant H5H(x,z,w,px ,pz ,pw ,t) on the (x,px) plane. Here
U05U0(z,w,Pz ,Pw ,t), xc5xc(z,w,Pz ,Pw ,t), and v0

5v0(z,w,Pz ,Pw ,t)5vx(xc ,z,w,Pz ,Pw ,t) are slowly
varying functions of the their argumentsz,w,Pz ,Pw ,t.

For small radial gyro-oscillations one can neglect high
order expansion termsk>3. Then for the generating functio
S one can obtain

S~x,I x ,z,Pz ,w,Pw ,t !5I x~arcsiny1yA12y2!, ~13!

wherey5(x2xc)/A2I x /vx. Using~13! we have the follow-
ing relations between old and new variables:

qx5
]F

]I x
5arcsin

x2xc

A2I x /v0

,

~14!

px5
]F

]x
5A2I xv0cosqx ,

pi5
]F

]qi
5Pi1e

]S

]qi
,

~15!

Qi5
]F

]Pi
5qi1e

]S

]Pi
~ i 52,3!,

where

e
]S

]h
5S I x sinqx

] ln v0

]h
2A2I xv0

]xc

]h D cosqx

52rxv0

]xc

]h
cosqx1

rx
2

4

]v0

]h
sin 2qx . ~16!

Here h5(z,w,Pz ,Pw), (q2 ,q3)5(I x ,pz ,pw), (Q2 ,Q3)
5(Z,F) ( i 51,2,3). From ~14! follows that x5xc

1rx sinqx , whererx5A2I x /v0 is a gyroradius along thex
axis.

According to ~7!, ~14!, ~15!, the new HamiltonianH
determined asH5H1]F/]t takes the form
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
f

n.

r

H~qx ,Z,F,I x ,Pz ,Pw ,t !5ṽ0I x1Ũ01e
]S

]et
, ~17!

where

ṽ05v0S Z2e
]S

]ePz
,F2e

]S

]ePw
,Pz1e

]S

]ez
,Pw

1e
]S

]ew
,t D ,

Ũ05U0S Z2e
]S

]ePz
,F2e

]S

]ePw
,Pz1e

]S

]ez
,Pw

1e
]S

]ew
,t D .

Unlike the original stiff Hamiltonian~7!, the new Hamil-
tonian~17! describes the motion of particles in slowly var
ing variables (Z,F,I x ,Pz ,Pw), clearly extracting the high-
frequency gyro-oscillations into the gyro-phaseqx :

dqx

dt
5

]H

]I x
,

dIx

dt
52

]H

]qx
, ~18!

dZ

dt
5

]H

]Pz
,

dPz

dt
52

]H

]Z
, ~19!

dF

dt
5

]H

]Pw
,

dPw

dt
52

]H

]F
. ~20!

The coordinates (xc ,Z,F) describe the guiding center o
the gyro motion of a particle. According to~14!, ~15!, and
~16! the particle coordinates (x,z,w) up to the first order ofe
are related to these coordinates as

x5xc1rx sinqx ,

z5Z2
]S

]Pz
5Z1rxv0

]xc

]Pz
cosqx , ~21!

w5F2
]S

]Pw
5F1rxv0

]xc

]Pw
cosqx .

Using the fact that the action variableI x , conjugated to
the gyrophaseqx , is an adiabatic invariant one can furth
simplify the system~18!–~20!. In the next section we will
show thatI x is conserved during the slow drift motion of th
particle with sufficiently high accuracy. We will show fur
thermore that the actionI x is very close the main adiabati
invariant, the magnetic moment of the particlem
5mv'

2 /2B, wherev' is the of the particle velocity perpen
dicular to the magnetic fieldB (B5uBu). The existence of
the adiabatic invariantI x allows us to reduce the 6D syste
~18!–~20! to a 4D system of Hamiltonian equations. For
small ratioe5rx /L!1 this procedure may be studied usin
perturbative methods with a successive canonical chang
variables.28

Using the smallness of the ratioe one can expand the
Hamiltonian~17! in powers ofe. Neglecting the small terms
of order ofe2 and higher, we can present the Hamiltonian
the form
 license or copyright, see http://pop.aip.org/pop/copyright.jsp



e
gy

e

a

l

e

-

y

se

i
f
e

n
i-

al

the

iate

rift
is

u-
ot

er

ly,
s.
the
tric

an
vely
ese
f an

ita-
a-
orm
eld
14
va-

o
eld

4197Phys. Plasmas, Vol. 9, No. 10, October 2002 Hamiltonian guiding center equations in a toroidal system
H~qx ,Z,F,I x ,Pz ,Pw ,t !5H0~Z,F,I x ,Pz ,Pw ,t !

1eH1~qx ,Z,F,I x ,Pz ,Pw ,t !,

~22!

where the first termH0 on the right-hand side describes th
part of the Hamiltonian which does not depend on the
rophaseqx :

H0~Z,F,I x ,Pz ,Pw ,t !5v0~Z,F,Pz ,Pw ,t !I x

1U0~Z,F,Pz ,Pw ,t !. ~23!

The fast-oscillating second termH1 in ~22! up to the first
order ofe is determined by

eH1~qx ,Z,F,I x ,Pz ,Pw ,t !

52rxv0 cosqxF~ I x ,Z,F,Pz ,Pw ,t !, ~24!

where

F~ I x ,Z,F,Pz ,Pw ,t !5 (
i 51,2

F]~v0I x1U0!

]Pi

]xc

]Qi

2
]~v0I x1U0!

]Qi

]xc

]Pi
G1

]xc

]t
.

The unperturbed HamiltonianH0 does not depend on th
gyrofrequency, and hence the action variableI x is an integral
of motion. In an axisymmetric and time-independent tok
mak magnetic configuration, i.e.,]H0 /]F[0, ]H0 /]t[0
there exist two more integrals of motionI z and I w[Pw ~the
action variables! related to the slow drift motion in poloida
and toroidal coordinates, particularly, the actionI z is defined
by I z5(1/2p) rCPz dZ, where the integral is taken along th
closed curveC, the projection of the orbit into the (Z,Pz)
plane. Then the unperturbed systemH05H0(I x ,I z ,I w) ~23!
is completely integrable. The frequencyvx5]H0 /]I x deter-
mines the fast radial gyro-oscillations, whilevz5]H0 /]I z

andvw5]H0 /]I w are slow frequencies of conditionally pe
riodic drift motion along verticalz and toroidalw coordinates
on the drift toroidal surfaces.

Such a conditionally periodic motion of particles ma
also survive if the nonaxisymmetric~or time-dependent!
magnetic perturbation is present. However, in this case
eral groups of resonant drift surfaces~with mvz2nvw

1 lV50! are destroyed and the integralsI z and I w may not
exist. If the interaction of these resonant drift surfaces
sufficiently strong, it gives rise to chaotic drift motion o
particles, similar to the ones of resonant magnetic surfac

The influence of the small perturbation term~24! con-
taining the gyrophaseqx on the described above drift motio
of Hamiltonian system~23! may be studied using the class
cal perturbation methods of the KAM~Kolmogorov–
Arnold–Moser! theory. First of all the perturbation term~24!
of the first ordere may be eliminated by the canonic
transformation of variables (qx ,Z,F,I x ,Pz ,Pw)
→(q̄x ,Z̄,F̄,Jx ,P̄z ,P̄w) transforming the Hamiltonian~22!
into
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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H̄5H̄0~ Z̄,F̄,Jx ,P̄z ,P̄w ,t;e!

1e2H2~q̄x ,Z̄,F̄,Jx ,P̄z ,P̄w!, ~25!

with Jx5I x2e]S1 /]qx . The new Hamiltonian~25! con-
tains the gyrophaseqx in the terms of order ofe2. Further
successive canonical transformations of variables shift
terms with the gyrophase to the ordere4,e8 and so on. Then
the transformed action variableJx will be an integral of mo-
tion with sufficiently high accuracy ine. The existence of
such successive canonical transformations is an immed
consequence of the KAM theory28 in the case where the
unperturbed HamiltonianH0 ~23! is integrable. In the latter
case the fast frequencyvx of radial gyro-oscillations is much
larger than both slow drift frequenciesvz and vw , i.e., the
resonance conditionvx2mvz2nvw50 is never satisfied
even for moderately large mode numbers (m,n). In the non-
integrable case of drift motion, i.e., in a case of chaotic d
motion, the existence of such canonical transformations
not obvious from the KAM theory. However, one can int
itively expect that a slow chaotic drift motion does n
change the above result.

The elimination of the gyrophaseqx allows one to re-
duce the 6D system of the guiding center equations~18!–
~20! to the four-dimensional system for its guiding cent
variables (Z,F,Pz ,Pw):

dZ

dt
5

]H

]Pz
,

dPz

dt
52

]H

]Z
, ~26!

dF

dt
5

]H

]Pw
,

dPw

dt
52

]H

]F
, ~27!

whereH5H(Z,F,Jx ,Pz ,Pw ,t;e) and (Z,F,Jx ,Pz ,Pw) are
Hamiltonian function and canonical variables, respective
after some sufficient number of canonical transformation

This reduced system describes the slow motion of
guiding center in a time-dependent magnetic and elec
fields in a toroidal system. Up to the first order ofe the
particle orbits are determined by Eq.~21! with the gyrophase
qx5* tv(t8)dt81qx0 , where

v~ t ![v~Z~ t !,F~ t !,Jx ,Pz~ t !,Pw~ t !,t !5
]H

]Jx
.

As mentioned above, the four-dimensional Hamiltoni
guiding center equations have been derived and extensi
studied previously in Refs. 6, 8, 7, 9–11, 13, and 14. Th
methods are based on the assumption of the existence o
adiabatic invariant, the magnetic momentm, and they use a
magnetic coordinate system. However, it imposes a lim
tion on the form of the magnetic field in order to have c
nonical guiding center equations. It assumes a special f
of the magnetic field to describe the case with chaotic fi
lines.8 In a more general approach given in Refs. 13 and
one may find a coordinate system in which one of the co
riant components of the magnetic fieldB and the vector po-
tential A vanish. However, in practice, it may be difficult t
find such a coordinate system in a case with chaotic fi
lines.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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Our straightforward method allows one to obtain Ham
tonian guiding center equations for particles in tim
dependent magnetic and electric fields using a cylindr
coordinate system rather than a complex magnetic coordi
system. It makes these equations much simpler as comp
to corresponding guiding center equations in a magnetic
ordinate system. More important is that the use of the ac
variableI x as an adiabatic invariant makes more sense t
using the magnetic momentm, because the actionI x is re-
lated to the invariantJx of the Hamiltonian system, wherea
the magnetic momentm5mv'

2 /2B is related to the magneti
field only. Therefore, for instance, in the presence of
electric field the magnetic moment may be conserved w
less accuracy than without. As shown in Ref. 20 one need
modify the the magnetic momentm in a strong sheared elec
tric field in order to make it an adiabatic invariant. In o
approach the action variableI x may be considered as a
adiabatic invariant no matter whether the electric field
present or not. From the very beginning it is introduced
the whole system, which may include not only the effect
the magnetic field, but also the electric field within th
plasma as well.

III. SIMPLIFIED GUIDING CENTER EQUATIONS

The equations of motion may significantly be simplifie
using the smallness of the poloidal magnetic fieldBZ in com-
parison with the toroidal fieldB0 and the normalized velocity
of particles (uw ,uz)5(vw ,vz)/vcR0 for the moderate energ
particles. For the TEXTOR configuration~R05175 cm, B0

52 T! the normalized velocity of the ionH1 is uion'2.9
31026Ei

1/2 and for electrons isue'6.831027Ee
1/2, where

@E#5eV. One can see that for the particles up to the ene
E<1 MeV the normalized velocityu is small. On the other
hand, the normalized poloidal fieldbz5BZ /B0 at the plasma
edge is of order ofbz5(] f /]x)/(11x)'x/q;1021, where
q is a safety factor. Therefore, in the equations for the f
quencyvx ~8! and the guiding center coordinatexc ~9! one
can neglect the terms proportional tou2!1, ubzuu!1, bz

2

!1. Thus we have the following simple equation for t
guiding centerxc , i.e.,

pz1 ln~11x!2~11x!Ex50, ~28!

and the gyrofrequencyvx is determined only by the toroida
magnetic field Bw51/(11x) and the electric fieldEx

52]f/]x:

v0'
1

11xc
F12~11xc!Ex2~11xc!

2
]Ex

]x G1/2

. ~29!

Then the Hamiltonian~23! for the guiding center can b
written as

H0~ I x ,Z,Pz ,F,Pw!5v0~Z,F,Pz ,t !I x1
~Pw2 f !2

2~11xc!
2

1f~xc ,Z,F,t !, ~30!

where f 5 f (xc ,Z,F,t), xc5xc(Z,F,Pz ,t). The equations
of motion corresponding to Hamiltonian~30! are
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
-
l
te

red
o-
n
n

e
h
to

s
r
f

y

-

dZ

dt
5

]v0

]Pz
I x1

]U

]xc

]xc

]Pz
,

~31!
dPz

dt
52

]v0

]Z
I x1

~Pw2 f !

~11xc!
2

] f

]Z
2

]f

]Z
2

]U

]xc

]xc

]Z
,

dF

dt
5

~Pw2 f !

~11xc!
2 ,

~32!
dPw

dt
52

]v0

]F
I x1

~Pw2 f !

~11xc!
2

] f

]F
2

]f

]F
2

]U

]xc

]xc

]F
,

where

]U

]xc
52

~Pw2 f !2

~11xc!
3 2

~Pw2 f !

~11xc!
2

] f

]xc
1

]f

]xc
.

The action variableI x in these equations is considered as
constant of motion.

In the absence of the electric field (Ex[0) one can ob-
tain simple solutions of Eqs.~28! and ~29!,

vx5
1

11xc
5epz, xc5e2pz21. ~33!

Then the relationships between the particle coordinates
its guiding center coordinates take the form

x5xc1rx sinqx ,
~34!

z5Z1rx cosqx , w5F.

The system of equations~31! and ~32! is thereby further
simplified because the frequencyvx and the guiding cente
xc depend only onPz .

IV. VERIFICATION OF GUIDING CENTER EQUATIONS

In this section we verify the equations introduced for t
guiding center of particles in a toroidal magnetic field in t
absence and in the presence of external magnetic pertu
tions.

A. Models of the equilibrium field and the magnetic
perturbations

Consider the standard magnetic field model in a la
aspect ratio tokamak with circular cross section

B~r ,u!5
B0

11r /R0 cosu S ew1
r

q~r !R0
euD , ~35!

whereq(r ) is a safety factor and (r ,u,w) are toroidal coor-
dinates,«5r /R0 (e!1) is the inverse aspect ratio. In a co
ordinate system (R,w,Z) ~or in normalized coordinates
x,w,z) the equilibrium field~35! may be written via the vec-
tor potential A5(0,Aw(x,z),Az(R)) (B5¹3A) with the
following components:

Aw~x,z!5
B0R0

2

R E dc

q~r ~c!!
,

~36!
Az~R!52B0R0 ln R,

where c5r 2/2R0
2, r 5R0Ax21z2. The safety factor is ap-

proximated byq(r )5q01(qa2q0)r 2/a2. For the numerical
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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calculations we choose the following TEXTOR paramete
the major radiusR05175 cm, the minor radiusa546 cm,
q050.75,qa53.5.

We consider the external magnetic perturbationsB1 cre-
ated by the ideal DED coil configuration for the TEXTOR.17

The 16 identical helical coils are located on the inboard
cumference of radiusr c with the poloidal extention 2uc . The
asymptotic expressions for the perturbation field are foun
Ref. 18. Using those formulas and~36! the normalizedw
component of the full vector potentialA may be written as

f ~x,z,w,t !5
RAw

B0R0
2 5E dc

q~r ~c!!

2(
m

f m~r !cos~mu2nw1Vt !,

~37!

wherem,n are poloidal and toroidal mode numbers, resp
tively, f m(r ) is the radial-dependent amplitude of them
mode:

f m~r !5
Bcgmr c

mB0R0
AR

R0
S r

r c
D m

,

gm5~21!m1m0
sin~m2m0!uc

p~m2m0!

with the characteristic strength of the fieldBc

'moI dn/ucr c . The functiongm describes the localized po
loidal spectrum of the perturbation with the central mo
m0 (m0520). The toroidal mode numbern54 whereby the
divertor currentI d may reach up to 15 kA. It is also foresee
that the perturbed field can rotate with the frequencyV. The
latter is one of the specific features of the DED.

For the numerical calculations we choose the followi
TEXTOR parameters: the major radiusR05175 cm, the mi-
nor radiusa546 cm, q050.75, qa53.5. The divertor cur-
rent I d515 kA, coil radiusr c553.25 cm, anduc5p/5.

We have also studied the influence of the equilibriu
potential of the electric field on particle orbits. The followin
model for the this field has been usedf(r )52f0@1
2(r /a)4# (f05eF0 /mvc

2R0
2).

In Fig. 2 the poloidal dependence of the radial comp
nent Br of the perturbing magnetic field is shown at th
different radial positions. One can see that the perturba
field is localized on the high field side. Such a perturbat
creates the ergodic zone of chaotic field lines throughout
plasma edge. A Poincare´ section of field lines at the edg
region is shown in Fig. 3. A more detailed study of the fie
line ergodization under influence of the external magne
perturbations in TEXTOR can be found in Ref. 18.

B. The action variable Ix and the magnetic momentum

Below we study the behavior of the action variableI x

and compare it with the magnetic momentm for the motion
of a hydrogen ion (H1) in the tokamak magnetic configura
tion described above. For TEXTOR tokamak parameters
time dependencies of the quantitiesI x andm were computed
by direct numerical integration of the six-dimension
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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Hamiltonian equations~1!. The integration is carried out by
the fifth-order Kunga–Kutta method with the accuracy 1027.
The actionI x has been computed integrating~12! along the
one closed circle on the (x,px) plane. These calculation
show that the actionI x behaves similar to the magnetic mo
ment m. Figures 4~a!–4~c! show the time dependencies o
the I x and m(t) normalized to the initial value of the mag
netic momentm~0! in the absence~a!, in the presences of the
external static~b! and time-dependent~c! magnetic perturba-
tions with the frequencyf 5V/2p510 kHz ~37!, respec-
tively. The curve 1 describes the normalized magnetic m
ment m(t)/m(0), and thecurve 2, the normalized action
I x(t)/I x(0). Theinitial coordinate of the hydrogen ion (H1)
was taken atr 543 cm,u050, and the energyE51 keV the
relative perpendicular energyl5mB0 /E50.5. The per-
turbed magnetic field at this distance is sufficiently strong

FIG. 2. Magnetic field perturbationsBr as function of the poloidal angleu at
different radial distances:r 542 cm ~curve 1!, 44 cm ~curve 2!, 46 cm
~curve 3!. Divertor currentI d515 kA, the coil radiusr c553.25 cm, the
poloidal extention 2uc52p/5.

FIG. 3. Poincare´ section of magnetic field lines on the (u,r ) plane at the
plasma edge. Parameters are the same as in Fig. 2.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp



rtor

s
per-

tive

b-
iffer-

e of

i-
o

n of
of

-
s

c

-

4200 Phys. Plasmas, Vol. 9, No. 10, October 2002 S. S. Abdullaev and K. H. Finken
FIG. 4. Time dependencies of the normalized magnetic momentm(t)/m(0)
~curve 1! and the normalized action variableI x(t)/m(0) @or I x(t)/I x(0)#
~curve 2! of a hydrogen ion (H1) with energyE51 keV andl50.5: ~a! in
the absence of magnetic perturbations;~b! in the presence of the stati
perturbations;~c! in the presence of time-dependent perturbations withV
5104 Hz.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
produce chaotic field lines. In the last case shown in Fig. 4~c!
the particle leaves the plasma region after hitting the dive
plate located atr d547.7 cm. From calculations it follows
that ~i! the deviation of the actionI x(t) from the magnetic
momentm(t) is sufficiently small during large time interval
for both cases, in the absence and presence of magnetic
turbations;~ii ! although the actionI x(t) varies in time with
larger amplitude than those of the magnetic momentm(t)
whereby its relative deviations from the initial valueI x(0)
remain small. The amplitude of oscillation ofI x(t) and its
deviation from the magnetic moment depends on the rela
perpendicular energy accordingl5mB0 /E. The dependence
of the maximal deviations of the actionI x(t) from m(t) nor-
malized tom~0!, maxuIx(t)2m(t)u/m(0) onl are shown in Fig.
5 for the hydrogen ion of the energy 50 eV and in the a
sence of magnetic perturbations. One can see that the d
ence becomes larger for the small values ofl, where values
of I x(t) andm(t) are themselves small.

The cases of high energetic particles and the influenc
the electric field have been studied as well. In Figs. 6~a! and
6~b! the time dependencies ofI x(t) andm(t) are shown for
the particle of energyE51 MeV without electric field, and
for E51 keV with the electric field of the potential ampl
tude eF05400 eV. The full curves 1 correspond t
I x(t)/I x(0), and thedotted curves 2 describem(t)/m(0).
One can see that in these cases the amplitude of variatio
the actionI x(t) is even several times smaller than the one
the magnetic momentm(t). Therefore, similar to the mag
netic momentm, the action variableI x may be considered a
an adiabatic invariant.

According to~12! the adiabatic invariantI x is the ratio of
the radial energyEr to the vx :I x5Er /vx , similar to the
definition of the magnetic momentm5E' /vc ~in normal-
ized variables!. The adiabatic invariantI x , according to the
definition of vx ~8!, includes the effect of electric field:

I x5I x0F11~11xc!
2
]2f

]x2 G21/2

'I x0F11
e

2mvc
2

]ER

]R G ,
~38!

FIG. 5. Maximum deviation of the actionI x(t) from the magnetic moment
m(t) normalized tom~0!, maxuIx(t)2m(t)u/m(0) versus the relative perpen
dicular energyl in the absence of external perturbations. Ion energy (H1)
E550 eV.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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where ER52]F/]R is a radial component of the electr
field, I x0 is an adiabatic invariant in the absence of the el
tric field. This formula is similar to the one for the magne
momentm in a strongly sheared electric field obtained
Ref. 20.

C. Particle orbits

The guiding center orbits are obtained using the sim
fied guiding center equations~31! and ~32! supposing that
the action variableI x is a constant of motion. This well de
scribes the particle’s orbits in toroidal geometry, thereby
producing the well-known characteristics of guiding cen
motion, like the banana orbits on the poloidal (x,z) plane
and toroidal precession motion on the (R,w) plane. First
using the Hamiltonian~30! we estimate the shift of the drif
orbits from the magnetic surfaces and the width of the
nana orbits.

Consider the magnetic surfacef (x,z)5Pw
(M )5const.

Suppose that the guiding center of the particle crosses
point (x5xm.0,z50) at the low field side. The magneti
and the drift surfaces crossing this point are given by form
las

f ~x,z!5Pw
(M )5Pw2s~11xm!A2~H2vx~xm!I x!, ~39!

FIG. 6. The same as Fig. 4 but the energetic particle of energyE51 MeV
~a! and in the presence of electric field~b!. Parameterl50.5.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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f ~x,z!5Pw2s~11x!A2~H2vx~x!I x!, ~40!

respectively. Heres5vw /uvwu determines the direction o
particle motion:s51 if a particle moves the along positiv
direction of the toroidal anglew, ands521 if it moves in
the opposite direction. In the absence of the electric field
havevx(x)51/(11x). Let r (u) and r M(u) be radial coor-
dinates as a function of the poloidal angleu of the drift and
the magnetic surfaces, respectively. According to~39! and
~40! the relation between these coordinates is given

f ~r cosu,r sinu!2 f ~r M cosu,r M sinu!

5s i S 11
r M~0!

R0
DA2S H2

I x

11r M~0!/R0
D

2s f S 11
r cosu

R0
DA2S H2

I x

11r cosu/R0
D . ~41!

In ~39! s f5s i for the passing particles. For the trapped p
ticles with banana orbitss f5s i at the branch of the orbi
which has a common point with a magnetic surface, a
s f52s i at the other branch.

For the passing particlesH.I x /(12r (p)/R0) and for
the trapped particlesH,I x /(12r (p)/R0). The turning po-
loidal angleuc of the banana orbits of the trapped particles
determined asr (uc)cosuc /R05lI21, wherel I5I x /H.

Consider the case of small deviations of the drift surfa
from the magnetic one. Then using the relations] f /]x
5x/q, ] f /]z5z/q, one can show that

r 2r M'A2H
q~r !R0

2

r Fs i S 11
r ~0!

R0
DA12

l I

11r ~0!/R0

2s f S 11
r cosu

R0
DA12

l I

11r cosu/R0
G . ~42!

The maximum deviation occurs for theweakly trapped par-
ticles, s f52s i , l I512r (p)/R0 , at the low field sideu
50:

D t5ur 2r Mu54E1/2qR0S R01r

r D 1/2

54
qR0

vcr
A Jrr

mR0
S R01r

R02r D
1/2

, ~43!

where Jx5mvc
2R0

2I x and it is supposed thatr 5r (0)
'r (p). For the just passing particles~s f5s i , l I51
2r /R0! the maximum deviation occurs on the high field si
u5p:Dp5D t/2.

For large aspect ratioR0 /r @1 the formula~43! coin-
cides with the one obtained by Berk and Galeev,29 if the
action variable Jx is replaced by mmB0 :D t

54(mB0r /R)1/2/vcu, whereu5ir /Rur 5r M
, i51/q.

We have estimatedD t for the TEXTOR parameters. Fo
the weakly trapped particles of energyE51 keV with I x /E
50.749 and the just passing particles of the same energl
5I x /E50.748. From the numerical integration of Ham
tonian equations we have obtainedD t54.191 cm, for pass-
ing particle Dp51.975 cm which are sufficiently close th
estimations~43!: D t53.972 cm andDp51.986 cm, respec-
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 7. ~a! Guiding center orbits of trapped ions (H1) in the poloidal plane
(R2R0 ,Z): l50.8 ~curve 1!, 1 ~curve 2!; ~b! toroidal procession of the
guiding center orbit of a trapped ion on the (w,R2R0) plane.~c! Expanded
view of the rectangular region shown in~a! of the gyrating orbit and its
guiding center with~full curves! and without~dotted curve! electric field
(eF05100 eV, l50.8!. Energy of the ionE51 keV.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
tively. For the particles of energyE5100 eV we haveD t

51.276 cm, Dp50.618 cm from the numerical integratio
andD t51.254 cm,Dp50.627 cm according to~43!. The es-
timates of Berk and Galeev give smaller values by fac
A(R02r )/(R01r )51.277.

Below we present examples of some orbits obtained
ing the simplified Hamiltonian guiding center equations a
compare them with those obtained by direct integration
Hamiltonian system~1!. In Fig. 7 we have shown the trappe
hydrogen ion (H1) of energyE51 eV with l50.8 and 1.0
with and without electric field:~a! describes the trapped ba
nana orbits on the (R2R0 ,Z) plane without electric field
~curve 1 corresponds tol50.8, and curve 22l51!; ~b!
shows the toroidal precession of the particle orbit on
(w,R) plane (l50.8), ~c! presents the expanded view of th
rectangular region of the trapped orbit (l50.8) drawn in~a!
in which the gyrating particle orbit and its guiding center a
shown. In the latter case the full curves describe the orbi
the presence of the electric field (eF05100 eV), and the
dotted curve corresponds to the orbits in its absence.
gyrating orbit is obtained by direct integration of the 6
Hamiltonian equations~1!. Similar orbits of the gyrating
high-energetic counter-passing particle (s5vw /uvwu521)
of energy E51 MeV (l50.5) and its guiding center ar
presented in Fig. 8. One can see from Figs. 7~c! and 8 that
the simplified equations~31! and ~32! well reproduce the
guiding center orbits of gyrating particles. They also descr
the shrinking of the trapped particle orbits in the presence
the electric field@see Fig. 7~c!#.

Finally, consider the chaotic orbit of particle in the pre
ence of the external magnetic perturbations~37!. In Fig. 9 a
chaotic particle orbit at the plasma edge obtained by
guiding center equations~31! and ~32! ~thick curve 1! and

FIG. 8. Gyrating orbit of the counter-passing (s5vw /uvwu521) energetic
ion (H1) and its guiding center on the poloidal plane (R2R0 ,Z). The
guiding center orbit is obtained using the simplified Hamiltonian equatio
EnergyE51 MeV andl50.5.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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the exact equations~1! ~thin curve 2! are shown. The
counter–passing (s521) particle of energyE51 keV and
l50.5 with initial coordinates~r 543 cm,u50! at t50 hits
the divertor plate atr d547.7 cm at the time instantt52.26
3105: ~a! shows the orbits on the poloidal section@(R
2R0 ,z) plane#, and ~b! the time dependence of the radi
coordinateR(t). Although the comparison of the guidin
center orbits with the gyrating orbits for the chaotic moti
does not make much sense for long time intervals becaus
sensitivity of exponentially diverging orbits on small unce
tainty of the initial coordinates,11 nevertheless at the initia
stage the guiding center orbit of the chaotic particle clos
reproduces its gyrating orbit obtained by the exact 6D eq
tions.

V. CONCLUSIONS

We have developed a new Hamiltonian theory of guid
center motion in magnetic and electric fields of tokam

FIG. 9. ~a! Chaotic orbit of a co-passing (s5vw /uvwu51) ion (H1) on the
poloidal plane (R2R0 ,Z). Thick curve 1 corresponds to the guiding cent
orbit obtained by the simplified Hamiltonian equations, thin one~curve 2!,
to the exact orbit.~b! Time dependence of the radial coordinateR2R0 of the
same orbits as in~a!. EnergyE51 keV andl50.5.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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magnetic confinement devices. The equations of motion
guiding center are obtained from the original 6D Ham
tonian equations in a cylindrical coordinate system for
charged particle by applying a special canonical transform
its fast oscillating variables to slowly varying guiding cent
variables. The transformed new Hamiltonian system
scribes the guiding center motion in 6D phase space for
slow changing variables. These equations may be reduce
a 4D system if the gyrofrequency of the radial oscillations
much larger than the macroscopic transit frequencyL/v th of
the system. In this case there exists an adiabatic invarian
the motion, i.e., the action variable, related to the fast rad
oscillations of particle.

These Hamiltonian guiding center equations have s
eral advantages in comparison to previously propo
Hamiltonian guiding center equations formulated using
existence of the adiabatic invariant of motion, the magne
moment of particles. Unlike those theories which use a rat
complex magnetic coordinate system we have obtained
canonical guiding center equations of motion in a cylindric
coordinate system. These equations are much simpler
those in a magnetic coordinate system, and they allow on
treat the cases of nonaxisymmetric and time-dependent m
netic and electric perturbations without additional formal a
sumptions on their form. In the presented work we ha
restricted ourselves to the case of a simplified equilibri
toroidal magnetic field,Bw5B0R0 /R. This case may be use
ful to study the particle orbits in tokamaks with the destroy
magnetic surfaces, and when the high–precision analyze
the experiment is not so important. The method may no
theless be generalized to the cases of more realistic equ
rium magnetic fields.

The Hamiltonian form of equations is very useful fro
the computational point of view. First of all this gives
rather simple form as compared to those ones in magn
coordinate systems. On the other hand, one can integ
them using the powerful methods of symplectic integratio26

and, in particular, the methods of symplectic mappings.27

ACKNOWLEDGMENTS

The authors are grateful to Professor G. Eilenberger
Dr. G. Fuchs for very useful discussions and suggestions

1C. S. Gardner, Phys. Rev.115, 791 ~1959!.
2C. S. Gardner, Phys. Fluids9, 1997~1966!.
3H. E. Mynick, Phys. Rev. Lett.43, 1019~1979!.
4H. E. Mynick, Phys. Fluids23, 1888~1980!; 23, 1897~1980!.
5H. Weitzner, Phys. Fluids24, 2280~1981!.
6R. G. Littlejohn, Phys. Fluids24, 1730~1981!.
7R. G. Littlejohn, J. Plasma Phys.29, 111 ~1983!.
8R. B. White, A. H. Boozer, and R. Hay, Phys. Fluids25, 575 ~1982!.
9A. H. Boozer, Phys. Fluids27, 2441~1984!.

10R. B. White and M. S. Chance, Phys. Fluids27, 2455~1984!.
11R. B. White, Phys. Fluids B2, 845 ~1990!.
12A. H. Boozer and R. B. White, Phys. Rev. Lett.49, 786 ~1982!.
13J. D. Meiss and R. D. Hazeltine, Phys. Fluids B2, 2563~1990!.
14H. Wobig and D. Pfirsch, Plasma Phys. Controlled Fusion43, 695~2001!.
15A. H. Boozer, Phys. Fluids26, 1288~1983!.
16Ph. Ghendrih, A. Grossman, and H. Cape, Plasma Phys. Controlled Fu

38, 1653~1996!.
17Special issue onDynamic Ergodic Divertor, edited by K. H. Finken, Fu-

sion Eng. Des.37, 335 ~1997!.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp



An
e,

f
-

4204 Phys. Plasmas, Vol. 9, No. 10, October 2002 S. S. Abdullaev and K. H. Finken
18S. S. Abdullaev, K. H. Finken, and K. H. Spatscheck, Phys. Plasmas6, 153
~1999!.

19J. Carlsson, Phys. Plasmas8, 4725~2001!.
20M. Dirickx and B. Weyssow, J. Plasma Phys.59, 211 ~1998!.
21H. Weitzner, Phys. Plasmas2, 3595~1995!.
22H. Weitzner, Phys. Plasmas6, 420 ~1999!.
23R. M. Kulsrud, Phys. Rev.106, 205 ~1957!.
24F. Hertweck and A. Schlu¨ter, Z. Naturforsch. A12A, 844 ~1957!.
25R. Meyer, Z. Angew. Math. Phys.24, 293 ~1973!.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
26J. M. Sanz-Serna, ‘‘Symplectic integrators for Hamiltonian problems:
overview,’’ Acta Numerica ~Cambridge University Press, Cambridg
1992!, pp. 243–286.

27S. S. Abdullaev, J. Phys. A32, 2745~1999!.
28V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, ‘‘Mathematical aspects o

classical and celestial mechanics,’’Encyclopeadia of Mathematical Sci
ences. Dynamical Systems, Vol. III ~Springer-Verlag, Berlin, 1988!.

29H. L. Berk and A. A. Galeev, Phys. Fluids10, 441 ~1967!.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp


