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Hamiltonian guiding center equations in a toroidal system
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A Hamiltonian method to study the guiding center motion of charged particles in a toroidal magnetic
system has been developed. It uses a cylindrical coordinate system instead of a magnetic coordinate
system on which many conventional standard methods are based. The six-dimei8@nal
Hamiltonian equations for the guiding center motion are derived by a canonical transformation of
fast-oscillating variables to slowly varying ones which are guiding center coordinates. It is shown
that one of these slowly varying variables, i.e., the action variable conjugated to the fast-oscillating
gyrophase is an adiabatic invariant for the tokamak equilibrium magnetic field perturbed by the
external time-dependent magnetic field. This allows to reduce the 6D Hamiltonian system to the 4D
one. The method is valid for the study of the guiding center motion of particles in time-dependent
magnetic and electric fields, especially, ergodic magnetic fields, where spatial and temporal scales
of variation are much larger than the gyroradius and the gyroperio@0@2 American Institute of
Physics. [DOI: 10.1063/1.1502672

I. INTRODUCTION existence of an adiabatic invariant, a magnetic moment
=mv?/2B, whereB=|B| andv, is the velocity component
Since the early 1960s the Hamiltonian approach toperpendicular to the magnetic field. However, for some
studying the charged particle motion in magnetic fields hagases, for instance, in spherical tokamaks with a weak but
been subject to many studteébecause of its significance in  strongly spatially varying magnetic field or in the presence of
magnetic fusion research. The equations of guiding centesin electric field with strong gradients, the magnetic moment
motion in Hamiltonian form has several advantages in the, may break dowr(see Refs. 19 and 20Under such cir-
study of particle motion in magnetic confinement devices. ltcumstances the above methods may not work well. More-
allows one to use the methods of the Hamiltonian theory, likeover, as was shown in Refs. 21 and 22 even when the mag-
methods of canonical transformations, the Hamilton—Jacobietic momentu is a good adiabatic invariant in general
method, Liouville’s invariants, perturbation theory and themagnetic configurations it is not a single-valued function of
symplectic maps to efficiently solve the problem. Severapositionr. This makes it difficult to use the magnetic mo-
Hamiltonian formulations of the guiding center motion havement as an invariant in the solutions of the gyrokinetic equa-
been proposed since the early 1988se Refs. 8—)4Some  tions.
of these methods developed in Refs. 8—12 use magnetic In this work we propose a new Hamiltonian method to
coordinate¥’ as canonical variables and therefore would re-study the particle motion in a strong tokamak magnetic field
quire the existence of magnetic surfaces. The case destroyeding a cylindrical coordinate system. In its present form it is
magnetic surfaces are treated either by assuming a speci@sumed that the toroidal fieBl, decays inversely propor-
form for the magnetic field that gives rise to chaotic field tional to the radial coordinat®, B(PocR_l_ This allows one
lines, or using perturbation methodsee, e.g., Refs. 11 and to derive simple Hamiltonian equations for the guiding cen-
12). According to the more general approach proposed iner motion of particles. The idea is similar to the one pro-
Ref. 13, later generalized in Ref. 14 to time-dependent fieldgposed by Mynick in Refs. 3 and 4 two decades ago for the
one should find a coordinate system in which one of themirror and field-reversed configurations in which the particle
covariant components of the magnetic veddoand the vec- gyroradius is comparable to the system size. We formulate
tor potentialA vanish, e.g.A,=B,=0. These limitations on the canonical Hamiltonian equations in a cylindrical coordi-
the form of the magnetic field may not be satisfied in somenate system R,®,Z) to describe the particle motion in a
interesting cases of particle motion in tokamaks in the prestokamak magnetic field which may include the internal or
ence of the external magnetic perturbations. As an examplexternal time-dependent magnetic and electric field perturba-
one can mention the tokamak with an ergodic divertor detions as well. One can expect that this approach may be
signed to control the heat and particle transport at the plasmaseful when the adiabatic invariance is broken, or the gyro-
edge by an externally created magnetic fiéRefs. 16 and radius is comparable to the characteristic spatial scale of
17). All components of such a magnetic field with chaotic variation of magnetic and electric fields.

field lines are nonzert and it is difficult to find a coordi- The idea is that the Hamiltonian of the three-dimensional
nate system in which one of the components of the field3D) gyrating motion of a particle in strong magnetic and
would vanish. electric fields may be presented as a Hamiltonian for 1D

On the other hand, all these approaches are based on thetion along the radial coordinat in the effective poten-
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tial well U=U(R;Z,P,,®,P,,t), which is a steep function described by the toroidal component of the vector potential

of R and slowly varying along the other coordinatel @) A¢(I32,<p,2,f):Bz=@‘1&(§A¢)/¢9I§2, Br= _3A¢/(92_

and timet, also the momentumK;,P,), i.e., H= P2/2 _ In a realistic magnetic equilibrium the toroidal fiel),

+U. For a _stropg magn(_atlc field, the motlop glong the rad|almay deviate fromB,,= BoR,/R due to, for instance, a dia-

coordinate is highly oscillatory near the minimum 6{R)  magnetic current in the plasma. The method presented below

with the amplitudepr and the frequencyog being of the 3y pe generalized to include this case as well.

order %‘;the gyroradi_usc|=levLBO/|m§: and the gyroflreque_:ng?/ Furthermore, we will use the the normalized coordinates

w.=eB/mc, respectively. Introducing action-angle variables ,_ ,~ _5 . Lo

(Ir,9g) to describe such a motion by means of the Canonicai(h_e(r?orrsgl)i/zzg ;_Ofnlsgt’a_the normalized timeé=w.t, and

transformations of  variables R(Z,®,Pg,P,,P,) '

—(9g,Z,®,15,P,,P,) given by the generating function f’x ls(P ﬁz—eAOZ/c

S(R,Z,®,1r,P,,P,) of mixed variables, allows one to de- P eRy’ p"’_mchS’ P R,

rive the Hamiltonian equations for the guiding center vari-

ables @g,Z,®,I5,P,,P,). A further canonical change of

variables allows us to eliminate the radial gyrophdke,

and thus to obtain a 4D system of Hamiltonian equations.
In Sec. Il we derive the 6D and 4D Hamiltonian guiding H(X,¢,Z,px,P,,Pz,t)

center equations using the procedure described above. Sim-

where w.=eBy/mc is a reference gyrofrequencyly,
=Az(Rg)=InRy. The corresponding Hamiltonian function
has the form

_ 2
plified forms of these equations are obtained in Sec. Ill. The = 1 p2+ MJF([)ZJF IN(1+X))2|+ (X, ¢,2,1),
guiding center equations are verified in Sec. IV by compar- 2 (1+x)
ing them with the results of a direct numerical integration of 3

the original Hamiltonian system. The discussion of the re- . . . .
sults ogtained are present)éd i Sec. V. where H=H/(mw?R3) is the normalized Hamiltonian,

d(x,0,2,t)=ed(R,¢,Z,1)/(Mw?R3) is a normalized elec-
tric potential andf="f(x,z,¢,t)=RA,(R,¢,Z,1)/(R3By) is

Il. HAMILTONIAN GUIDING CENTER EQUATIONS IN a normalizede component of the vector potential,. We
CYLINDRICAL COORDINATE SYSTEM assume that the toroidal magnetic fiddd is larger than the
poloidal magnetic field Bz ,B>) and the magnetic perturba-

In this section we derive the Hamiltonian for the guiding .~ "
; : . . . tion field Bpey.
center motion in a toroidal system with coordinates pert . : 2
PR i o ) ) _ The Hamiltonian(3) may be given asH=p;/2+U,
(R,9,Z). The particle motion is determined in the six- where
dimensional phase spatgp) by the Hamiltonian equations:

U ; 1 1 1 7t
dqi oH dpl JH (X .2 p¢ Pz )

— =, —==———, i=123, (1) _£)2
dr op dT - oq, =; (('C’ﬂ—;))z+(pz+|n(1+x))2 +hxezt), (4
where @1,02.93)=(R.¢.2), (P1.P2.P3)=(Pr.P,.P2). ) . ) i i i
The Hamiltonian of the systerti) is is the effective potential for the one-dimensional motion
o along the radial coordinate. Since the poloidal magnetic
H(R,¢,Z,Pgr,P,,Pz,t) field determined byf is smaller than the toroidal fiel8;,
2 2 and the electric fieldp is much smaller than the vector po-
_ 1 b_Sal +2|p —Ska tential A,, the radial dependence of the potential functidn
2m R R R2 e mainly depends on the second term on the right hand-side of
(4), i.e., onU,(x)=(p,+In(1+x))>. The effective potential
e 2 U has a minimum neax=x. whereU,(x;) =0 and sharply
+| Pz EAZ +ed, (2 grows with increasing distance—x.|. The shape of the

potentialU along thex coordinate is shown in Fig. 1 for the

whereA=A(R,¢,2,1) = (Ag A, A7) is the magnetic vector values of particle energy (H and for the typical parameters
potential, andb = d(R,¢,2,1) is the electric field of the Torus Experiment for the Technology-Oriented Re-

.17 _ — —
For the sake of simplicity one can always set the radiaFearCh(TEXTOR 7 Bp=2.25T,Ro=175 cm,a=46 cm.
component of the vector potentidig to be zero, i.e.A Particles trapped inside the potential well oscillate along
R s SR

=0, because of a gauge invariant of the vector potential. wihe radial axis about their minimum, . The amplitude of

suppose that the component of the vector potentidl, osullagon; depends on the particle energy. For an _amphtqde
. . . . A | of oscillations much smaller than the characteristic spatial
which determines the toroidal fielB,=—dA;/JR be in

. R ) scale of variation of the magnetic field the potentiaimay
form Az=-BoRoInR, i.e,, B,=BoRo/R, whereB is a  pe expanded in a series of powers-(x) near its minimum
strength of magnetic field at the major radius of toRs atx,,

=R,. We also assume that the equilibrium poloidal mag-
netic field of the plasmaBKg,B;) and the perturbed mag-
netic field created by the external coils may completely be

n

U=Uo+ — (X=X %+ 3 a(x=x)", (5)
k=3
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FIG. 1. Radial dependencies of the effective potentidl.u(X)

=U(xz,¢,p,.p, 1) for different values of ion (H) energyE. The tokamak
magnetic field is described by the standard equilibrium magnetic fseld
Sec. V). Curve 1 corresponds to the energy=50 eV, 2-E=1keV, 3
—E=10keV, 4-E=100keV, and 5 E=1MeV. The corresponding
horizontal arrows show the radial extend of particle oscillations. Here

E(®)=mw?R?2 is a reference ion (H) energy,r =RgX, Ry=175 cm.

whereU,=Ug(z,p,,¢,P, 1)=U(Xc;2,¢,p;,,P,,t), anday
=U8‘)/k! are expansion coefficients. The minimum point
X, I1.e.,dU/dx=0, is determined by the equation

U ~ [(py—f )2 (p—f) df  p,+In(l+x)
x| (1+x)° " (1+x)? ox 1+x
d
+ ™ =0. (6)
X:XC
Then the Hamiltonian takes the form
H(X,Z,¢,Px, PPy 1)
1
= 5Pt X=X+ 2 ay(x=Xo)"
+UO(Z’le(P’p(p’t)' (7)

The quantityw,= /Uy is the frequency of radial oscillations

52U\ 2
»[5]

ax?
2
= —Uu,+3u’+
THx, 1-u,+3u,+4u

X

Xe

2

of .
? Ix
P

PG

af

Jx

1/2

9°f

—(1+xc)u‘p(9—

2+ (L4x)? ®

where u,=v,/0Ro=(p,—fo)/(1+Xc), U,~v,/wRg
=p,+In(1+x,) are normalized velocities. For moderately
energetic particles the frequenay, is of order of 1, i.e., the
frequency of the radial oscillationsg= w,w, is in the same
order as the gyrofrequeney. .

The Hamiltonian(7) describes the fast oscillating motion
along thex coordinate around the centgg with the fre-
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quency w, . Both, the centex, and the frequency, are
slowly varying functions of spacial coordinates ¢), time

t, and the canonical momentap,,p,, i.€., X

=Xc(Z,¢,P2,P,,1) and w,=wy(z,¢,p;,p,,t). The equa-
tion for the guiding centex. may be rewritten

uz—(1+x)%

0. 9)

5 of
U(p'i‘ U<P&—

In the original variables this equation describes the bal-
ance of the centripetal forde,=muv (Zﬁ/ R and the radial com-

ponent of the Lorentz forceF gr=eE+(e/c)(v,B2
_UzB(/J):

mo? e

TZEER+E(U¢BZ—UZB¢),

whereEg= —d®/JR.

Transformation to slowly varying variable§he direct
integration of the system of Hamiltonian equatioii$ re-
quires very long computational times because the integration
time steps should be small as compared to the gyro-period.
In order to simplify the problem one can change the fast
oscillating variables in Eq(l) to slowly varying ones. The
integration of the equations with respect to the latter vari-
ables would not be time consuming.

The Hamiltonian system(7) is similar to a one-
dimensional oscillator with a slowly varying frequency of
oscillations w, and the equilibrium poink, in space and
time. For small amplitude of the radial oscillations, where
one can neglect the expansion terms higher that?, the
problem is similar to the well-known problem of the har-
monic oscillator under slow changes in the frequency, which
has been studied by many authors for a long tisee, e.g.,
Refs. 23-2h If the gyration period 2r/ w, is much smaller
than the time scal¢g of a change ofw, and x; and the
transition time of the syster/v, whereL is spatial scale
of change of the magnetic field, and is a thermal velocity
of a particle, then the action variablg defined asl,
=[pf/wx+ w(X—X)?]/2 is the adiabatic invariant. The ex-
istence of the adiabatic invariant significantly simplifies the
study of particle motion in an inhomogeneous magnetic field.

More rigorously, the adiabatic invariaht can be intro-
duced by the canonical transformation of variables from the
variables  &,z,¢,py,p;.p,) to the new ones
(9x,Z2,®,1,,P,,P,) determined by the generating function
F=F(x,z,¢,1«,P;,P,,t) of mixed variables, old coordi-
natesq;=(x,z,¢) and new moment®;=(I,,P,,P,), (i
=1,2,3). Then the old momenta=(X,z,¢) and the new
coordinateQ;=(3,,Z,®) are determined byp,=JdF/Jq;,
Q;=JdF/aP;. We will seek the generating functidn in the
form

F(X,1x,2,P;,¢,P,,t)=2P,+ ¢oP,
+S(x,l,€z,eP,,e0,€eP 1), (10)

whereS is the part of the generating function which is slowly
varying with respect to the variables, ¢,P,,P,) as well as
to the timet,
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ES(X1|X721PZI(P1P¢1t) _ ~ (98
H(ﬁX,Z,fb,IX,PZ,P(p,t):wOIXnLU0+e@, 7
X
:f Px(X";1%,2,P,,0,P,,t)dX’, (11 where
where = —uly JS ® dS by ) b
) @o= @o 6(96PZ' eﬂepq,' 2T €hez0 e
pX(X;IX121PZI¢1P¢):{2(H_UO)_wO(X_XC)Z IS
172 +6&ezp’t)’
= 2 a(x=xo)"
e U u(z &Stb 7S P,+ aSP
- —€ [l —€ 1 €_——,
Here € is a small dimensionless parameter of the order of o e 9ePy JeP," * "€z’ ¥
py /L wherep, is the amplitude of radial oscillations ahds oS
a characteristic spatial scale of the magnetic field variation. + 6a_’t>'
€Q

The generating functioR defines the “close to the identity”
transformation of variablesz(¢,p,,p,) and transforms the Unlike the original stiff Hamiltoniar(7), the new Hamil-
fast variablesX, py) into the action-angle variablesi(,l,):  tonian(17) describes the motion of particles in slowly vary-
1 JS ing variables Z,®,1,,P,,P,), clearly extracting the high-
|X=E 3Ecpxdx’ ﬁxzy , (120  frequency gyro-oscillations into the gyro-phase:
X

d¥ oH dl,  dH

where the integral is taken along the closed cuevef con- at o dt. 9. (19
stantH="H(X,z,¢,Px.Pz.P,.t) on the &,p,) plane. Here X X
Uo:UO(Z,QD,PZ,P(’D,t), XC:XC(Z,QD,PZ,P(P,t), and o dz JH dPZ JH
=wo(2,¢,P;,Py t) = wx(Xc,2,0,P,,P,,t) are slowly TR A T A (19
varying functions of the their argumerese,P,,P ,t. z

For small radial gyro-oscillations one can neglect higher dd  gH dpP, oH
order expansion terms=3. Then for the generating function at 0"_P<p, FTEE R (20)

S one can obtain
_ The coordinatesX; ,Z,®) describe the guiding center of
S(x,14,2,Pz,0,Pg )=l (arcsiny+yV1-y%), (13  the gyro motion of a particle. According td4), (15), and

wherey=(x—x.)/y2I, J,. Using(13) we have the follow- (16) the particle coordinate_s<(z,<p) up to the first order o€
ing relations between old and new variables: are related to these coordinates as

X=X+ py SinOy,

1(} JF . X—X¢
=—=arcsit———=
ol NN JS IX
X 0 -7 =7+ _c
- (14 z=Z 7P, Z pxwoﬁPz cosvy, (21
px=5 =2l ,woC0SYy, 9S X
C
=0 — —=]+ pywy—=—C0SY,.
P, P,
JF S
pi:a_qi: it 6(9—qi, Using the fact that the action variablg, conjugated to
(15) the gyrophased,, is an adiabatic invariant one can further
JF JS ] simplify the system(18)—(20). In the next section we will
Qi ~op, diTegp (1=2,3), show thatl, is conserved during the slow drift motion of the
particle with sufficiently high accuracy. We will show fur-
where thermore that the actioh, is very close the main adiabatic
invariant, the magnetic moment of the particlg
aS ) dlnwg IXe 5 g . .
€= Iy sin ﬁxa—_ \/2|Xw0&— CcosdY,y =muv{/2B, wherev, is the of the particle velocity perpen-
K K K dicular to the magnetic fiel® (B=|B|). The existence of
IXe P2 dwy the adiabatic invarianit, allows us to reduce the 6D system
= —pxwo%cosﬁﬁ 7 Wsin 20y (16)  (18)—(20) to a 4D system of Hamiltonian equations. For a

small ratioe=p,/L<1 this procedure may be studied using
Here 7=(z,¢,P,,P,), (0d2,93)=(1x,P;,Py), (Q2,Q3) perturbative methods with a successive canonical change of
=(Z,®) (i=1,2,3). From (14) follows that x=x, variables’®

+ py Sind,, wherep,=+/2l,/wq is a gyroradius along the Using the smallness of the ratioone can expand the
axis. Hamiltonian(17) in powers ofe. Neglecting the small terms

According to (7), (14), (15), the new HamiltonianH of order of€? and higher, we can present the Hamiltonian in
determined a$l="H+ JF/ ot takes the form the form
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H(’ﬂx ,Z,(I),IX,PZ,P(p 1t): HO(ZICD1IX1PZIP¢ vt) g: ﬁO(Zq_)1‘]X1EZ!EKP ,t;e)
*eH1(95.2,8.1P2 Py ), +€H,y(0,,Z.8,3,,P,.P,), (25

22
22 with J,=1,—€dS;/d9,. The new Hamiltonian(25) con-

where the first ternH, on the right-hand side describes the tains the gyrophasé, in the terms of order ot®. Further
part of the Hamiltonian which does not depend on the gy-successive canonical transformations of variables shift the

rophased, : terms with the gyrophase to the ordéh e® and so on. Then

the transformed action variablg will be an integral of mo-

Ho(Z,®,14,P,,P, )= 0o(Z,®,P,,P, D), tion with sufficiently high accuracy ir. The existence of
such successive canonical transformations is an immediate

+Uo(Z,®,P;, P, 1). (23 consequence of the KAM thedfy/in the case where the

unperturbed Hamiltoniafl, (23) is integrable. In the latter
case the fast frequeney, of radial gyro-oscillations is much
larger than both slow drift frequencies, and w, i.e., the
resonance conditiom,—Mmw,—Nw,=0 is never satisfied
even for moderately large mode numbens§). In the non-

The fast-oscillating second terid; in (22) up to the first
order of e is determined by

EHl(ﬂxizYCDIIX!PZIP(pyt)

= — pywo COSOLF(1,,Z,D,P,,P, 1), (24)  integrable case of drift motion, i.e., in a case of chaotic drift
motion, the existence of such canonical transformations is
where not obvious from the KAM theory. However, one can intu-
itively expect that a slow chaotic drift motion does not
I woly+Ug) dx¢ change the above result.
F(lx.Z2,®,P,,P, yt)=i212 TP a0 The elimination of the gyrophasg, allows one to re-
o ' ' duce the 6D system of the guiding center equatiti®—
A wolytUg) dXe| X (20) to the four-dimensional system for its guiding center
T 0Q, aP; +W- variables Z,®,P,,P):
The unperturbed Hamiltonidr, does not depend on the dz _H dP, __H (26)
gyrofrequency, and hence the action varidglés an integral dt JP," dt az’
of motion. In an axisymmetric and time-independent toka-
mak magnetic configuration, i.edHq,/dP=0, dH,/dt=0 do _ ﬂ dP<P: oH (27)

there exist two more integrals of motidp andl ,=P,, (the dt P, dt 9D

action vz_irlable)srel_ated to the_slow drift motlon_m po_I0|daI whereH=H(Z,®,J, P, P, t:¢) and Z,®,J, P, ,P.) are
and toroidal coordinates, particularly, the actigns defined oo ) ¢ . . L
-~ ! . Hamiltonian function and canonical variables, respectively,
by I,=(1/27) $§-P,dZ, where the integral is taken along the . : .
closed curveC, the projection of the orbit into thez(P,) after some sufficient number of canonical transformations.
' bro) z This reduced system describes the slow motion of the

iilir;% Tlgfenl t?;eur:zf):;ur.?ﬁg f‘?e/Stm: H:ogﬁJ/z(;l' (P)dgg- guiding center in a time-dependent magnetic and electric
P y g ' queney 077X fields in a toroidal system. Up to the first order efthe

;nr:gf’ t——hgl—{ait?lraglrael sg{z;(v) -fcr)zclljlsrt:gir;, (;l:‘/ T:riozligg'noeflfl f e- particle orbits are determined by E&1) with the gyrophase
o= 0ol q Y Pe = [tw(t')dt + 9., where

riodic drift motion along verticat and toroidakp coordinates
on the drift toroidal surfaces. J
Such a conditionally periodic motion of particles may w(t)Ew(Z(t),(I)(t),Jx,Pz(t),P¢(t),t)=ﬁ.
also survive if the nonaxisymmetrifor time-dependeit X
magnetic perturbation is present. However, in this case sev-  As mentioned above, the four-dimensional Hamiltonian
eral groups of resonant drift surfacéwith mw,—nw,  guiding center equations have been derived and extensively
+1Q=0) are destroyed and the integrajsand|l, may not  studied previously in Refs. 6, 8, 7, 9-11, 13, and 14. These
exist. If the interaction of these resonant drift surfaces ismethods are based on the assumption of the existence of an
sufficiently strong, it gives rise to chaotic drift motion of adiabatic invariant, the magnetic momentand they use a
particles, similar to the ones of resonant magnetic surfacesmagnetic coordinate system. However, it imposes a limita-
The influence of the small perturbation tef@4) con-  tion on the form of the magnetic field in order to have ca-
taining the gyrophasé, on the described above drift motion nonical guiding center equations. It assumes a special form
of Hamiltonian systent23) may be studied using the classi- of the magnetic field to describe the case with chaotic field
cal perturbation methods of the KAMKolmogorov— |ines® In a more general approach given in Refs. 13 and 14
Arnold—Mosej theory. First of all the perturbation ter(@84)  one may find a coordinate system in which one of the cova-
of the first ordere may be eliminated by the canonical riant components of the magnetic figfdand the vector po-
transformation  of  variables  %.Z,®,1,P;,P,)  tential A vanish. However, in practice, it may be difficult to
—(94,Z2,®,3,P,,P,) transforming the Hamiltoniai22)  find such a coordinate system in a case with chaotic field
into lines.
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Our straightforward method allows one to obtain Hamil- dZ dwg U dxe
tonian guiding center equations for particles in time- =ﬁ|x+§ﬁ,
dependent magnetic and electric fields using a cylindrical z et

coordinate system rather than a complex magnetic coordinate dP, dwg (P,—f) of a9 U adx. (3D
system. It makes these equations much simpler as compared gt gz ' ¥ (1+x0)29Z 9Z  ax, 92"

to corresponding guiding center equations in a magnetic co-

ordinate system. More important is that the use of the action @ _ (Po—1)

variablel, as an adiabatic invariant makes more sense than  dt (1+xc)z'

using the magnetic moment, because the actioh, is re- (32

lated to the invariand, of the Hamiltonian system, whereas dﬁ: _ ﬂ (Py—T) i _ % _ ﬂ %

the magnetic momeni=mu?/2B is related to the magnetic dt ID (14X 9P 9P Ixg 9P’
field only. Therefore, for instance, in the presence of theyhere

electric field the magnetic moment may be conserved with )

less accuracy than without. As shown in Ref. 20 one needs to ﬂ_ (Py—1) (P,—1) ﬁ d¢

modify the the magnetic momeptin a strong sheared elec- X (1+x0)°  (1+X0)% dXe  dxg’
tric field in order _to mak_e it an adiabatic inyariant. In OUr The action variabld
approach the action variablle may be considered as an .gnstant of motion.
adiabatic invariant no matter whether the electric field is |, the absence of the electric fiel& (=0) one can ob-
present or not. From the very beginning it is introduced for;,; simple solutions of Eq€28) and (29),

the whole system, which may include not only the effect of

the magnetic field, but also the electric field within the 1

w =
plasma as well. 14X

« In these equations is considered as a

=ePz, x.,=e Pz—1, (33

Then the relationships between the particle coordinates and
its guiding center coordinates take the form

I1l. SIMPLIFIED GUIDING CENTER EQUATIONS _ .
X=X+ py Siny,

The equations of motion may significantly be simplified (34)
using the smallness of the poloidal magnetic figldin com-
parison with the toroidal fiel, and the normalized velocity The system of equation§31) and (32) is thereby further
of particles (1,,u,) = (v, ,v,)/ R, for the moderate energy simplified because the frequenay and the guiding center
particles. For the TEXTOR configuratiaiR,=175 cm,B,  Xc depend only orP,.

=2T) thlt;:‘2 normalized velocity of the ioi* isllgionwze

X 10" ®E{"* and for electrons isi~6.8x 10" 'ELY?, where

[E]=eV. One can see that for the particles up to the energ;l/v' VERIFICATION OF GUIDING CENTER EQUATIONS
E=<1 MeV the normalized velocity is small. On the other In this section we verify the equations introduced for the
hand, the normalized poloidal fiels}=B /B, at the plasma guiding center of particles in a toroidal magnetic field in the

edge is of order ob,=(3f/dx)/(1+x)~x/q~10"1, where  absence and in the presence of external magnetic perturba-
g is a safety factor. Therefore, in the equations for the fretions.

guencyw, (8) and the guiding center coordinate (9) one
can neglect the terms proportional t8<1, |b,u|<1, b2
<1. Thus we have the following simple equation for the

z=Z+pyC0Sl,, ¢=o.

A. Models of the equilibrium field and the magnetic
perturbations

guiding centerx,, i.e., Consider the standard magnetic field model in a large
D, +1N(1+ %) — (14 X)E =0, 28) aspect ratio tokamak with circular cross section
and the gyrofrequency, is determined only by the toroidal B(r,0)= Bo e + ' e, (35)
g _ R 1+r/Rycosf| ¢ q(r)Rg
magnetic field B,=1/(1+x) and the electric fieldE,
=—d¢lx: whereq(r) is a safety factor andr(6,¢) are toroidal coor-
12 dinates,e=r/Ry (e<<1) is the inverse aspect ratio. In a co-
w7 1—(1+X)E— (14+x0)2—| . (29)  ordinate system R,¢,Z) (or in normalized coordinates
X X X, ¢,Zz) the equilibrium field(35) may be written via the vec-
Then the Hamiltoniari23) for the guiding center can be tor potential A=(0,A,(X,2),A,(R)) (B=VXA) with the
written as following components:
(P,—f)? BORSJ dy
HO(IX121PZ1(I)1P¢)_wO(ZICD1P21t)IX+m A(p(xlz)_ R q(r(lp))v
+ ¢p(Xe,Z,D,t), (30 A(R)=—-BoRyInR, (36
where f=f(x,,Z,®,t), x;=x(Z,®,P,,t). The equations where ¢=r?/2R3, r=R,JX?+ 7. The safety factor is ap-
of motion corresponding to HamiltonigB0) are proximated byq(r) =g+ (0a— o) r?/a2. For the numerical
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calculations we choose the following TEXTOR parameters: 200

the major radiuRy=175 cm, the minor radiug=46 cm,

0o=0.75,9,=3.5. 150
We consider the external magnetic perturbatiBpsre-

ated by the ideal DED coil configuration for the TEXTOR. 100

The 16 identical helical coils are located on the inboard cir-

cumference of radius. with the poloidal extention &.. The 50
asymptotic expressions for the perturbation field are found ing5
Ref. 18. Using those formulas ari@6) the normalizede \: 0
component of the full vector potenti&l may be written as M

” 0 RA, dos -50
Xizl(pl = 2:

BORO q(r(lp)) -100

— 2> fu(r)cogmé—ne+Qt), -150 U
m
(37 Y0 ) AR RN R | S S B
. . 0.2 03 04 05 06 07 038

wherem,n are poloidal and toroidal mode numbers, respec-
tively, f,(r) is the radial-dependent amplitude of tie 0/21
mode:

FIG. 2. Magnetic field perturbatior, as function of the poloidal angleat
BcOmlc R{r\™ different radial distancest=42 cm (curve 1), 44 cm (curve 2, 46 cm
mByR, R_o E , (curve 3. Divertor currentl 3=15 kA, the coil radiusr.=53.25 cm, the
poloidal extention 2.=2/5.

fm(r)=

sin(m—mg) 6.
qu(m——mo) Hamiltonian equation$l). The integration is carried out by
the fifth-order Kunga—Kutta method with the accuracy 10
The actionl, has been computed integratif@?) along the
! ; i one closed circle on thex(p,) plane. These calculations
loidal spectrum of the perturbation with the central modeg,q\y that the actioh, behaves similar to the magnetic mo-

mo (Mo =20). The toroidal mode number=4 whereby the ¢, Figures 4a)—4(c) show the time dependencies of
divertor current 4 may reach up to 15 KA. It is also foreseen I, and x(t) normalized to the initial value of the mag-

that the perturbed field can rotate with the frequeficyrthe e momeniu(0) in the absencé), in the presences of the

latter is one of the specific features of the DED. _ external stati¢b) and time-dependerit) magnetic perturba-
For the numerical calculations we choose the following;ons with the frequencyf = /2 =10 kHz (37), respec-

TEXTOR parameters: the major radigg=175 cm, the mi- ey The curve 1 describes the normalized magnetic mo-

nor radiusa=46 cm, qo=0.75, 4, =3.5. The divertor cur-  ant ,(1)/,4(0), and thecurve 2, the normalized action

rentlq=15kA, coil radiusr.=53.25cm, and.=7/5. | 4y/| (0). Theinitial coordinate of the hydrogen ion (H
We have also studied the influence of the equmbrlumWas taken at =43 cm, 6,=0, and the energ§=1 keV the
potential of the electric field on particle orbits. The following .o |otive perpendicula{r ene;gy:,uBO/Ezo.s. The per-

model 4for the this fie|2d Zhas been usefi(r)=—¢odl  t rhed magnetic field at this distance is sufficiently strong to
—(r/a)*] (¢po=edy/mw:Ry).

In Fig. 2 the poloidal dependence of the radial compo-

gm:(_l)m+m

with the characteristic strength of the fieldB,
~ uolgn/écr .. The functiong,, describes the localized po-

nent B, of the perturbing magnetic field is shown at the 47 R
different radial positions. One can see that the perturbatior 46 | ;

field is localized on the high field side. Such a perturbation

creates the ergodic zone of chaotic field lines throughout the 45 | s

plasma edge. A Poincamsection of field lines at the edge
region is shown in Fig. 3. A more detailed study of the field 44 |
line ergodization under influence of the external magnetic

perturbations in TEXTOR can be found in Ref. 18. 43

B. The action variable /, and the magnetic momentum 42 ¥ , v
_ _ . P AN VA AV AW e
Below we study the behavior of the action varialle 41 NN A S AN NS
and compare it with the magnetic momentor the motion 0 01 020304050607 0809 1
of a hydrogen ion (H) in the tokamak magnetic configura- oo T 9/.2 o T

tion described above. For TEXTOR tokamak parameters the A

time erendenme_s of t_he quant|tie<sandﬂ were C_OmpUt_ed FIG. 3. Poincaresection of magnetic field lines on thé,¢) plane at the
by direct numerical integration of the six-dimensional plasma edge. Parameters are the same as in Fig. 2.
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(a) 1071 ¢
© 1.010 S5 i
= =
o
= - T 102 |
- 1.005 == : 5
o - L
E: 5
= - = -
= 1.000
+ 10-3...|...|...|...|...
0 ' '2 — "1 — |6 — I8 0.0 0.2 0.4 0.6 0.8 1.0
t x10* A
FIG. 5. Maximum deviation of the actioi(t) from the magnetic moment
(b) ,u_(t) normalizeq tou(0), maxl,(t)—w(t)|/n(0) versus Fhe relative perpen-
dicular energy\ in the absence of external perturbations. lon energy)(H
E=50eV.
— 1oz} 2 N |
) produce chaotic field lines. In the last case shown in Fig. 4
\5_ - the particle leaves the plasma region after hitting the divertor
:-\_,\ 1.008 Il plate located aty =47.7 cm. From calculations it follows
= that (i) the deviation of the actiom,(t) from the magnetic
- i momentu(t) is sufficiently small during large time intervals
S 1.004 for both cases, in the absence and presence of magnetic per-
= turbations;(ii) although the action,(t) varies in time with
>=i- larger amplitude than those of the magnetic mome(i)
£ 1.000 I whereby its relative deviations from the initial vallig0)
= - remain small. The amplitude of oscillation bf(t) and its
0 — '015' — 1'0 — '1'_5' — '2'_0' deviation from the magnetic moment depends on the relative
5 perpendicular energy according By /E. The dependence
t x10 of the maximal deviations of the actidg(t) from w(t) nor-

malized tou(0), maxl,(t) — u(t)|/u(0) on\ are shown in Fig.
5 for the hydrogen ion of the energy 50 eV and in the ab-
sence of magnetic perturbations. One can see that the differ-
ence becomes larger for the small values\ptvhere values
of I(t) and u(t) are themselves small.

The cases of high energetic particles and the influence of
the electric field have been studied as well. In Figs) Gnd
6(b) the time dependencies ¢f(t) and w(t) are shown for
the particle of energfe=1 MeV without electric field, and
for E=1 keV with the electric field of the potential ampli-
tude e®,=400eV. The full curves 1 correspond to
I(t)/1,(0), and thedotted curves 2 describg(t)/u(0).
One can see that in these cases the amplitude of variation of
the actionl (t) is even several times smaller than the one of
the magnetic momeni(t). Therefore, similar to the mag-
netic momeniw, the action variablé, may be considered as
an adiabatic invariant.

According to(12) the adiabatic invariarit is the ratio of
the radial energyE, to the w,:1,=E,/w,, similar to the
definition of the magnetic momeni=E, /w. (in normal-
ized variables The adiabatic invariant,, according to the
definition of w, (8), includes the effect of electric field:

FIG. 4. Time dependencies of the normalized magnetic momént ..(0)
(curve 3 and the normalized action variablg(t)/w(0) [or I,(t)/1,(0)]

(curve 2 of a hydrogen ion (H) with energyE=1 keV and\ =0.5: () in 52¢ -12 e JEg

the absence of magnetic perturbatiofis} in the presence of the static =1y 1+(1+xc)2—2 ~lyl 1+ =—= == |,
perturbationsyc) in the presence of time-dependent perturbations \ith IX 2Mmag JR
=10" Hz. (39
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08 (a) f(x,2)=P,— o (1+X)V2(H— w,(x)1,), (40)

' ETEY LT B aa R farf .k respectively. Herer=v,/|v,| determines the direction of
= 1.05 SEEEE RN R particle motion:oc=1 if a particle moves the along positive
= 1.04 B e PR i direction of the toroidal angle, ando=—1 if it moves in
= 103 Ff HEMHEHE i SHI i the opposite direction. In the absence of the electric field we
= T Y i i Hi have w,(x)=1/(1+Xx). Letr(6) andr(#) be radial coor-

1.02 i Prhidi ' thi i i : dinates as a function of the poloidal angl®f the drift and
S 1.01 m i W \MJ W 1k [LR the magnetic surfaces, respectively. According(36) and
<>< 1.00 1 U U @ U U V U y U Iﬂ (40) the relation between these coordinates is given
3 0.99 _ 5 f(r cosé,r sin@)—f(ry, cosh,ry, sinh)
0):]: ) SN FERPUE VIR NS I PR - rM<0>\/ Iy
0 2 4 6 8 10 —ai<1+ Ro 2| H T (0)/Rs
t x10°
1+NOS‘9 \/2 H 'x 41
of Ro 1+r cosl/R,/ (41)
=y 1.005 In (39) o= o for the passing particles. For the trapped par-
~ ticles with banana orbits;= o at the branch of the orbit
= 1.000 which has a common point with a magnetic surface, and
= o¢=— oy at the other branch.
— 0.995 ¢ For the passing particled>1,/(1—r(m)/R,) and for
the trapped particlesl <I,/(1—r(m)/Ry). The turning po-
o 0.990 |k loidal angled, of the banana orbits of the trapped particles is
= determined as(6.)cos6./Ry=\,—1, wherex,=1,/H.
= 0.985 [/ i i Consider the case of small deviations of the drift surface
= C from the magnetic one. Then using the relatiofd dx
0.980 o é L | =x/q, df/9z=z/q, one can show that
0 1 3 5 (RS r(0) A
t x10 r—ry=~+2H p i 1+R— 1—m
0 0
FIG. 6. The same as Fig. 4 but the energetic particle of enérgil MeV
(a) and in the presence of electric figlb). Parameteh =0.5. N r cosé \/1 N\ 42
I Ro "~ 1+rcosb/R,|’ (42)

where Eg=—d®/JR is a radial component of the electric The maximum deviation occurs for thveeakly trapped par-
field, l,o is an adiabatic invariant in the absence of the electicles, o;=—0;, \;=1—r(7)/Ry, at the low field sided
tric field. This formula is similar to the one for the magnetic =0:

momentu in a strongly sheared electric field obtained in 112

Rot+r
Ref. 20. At=|r—rM|=4E1’2qR0 OT
C. Particle orbits qRo 37 (Ro+r 12
- . , . N = : , (43)
The guiding center orbits are obtained using the simpli- o Y MmMRy| Ry—r

fied guiding center equation@1) and (32) supposing that
the action variablé, is a constant of motion. This well de-
scribes the particle’s orbits in toroidal geometry, thereby re
producing the well-known characteristics of guiding center

motion, like the banana orbits on the poloidal,Z) plane . .
For large aspect rati®,/r>1 the formula(43) coin-

and toroidal precession motion on th&,{) plane. First ) . ) 20,
using the Hamiltoniari30) we estimate the shift of the drift C/d€S With the one obtained by Berk and Galeey, the
action variable J, is replaced by muBg:A;

orbits from the magnetic surfaces and the width of the ba* )
nana orbits. =4(uBor/R)Y* w0, where = Lr/R|r:,M, 1t=1/q.

Suppose that the guiding center of the particle crosses tH8€ weakly trapped particles of energy=1keV with I, /E
point (x=X,,>0,2=0) at the low field side. The magnetic =0-749 and the just passing particles of the same energy

and the drift surfaces crossing this point are given by formu-=!x/E=0.748. From the numerical integration of Hamil-
las tonian equations we have obtainAg=4.191 cm, for pass-

™ ing particle A,=1.975 cm which are sufficiently close the
f(X,2) =P, =P = (1+Xn) V2(H— wx(Xn)1), (39 estimations(43): A;=3.972 cm andA ,=1.986 cm, respec-

where J,=mw?R2l, and it is supposed that=r(0)
~r(m). For the just passing particles(ci=0;, \=1
—r/Rg) the maximum deviation occurs on the high field side
O=m Ay=A/2.

Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



4202 Phys. Plasmas, Vol

50

. 9, No. 10, October 2002

10

P I
-5 0

FIG. 7. (a) Guiding center orbits of trapped ions (Min the poloidal plane
(R—Rg,Z): A=0.8 (curve 1, 1 (curve 2; (b) toroidal procession of the
guiding center orbit of a trapped ion on the,R— R,) plane.(c) Expanded
view of the rectangular region shown {a) of the gyrating orbit and its
guiding center with(full curves and without(dotted curve electric field

(edy=100 eV,\=0.8). Energy of the iorE=1 keV.

¢ (radian)
-
0o a3 a4 45
R-R

S. S. Abdullaev and K. H. Finken

40 |

20 -

FIG. 8. Gyrating orbit of the counter-passing=v, /|v,|=—1) energetic

ion (H") and its guiding center on the poloidal planB+R;,Z). The
guiding center orbit is obtained using the simplified Hamiltonian equations.
EnergyE=1 MeV and\=0.5.

tively. For the particles of energiz=100 eV we haveA,
=1.276 cm,A;,=0.618 cm from the numerical integration
andA;=1.254 cm,A;=0.627 cm according t¢43). The es-
timates of Berk and Galeev give smaller values by factor
V(Rg—T1)/(Ro+r)=1.277.

Below we present examples of some orbits obtained us-
ing the simplified Hamiltonian guiding center equations and
compare them with those obtained by direct integration 6D
Hamiltonian systentl). In Fig. 7 we have shown the trapped
hydrogen ion (H) of energyE=1 eV with A\=0.8 and 1.0
with and without electric field(a) describes the trapped ba-
nana orbits on theR—R,,Z) plane without electric field
(curve 1 corresponds ta=0.8, and curve 2\=1); (b)
shows the toroidal precession of the particle orbit on the
(¢,R) plane (. =0.8), (c) presents the expanded view of the
rectangular region of the trapped orhit=€ 0.8) drawn in(a)
in which the gyrating patrticle orbit and its guiding center are
shown. In the latter case the full curves describe the orbit in
the presence of the electric fieleé®,=100eV), and the
dotted curve corresponds to the orbits in its absence. The
gyrating orbit is obtained by direct integration of the 6D
Hamiltonian equationg1). Similar orbits of the gyrating
high-energetic counter-passing particle={v /v |=—1)
of energyE=1MeV (A=0.5) and its guiding center are
presented in Fig. 8. One can see from Figg) and 8 that
the simplified equation$31) and (32) well reproduce the
guiding center orbits of gyrating particles. They also describe
the shrinking of the trapped particle orbits in the presence of
the electric field see Fig. Tc)].

Finally, consider the chaotic orbit of particle in the pres-
ence of the external magnetic perturbati¢d®). In Fig. 9 a
chaotic particle orbit at the plasma edge obtained by the
guiding center equation81) and (32) (thick curve 2 and
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magnetic confinement devices. The equations of motion for
guiding center are obtained from the original 6D Hamil-
tonian equations in a cylindrical coordinate system for a
charged particle by applying a special canonical transform of
its fast oscillating variables to slowly varying guiding center
variables. The transformed new Hamiltonian system de-
scribes the guiding center motion in 6D phase space for the
slow changing variables. These equations may be reduced to
a 4D system if the gyrofrequency of the radial oscillations is
much larger than the macroscopic transit frequelnky,, of

the system. In this case there exists an adiabatic invariant of
the motion, i.e., the action variable, related to the fast radial
oscillations of particle.

These Hamiltonian guiding center equations have sev-

eral advantages in comparison to previously proposed
Hamiltonian guiding center equations formulated using the
existence of the adiabatic invariant of motion, the magnetic
moment of particles. Unlike those theories which use a rather
complex magnetic coordinate system we have obtained the
canonical guiding center equations of motion in a cylindrical
coordinate system. These equations are much simpler than
those in a magnetic coordinate system, and they allow one to
treat the cases of nonaxisymmetric and time-dependent mag-
netic and electric perturbations without additional formal as-
sumptions on their form. In the presented work we have
restricted ourselves to the case of a simplified equilibrium
toroidal magnetic fieldB,=ByR,/R. This case may be use-

ful to study the particle orbits in tokamaks with the destroyed
2 magnetic surfaces, and when the high—precision analyzes of

experiment is not so important. The method may none-

1 rium magnetic fields.

The Hamiltonian form of equations is very useful from

the
U U U U theless be generalized to the cases of more realistic equilib-
0

computational point of view. First of all this gives a

5 rather simple form as compared to those ones in magnetic
t x10 . .
coordinate systems. On the other hand, one can integrate
FIG. 9. (@) Chaotic orbit of a co-passingr=v,, /|v,|=1) ion (H") onthe ~ them using the powerful methods of symplectic integrafion
poloidal plane R—Ry,Z). Thick curve 1 corresponds to the guiding center and, in particu|ar, the methods of Symp|ectic mappﬁ{gs

orbit obtained by the simplified Hamiltonian equations, thin ¢ngve 2,
to the exact orbit(b) Time dependence of the radial coordinBte R, of the

same orbits as ia). EnergyE=1 keV and\=0.5. ACKNOWLEDGMENTS

the exact equationgl) (thin curve 2 are shown. The
counter—passings{= —1) particle of energfe=1 keV and
A =0.5 with initial coordinate$r =43 cm, 6=0) att=0 hits )
the divertor plate aty=47.7 cm at the time instant=2.26 28
X 10°: (a) shows the orbits on the poloidal secti¢(R 3
—Ry,2) plang, and (b) the time dependence of the radial *H.
coordinateR(t). Although the comparison of the guiding ZH-
center orbits with the gyrating orbits for the chaotic motion 7R'
does not make much sense for long time intervals because ok’
sensitivity of exponentially diverging orbits on small uncer- °A.
tainty of the initial coordinate$} nevertheless at the initial }'R-
stage the guiding center orbit of the chaotic particle closelylzi'
reproduces its gyrating orbit obtained by the exact 6D equas;
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